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Abstract: - A self-adaptive fitness formulation is presented for constrained evolutionary optimization. The 
method has been formulated to ensure that slightly infeasible solutions with a low objective function value 
remain fit. This is seen as a benefit in solving highly constrained problems that have solutions on one or more 
of the constraint bounds. In contrast, solutions furthest from the constraint bounds are seen as containing little 
genetic information that is of use and are therefore penalized. The dimensionality of the problem is reduced by 
representing the constraint violations by a single infeasibility measure. The infeasibility measure is used to 
form a two-stage penalty that is applied to the infeasible solutions. The performance of the method has been 
examined by its application to a set of eleven test cases from the specialized literature and also by its 
application to a water distribution network from literature. The results have been compared with previously 
published results from the literature. It is shown that the method is able to find the optimum solutions with less 
computational effort. The proposed method requires no parameter tuning and can be used as a fitness evaluator 
with any evolutionary algorithm. The approach is also robust in its handling of both linear and nonlinear 
equality and inequality constraint functions. Furthermore, the method does not require an initial feasible 
solution. 
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1   Introduction 
In the last two decades, genetic algorithms have 
received much attention regarding their potential as 
global optimization techniques. More recently, the 
solution of constrained optimization problems has 
been addressed by many researchers ([1], [2], [3], 
[4], [5], [6], [7]). 

Penalty function methods are among the most 
common methods used to solve constrained 
optimization problems. In these methods, a penalty 
term is added to the objective function, the penalty 
increasing with the degree of constraint violation 
(static penalty) or the degree of constraint violation 
and generation number (dynamic penalty) ([8], [9]). 
In general the weakness of penalty methods is that 
they often require several parameters, to adjust the 
relative weights of each constraint in the penalty, 
and the weight of the penalty against the objective 
function. However, due to their simplicity and ease 
of implementation they are the most common 
methods used in solving real world problems. 

Among other types of constraint handling 
methods are the specialized operators method 
(GENOCOP method which is based on designing 
specialized operators that incorporate knowledge of 

the constraints) [10] and the methods based on the 
idea of repairing infeasible solutions [11]. 
Superiority of feasible solutions method [1] is 
another method for handling constrained problems. 

Hybrid methods combine evolutionary 
techniques with deterministic optimization 
procedures for numerical optimization problems 
[12]. 

Adaptive techniques are appealing due to their 
ability to adjust their own parameters and make use 
of information in the population [2][4]. 

Koziel and Michalewicz (1999) presented the 
homomorphous mapping approach for solving 
constrained optimization problems. The method 
incorporates a homomorphous mapping between an 
n-dimensional cube and the feasible search space. 
The disadvantages of the homomorphous mapping 
method are that it requires an initial feasible solution 
and that all infeasible solutions are rejected. Another 
limitation is the need for problem-dependent 
parameters in the method. 

Runarsson and Yao (2000) introduced a 
stochastic ranking method in which the objective 
function values are used for ranking the solutions in 
the infeasible region of the search space. A 



probability parameter is used to determine the 
likelihood of two individuals in the infeasible space 
being compared to each other. Although the method 
proved to be effective in solving a wide range of 
constrained optimization problems, it was also 
sensitive to the choice of probability parameter. 

Most of these constraint handling methods are 
problem dependent. They often require user supplied 
parameters to be adjusted in order to obtain good 
performance from the method. Some of the methods 
are also able to handle only specific constraint types 
and therefore lack generality. Some of the 
approaches limit the search to the feasible search 
space. However, a good search should approach the 
optimum solution from both sides of the 
feasible/infeasible border [13]. Smith and Coit 
(1997) pointed out that there is need for 
development of completely adaptive penalty 
functions that require no user specified constants 
and development of improved adaptive operators to 
exploit characteristics of the search as they are 
found. 

Wright and Farmani (2001) and Farmani and 
Wright (2003) presented a fitness formulation which 
addresses the limitations of some of the existing 
constraint handling methods. In particular, it does 
not require parameter tuning and can be used 
without an initial feasible solution being given. In 
what follows a brief description of the self-adaptive 
fitness formulation [7] is presented for constraint 
evolutionary optimization. The general procedure 
for the method is illustrated by a flowchart, which 
summarizes possible scenarios. The paper describes 
the evaluation of the algorithm's performance in 
solving eleven standard test functions taken from the 
literature. The performance of the algorithm is 
compared to a number of previous studies. The 
method is also applied to a benchmark water 
distribution network and the results are compared 
with previously published results from literature. 
 
