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Abstract
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1 Introduction

Engle and Russell (1998) proposed a new econometric framework for the modelling of intertem-
porally correlated event arrival times, termed the Autoregressive Conditional Duration (ACD)
model. A feature of Engle and Russell�s linear ACD model with exponential or Weibull errors
is that the implied conditional hazard functions are restricted to being either constant, increas-
ing or decreasing. Bauwens and Veredas (1999), Hamilton and Jorda (2001), and Zhang et al.
(2001) questioned whether this assumption is an adequate one. As an alternative to the Weibull
distribution used in the original ACD model, Lunde (1999) employed an ACD model based on
the generalized Gamma distribution, while Grammig and Maurer (2000) and Hautsch (2001)
utilized the Burr and generalized F distributions respectively.

Recently, several extensions to Engle and Russell�s (1998) basic model have been proposed.
Lunde (1999) and Bauwens and Giot (2000, 2001a) model the e¤ect of recent durations on
the conditional mean with a logarithmic transformation. We call this model exponential ACD
(EXACD) because of its resemblance to Nelson�s EGARCH model (Nelson, 1991). For the IBM
stock traded on the NYSE, Giot (2001) used an EXACD model to obtain a direct estimate of
the intraday volatility. Dufour and Engle (2000) suggested an asymmetric EXACD speci�cation
which allows for an asymmetric response to innovation shocks. These models avoid some of the
parameter restrictions postulated by the original ACD speci�cation. Moreover, many authors
modelled conditional heteroscedasticity in equidistant �nancial time series using long-memory
models (e.g. Robinson and Za¤aroni, 1997, Robinson and Henry, 1999, Giraitis et al., 2000,
Za¤aroni, 2000, Giraitis et al., 2002). To capture the long range time dependence in intertrade
durations Jasiak (1998) proposed the fractionally integrated ACD (FIACD) model. Bauwens et
al. (2000) review several duration models that have been proposed in the literature.

The objective of this paper is to investigate some of the statistical properties of three al-
ternative ACD models that shed light on the dynamics of the transaction arrival process: the
long-memory ACD (LMACD) model-which captures the long-term dependencies in the duration
series and, in contrast to the FIACD model, is covariance stationary- and, two versions of the
exponential ACD speci�cation, which allow us to obtain analytically the unconditional moments
implied by the model. In addition, since Engle and Russell (1998) �nd that the Weibull distrib-
ution su¤ers from remaining excess dispersion we use two alternative distributions which include
the Weibull as a special case: the generalized F (GF) and the generalized Gamma (GG) (details
on the properties of this distribution can be found in Bauwens and Giot, 2001b).

For all the aforementioned models we provide existence conditions of the second moments
of the durations. We also derive analytical expressions for the autocorrelation function (ACF)
of the durations1. Bauwens and Giot (2001a) and Bauwens et al. (2002) have also provided
analytical expressions for the unconditional moments and ACF for the models belonging to the
EXACD class as de�ned in Bauwens and Giot (2000). We should also mention that Carrasco and
Chen (2002) provide su¢ cient conditions to ensure �-mixing and �nite higher order moments
for various linear and nonlinear GARCH, stochastic volatility, and ACD models.

To facilitate model identi�cation, the results for the ACF of the durations can be applied
so that properties of the observed data can be compared with the theoretical properties of the
models. The signi�cance of our results extends to the development of misspeci�cation tests and
estimation.

The rest of the paper is organized as follows. Section 2 brie�y reviews the ACD model

1He et al. (2002), Demos (2002) and Karanasos and Kim (2003) studied the moment structure of EGARCH
models, and Karanasos et al. (2003) examined the dependence structure of long-memory GARCH processes (see
also Palma and Zevallos, 2003).

2



of Engle and Russell (1998) and considers the properties of the generalized Gamma and F
distributions. Section 3 provides a detailed description of the long-memory, and exponential
ACD models. In addition, it derives the ACF of the durations for all three models. Section 4
concludes the paper.

2 The ACD Model

Consider a stochastic point process that is simply a sequence of arrival times ft0; t1; : : : ; tNg
with 0 � t0 < t1 < � � � < tN . Duration (xi) is the time elapsed between two consecutive arrival
times, i.e. xi � ti � ti�1.