 
2   Self-Adaptive Fitness Formulation  
The self-adaptive fitness formulation method for 
constraint optimization was proposed by Wright and 
Farmani (2001) and Farmani and Wright (2003). 
The proposed formulation has the advantage of 
being a self-adaptive method, where all the 
information from the search space is used. The 
method has been formulated to ensure that slightly 
infeasible solutions with a low objective function 
value remain fit. This is seen as a benefit in solving 
highly constrained problems that have solutions on 
one or more of the constraint bounds. In contrast, 

solutions furthest from the constraint bounds are 
seen as containing little genetic information that is 
of use and are therefore penalized. The approach 
does not require parameter tuning, can be used 
without any initial feasible solution being given and 
requires fewer function evaluations (this being an 
advantage in real world applications having many 
optimization variables). The approach is also robust 
in its handling of both linear and nonlinear equality 
and inequality constraint functions. The self-
adaptive fitness formulation method can be used as a 
fitness evaluator with any evolutionary algorithm. 

The algorithm has three stages, first each 
individual is assigned an infeasibility, second the 
bounding solutions of the search space are 
identified, and finally, the infeasible solutions are 
penalized. 
 
 
2.1   Chromosome infeasibility 
The infeasibility values are represented by the sum 
of the normalized constraint violation values. 
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where )(Xι  is the solution's infeasibility, 

)(Xc j  is the value of the constraint violation of 
individual X for constraint j, 

jcmax,  is the maximum value of the constraint 
violation for constraint j in the current population, 
and m is the number of constraints. 
 

The infeasibility measure has the properties that 
it increases in value with both the number of active 
constraints and the extent to which each constraint is 
violated. The constraint violation values are 
normalized since large differences in the magnitude 
of the constraint values can lead to dominance of the 
infeasibility by constraints having the highest 
values. The scaling factor for each constraint , 
is taken as the maximum value of the constraint 
violation in the current population. Resetting the 
scaling factor for each population provides a further 
dynamic element to the infeasibility calculation.  

jcmax,

 
 
2.2   Identification of the bounding solutions 
The penalty functions are applied in relation to three 
bounding solutions: 
 



∨

X , the “best” individual; 
∧

X , the “worst” of the infeasible solutions; and 
∪

X , the solution with the highest objective function 
value in the current population. 
 

For a population containing at least one or more 

feasible solutions, the “best” individual 
∨

X , is the 
feasible solution having the lowest objective 
function value. However, if all individuals are 
infeasible then the best solution is taken as the 
solution having the lowest infeasibility value 
(regardless of the objective function value of the 
individuals). 

The “worst” of the infeasible solutions 
∧

X , is 
selected by comparing all infeasible individuals 

against the best individual (
∨

X ). Two potential 
population distributions exist in relation to this 
comparison. 
• The first population distribution occurs when 

one or more of the infeasible solutions have an 
objective function value that is lower than the 
“best” solution. In this case, the “worst” of the 
infeasible solutions is taken as the infeasible 
solution having the highest infeasibility value 
and an objective function value that is lower than 
the “best” solution's. If more than one individual 
exists with the same highest infeasibility values, 

then the 
∧

X  is taken as the solution with 
maximum infeasibility value and the lower of the 
objective function values. 

• The second population distribution occurs when 
all of the infeasible solutions have an objective 
function value that is greater than the “best” 
solution. Here the “worst” of the infeasible 
solutions is identified as being the solution with 
the highest infeasibility value. If more than one 
individual exists with the same highest 

infeasibility value, then 
∧

X  is taken as the 
solution with the maximum infeasibility value 
and the higher of the objective function values.   

 
 
2.3   Chromosome Fitness 
The infeasibility measure is used to form a two stage 
dynamic “penalty” applied to the infeasible 
solutions. The penalties applied to the infeasible 
solutions are a function of the infeasibility and 

objective function values  for the “best” ()(Xf
∨

X ) 

individual, the individual with maximum 

infeasibility value, “worst” (
∧

X ), and the individual 

with maximum objective function value (
∪

X ) in the 
current population. Note that if a feasible solution 
exists, then the “best” solution is feasible and will 
have zero infeasibility, otherwise the “best” solution 
is the infeasible individual with minimum 
infeasibility value. The first stage only applies if one 
or more infeasible solutions have a lower, and 
therefore, potentially better objective function value 
than the “best" solution. The first penalty ensures 
that the worst of the infeasible solutions (the “worst” 
individual) has a penalized objective function value 

 that is higher or equal to that of the best 
solution in the population. The remaining infeasible 
individuals are then penalized in proportion to their 
infeasibility. This has been implemented using a 
simple linear relationship between the objective 
function values and the infeasibility of the “best” 
and “worst” solutions (Equations 2 and 3). 
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Note that if the penalty is not applied then 

. )(Xf=
The second penalty increases exponentially the 

first penalized objective function values such that 
the second penalized objective function value 

 of the “worst” individual is equal to that of 
the individual with maximum objective function 

value in the current population (  (Equations 4 
and 5). 
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It is important to note that the exponential weighting 
parameter of 2.0 in Equation 4, is a constant and 
does not require tuning. The exponential function 
gives a slight reduction in the rate of penalty applied 
to solutions of low infeasibility, thus helping to 
maintain the fitness of the slightly violated 
solutions. A study of the effect of the weighting 
parameter indicated that the algorithm was 
insensitive to the parameter provided that the 
parameter values had the effect of only slightly 
reducing the penalty weight. However, it was 
concluded that the slight reduction in penalty weight 
resulting from a penalty value of 2.0, gave good 
algorithm performance over a range of test 
problems. 

The conversion to fitness  is by the simple 
subtraction of the penalized objective function 

values , from the maximum penalized value 
in the current population. 
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The scaling factor γ , simply ensures that the 

penalized value of “worst” infeasible solution is 
equivalent to the highest objective function value in 
the current population. The second case in Equation 
(5) ( 0.0=γ ), applies when the “worst” infeasible 
individual has an objective function value equal to 
the highest in the population. Here, no penalty is 
applied since the infeasible solutions would 
naturally have a low fitness and should not be 
penalized further. The use of absolute values of the 
objective function in Equation (4) is necessary to 
allow the minimization of objective functions 
having negative values. 

It is evident that the approach is dynamic in the 
allocation of the penalty in that the absolute value of 
the penalty depends on the objective values of the 

“best”, the “worst” and the “
∪

X ” individuals. The 
penalty also accounts for the range of infeasibility in 
the current population and the distribution of the 
infeasible solutions in relation to the “best” 
individual in the population. 
 

Fig. 1 illustrates the general procedure for self-
adaptive fitness formulation method. 
 
 
3 Test Cases 
3.1   Eleven test cases 
The performance of the proposed constraint 
handling method has been evaluated using a set of 
eleven test cases [3][5]. These test cases include 
various forms of objective function (linear, 

quadratic, cubic, polynomial, nonlinear), and each 
test case has a different number of variables. The 
test problems also pose a range of constraint types 
and number of constraints (linear inequalities, LI; 
nonlinear equalities, NE; and nonlinear inequalities, 
NI).  

The self-adaptive fitness formulation described 
here has been implemented and evaluated using 
simple genetic algorithm with Gray encoding of the 
variables (25 bits used to represent each variable). 
The implementation uses proportional (roulette 
wheel) selection strategy, single point crossover, 
random bit mutation, and finally an elitist 
replacement strategy. 

The performance of any evolutionary algorithm 
for constrained optimization is determined by the 
constraint handling technique used as well as the 
evolutionary search algorithm (including 
parameters) [5]. The performance of the algorithm 
described here has been compared to the results 
reported for the homomorphous mapping method 
[3], and therefore, where possible, the same genetic 
algorithm (GA) parameter values have been adopted 
(a population size of 70; 90% probability of 
crossover; and a probability of mutation between 
0.3%-0.5%). The small tolerance of 0001.0=δ  is 
applied to the equality constraints. For each test 
case, 20 runs, each starting from a different 
randomly generated population were performed; and 
the maximum number of generations was set to 
20,000. A comparison of the algorithm performance 
is also made to the results obtained by Runarsson 
and Yao (2000) and Ben Hamida and Schoenauer 
(2000) for the same test problems although it is 
understood that both methods used an evolution 
strategy algorithm and performed different 
experiments to those given in this paper.  
 
3.1.1   Performance of the algorithm 
Farmani and Wright (2003) presented results for 
different experiments, concluding that the algorithm 
described here found good, if not optimum solutions 
for all eleven test cases. This algorithm is a 
development of that described in [6]. The results for 
the best solutions for the current and the earlier 
version of the fitness formulation algorithm are 
given in Table 1. A comparison of the results for the 
two versions of the algorithm indicate that adding a 
further adaptive element to the fitness formulation 
has resulted in an improvement in results for all test 
functions. It should also be noted that the standard 
deviations for the test results are very small [7]. This 
is an important characteristic for the application of 
the algorithm to the solution of real world problems 



where cost and time constraints prohibit repeated 
runs of the algorithm. The small standard deviations 
for the algorithm described here indicate that it is 
robust in finding a near optimum solution without 
the need for repeated runs of the optimization. 
 
 
3.2   Optimum design of a water distribution 
network 
The performance of the method also has been 
examined by its application to the analysis of the 
expansion of New York Tunnel (NYT) water supply 
system Fig. 2. The New York pipe network has been 
studied using evolutionary techniques by a large 
number of researchers in the past ([15][16][17][18]). 
 

 
Fig. 2 Existing New York City Water Supply Tunnels 
 
The objective of the NYT problem was to determine 
the most economically effective design for addition 
to the existing system of tunnels that constituted the 
primary water distribution system of the city of New 
York. Because of age and increased demands, the 
existing gravity flow tunnels were found to be 
inadequate to meet the pressure requirements (at 
nodes 16,17,18,19 and 20) for the projected 
consumption level (Savic and Walters 1997). The 
construction of additional gravity flow tunnels 
parallel to the existing was considered. The node 
and link data are from (Murphy et al. 1993). 

Tunnel (pipe) diameters are considered as design 
variables. There are 15 available discrete diameters 
[36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 
180, 192, 204 inches] and one extra possible 
decision which is the “do nothing” option. All 
twenty one tunnels are considered for duplication. 
Supplying demand at an adequate pressure to 
consumers is the main constraint in the design of 
water distribution systems. The performance of each 
candidate design solution is evaluated through 

simulation of the network flows. EPANET2 
computer program (Rossman 2000) is the network 
solver used in this work. 

The cost function is non-linear, C , 

in which cost C is in dollars, diameter  is in 

inches, and length  is in feet. The optimization 
problem was set based on capital expenditure as an 
objective function and the minimum pressures as 
constraints. 

ijij LD 24.11.1=
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The self-adaptive fitness formulation has been 
implemented using exactly the same genetic 
algorithm setting as 11 test cases. The parameter 
values adopted were a population size of 20; 80% 
probability of crossover; 3% probability of 
mutation; and the maximum number of generations 
was set to 2000. Again 20 runs, each starting from a 
different randomly generated population, were 
performed. A comparison of the algorithm 
performance is made to the results obtained by other 
researchers ([15][16][17][18]). 
 

Table 2 summarizes the results for the NYT 
reported by different researchers and those obtained 
by the self-adaptive fitness formulation. Table 2 
indicates that the algorithm described here found 
good, if not optimum, solutions for the New York 
Tunnel network. The solution listed in table for 
Lippai et al. (1999) is based on linkage of the 
simulation model (WinPipes) to Evolver (1996) 
which is a commercial genetic algorithm based 
optimizer. Another solution reported by Lippai et al. 
(1999), which is linkage of WinPipes to GENOCOP 
[10] was not as successful as the above linkage: the 
best solution of 45.73 million dollars was found 
after 80,000 evaluation trial. 

Savic and Walters (1997) reported two sets of 
solutions based on different hydraulic coefficients. 
The genetic algorithm parameters used were 
population size of 100, the probability of crossover 
of 1, the probability of mutation equal to 1/84 and 
the number of generations allowed was 10000.  The 
result of 37.13 million dollars for their work is 
perhaps the best to date, which has been found based 
on several different runs. 

Self-adaptive fitness formulation found the 
optimum solution with less computational effort. 
Both population size and number of generations 
allowed one fifth of those of Savic and Walters 
(1997) (population size = 20, the number of 
generations allowed = 2000). This is an important 
characteristic for the application of the algorithm to 
the solution of real world problems where cost and 



time constraints prohibit repeated runs of the 
algorithm and evaluations of the network. 

The results obtained by the self-adaptive fitness 
formulation presented in this paper are compared in 
detail to those for previously published algorithms. 
In general, the self-adaptive fitness formulation 
performs as well as, and in some case better than the 
alternative algorithms. Again it is seen that the 
algorithm presented in this paper was able to find 
the optimum or near optimum solution with 
considerably less computational effort. 

The improved performance of the algorithm 
described here may be due to the deterministic 
handling of constraint violations and suggests that it 
has better performance in solving highly constrained 
problems. The main advantage of the method is that 
it does not require any parameter tuning. It simply 
uses the characteristic of the search space in each 
generation. It does not require an initial feasible 
solution and can start with a completely infeasible 
population. The ability to find a feasible solution as 
well as the optimum solution represents a significant 
improvement in algorithm performance. 
 
 
4   Conclusion 
This paper introduces a self-adaptive fitness 
formulation for evolutionary constraint optimization. 
The infeasibility values are represented by the sum 
of the normalized constraint violation values. The 
infeasibility measure has the properties that it 
increases in value with both the number of active 
constraints and the magnitude of each constraint 
violation. The infeasibility measure is used to form a 
two-stage dynamic penalty which is applied to the 
infeasible solutions. The penalty is applied such that 
slightly infeasible solutions having a low objective 
function value are allowed to remain fit. It is shown 
that this approach gives improved or comparable 
results to those of existing methods. The main 
advantages of the approach are that first, it does not 
require any parameter tuning; second, it is able to 
find the optimum or near optimum solution starting 
with a completely infeasible population of solutions; 
third having low population size and generation 
number is important in real world problems where 
cost and time constraints prohibit repeated runs of 
the algorithm and simulation and finally, self 
adaptive fitness formulation method can be used as a 
fitness evaluator with any evolutionary algorithm. 
The method handles constraint violations in a 
deterministic way, and suggests that it has better 
performance in solving highly constrained problems. 
 

The performance of the algorithm has been 
illustrated by application to 11 test cases and a 
benchmark network. It has been shown that the self-
adaptive fitness formulation is able to find optimum 
or near optimum solutions much more efficiently 
and with much less computational effort.  
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Fig. 1: The Optimization procedure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 1: Results for Best Values 
Function Optimum 

value 
Koziel and  
Michalewicz 
1999 

Ben Hamida and 
Schoenauer 
2000 

Runarsson 
and Yao 
2000 

Wright and 
 Farmani 
2001 

Self-Adaptive 
Fitness 
formulation 

G1 -15 -14.7864 -15.0000 -15.0000 -14.9996 -15.0000 
G2 0.803553 0.799530 0.800781 0.803515 0.796640 0.802970 
G3 1.0 0.9997 1.0000 1.0000 0.9994 1.0000 
G4 -30665.5 -30664.900 -30665.500 -30665.539 -30661.100 -30665.500 
G5 5126.4981 - 4707.5200 5126.4970 5126.6398 5126.9890 
G6 -6961.8 -6952.100 -6961.810 -6961.814 -6961.370 -6961.800 
G7 24.306 24.620 24.360 24.307 24.671 24.480 
G8 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 
G9 680.63 680.91 680.63 680.63 681.20 680.64 
G10 7049.33 7147.90 7095.15 7054.32 7152.83 7061.34 
G11 0.75 0.75 0.75 0.75 0.75 0.75 

 
 

Table 2: Results for New York Tunnel 
Savic and Walters 
 1997 

Link Murphy  
et al. 
1993 5088.10=ω 9031.10=ω  

Lippai  
et al. 
1999 

Wu  
et al. 
2001 

Self-Adaptive 
Fitness 
formulation 

1 0 0 0 0 0 0 
2 0 0 0 0 0 0 
3 0 0 0 0 0 0 
4 0 0 0 0 0 0 
5 0 0 0 0 0 0 
6 0 0 0 0 0 0 
7 0 108 0 132 108 108 
8 0 0 0 0 0 0 
9 0 0 0 0 0 0 
10 0 0 0 0 0 0 
11 0 0 0 0 0 0 
12 0 0 0 0 0 0 
13 0 0 0 0 0 0 
14 0 0 0 0 0 0 
15 120 0 144 0 0 0 
16 84 96 84 96 96 96 
17 96 96 96 96 96 96 
18 84 84 84 84 84 84 
19 72 72 72 72 72 72 
20 0 0 0 0 0 0 
21 72 72 72 72 72 72 
Cost ($ million) 38.8 37.13 40.42 38.13 37.13 37.13 
Number of  
Evaluation 

96,750 1,000,000(Total) 46,016 37,186 26,340 
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