The ACD model of Engle and Russell (1998) speci�es the observed duration as a mixing
process

xi =  i"i (i 2 Z); (2.1)

where f"ig is a sequence of independent and identically distributed random variables with density
�(�i;�) � �("i) ( where � is vector of parameters) and mean equal to one, and  i denotes the
conditional expectation of the ith duration. That is

 i �  i(xi�1; : : : ; x1; �) = E(xijIi�1);

where Ii�1 denotes the conditioning information set generated by the durations preceding xi
and � is a vector of parameters.

The �exibility of the model (2.1) lies in the rich host of candidates for the speci�cation of
the dynamic structure of  i as well as the conditional density �.

Following Engle and Russell (1998), we express the conditional density of xi as

g(xi;  i;�) � g(xi) =
1

 i
�

�
xi
 i

�
(2.2)

The speci�cation in (2.2) can be generalized in many ways. The hazard functions can be given
many parametric shapes. ACD speci�cations with exponential or Weibull errors imply that the
conditional hazard functions (CHF) must either increase, decrease or stay constant during a
time-spell. Grammig and Maurer (2000) investigated whether the restrictions concerning the
CHF can imperil the successful application of ACD models. In a simulation study they show
that the quasi maximum likelihood estimators of the basic ACD models tend to be biased and
ine¢ cient when the true data generating process required non-monotonic hazard functions. In
addition, bias and ine¢ ciency also a¤ected the estimators of the parameters that were needed
to predict expected durations. This entails severe consequences for the class of GARCH models
for irregularly spaced data, recently introduced by Engle (2000) and Ghysels and Jasiak (1998),
in which ACD models are employed to predict conditional expected durations that enter the
conditional heteroskedasticity equation in the form of explanatory variables (abstracted from
Grammig and Maurer, 2000).

Lunde (1999) and Grammig and Maurer(2000) -who used ACD models with generalized
Gamma and Burr errors respectively- found that for price duration processes of NYSE traded
stocks non-monotonic shapes of the hazard functions were indicated. Both studies, using stan-
dard likelihood ratio tests, rejected the exponential and Weibull ACD speci�cations in favor
of the generalized Gamma and Burr ACD models. Accordingly, in what follows we examine
two four-parameter general distributions that include as special or limiting cases many distrib-
utions considered in econometrics and �nance. Expressions are reported that facilitate analysis
of hazard functions, other distributional characteristics and parameter estimation.
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2.1 The Generalized F Distribution

First, we examine the GF distribution. It is a particularly useful family of distributions which
includes among others the Burr type 12, the Lomax, the Fisk, and the folded t. Its density is
given by

�("i) =
a"ap�1i qq'aq

B(p; q)(q'a + "ai )
p+q

("i � 0; i = 1; : : : ; N); (2.3)

where B(�) is the beta function, a > 0, and the parameter ' is merely a scale parameter. Further,
if the ' coe¢ cient is

' =
B(p; q)

q
1
aB
�
p+ 1

a ; q �
1
a

� ;
then "i has mean equal to one. The GF distribution has integer moments of order up to ���
where -p < �

a < q (see McDonald and Richards, 1987a). In a recent paper Hautsch (2002) used
the generalized F distribution which allows for a wide range of possible hazard shapes. For
volume durations he found that the GF distribution provides a signi�cantly better �t than the
exponential distribution. The mathematical expression for the CHF of the GF distribution is
given in McDonald and Richards (1987b).

The conditional density of xi can be written as

g(xi) =
axap�1i qq(' i)

aq

B(p; q)[q(' i)
a + xai ]

p+q
;

Using the above expression we can write the log-likelihood function of the observations xi,
i = 1; : : : ; N as

L �
NX
i=1

ln[g(xi)] = c+

NX
i=1

f(ap� 1)ln(xi) + aqln( i)� (p+ q)ln [q(' i)a + xai ]g;

where
c � Nfln(a) + qln(q) + aqln(')� ln[B(p; q)]g

2.2 The Generalized Gamma Distribution

In this subsection we examine the GG distribution. This is a particularly useful family of
distributions which includes among others the Weibull, the generalized Rayleigh, the Rayleigh,
the Exponential, and the half normal. Its density is given by

�("i) =
a"ap�1i e

�
�
"i
'

�a
'ap�(p)

("i � 0; i = 1; : : : ; N); (2.4)

where �(�) denotes the gamma function and the parameter ' is merely a scale parameter. In
order to normalize the mean to be equal to one, the ' coe¢ cient should be

' =
�(p)

�(p+ 1
a)

The GG distribution has de�ned moments of order ���, where �
a + p > 0. Consequently, for

a > 0, moments of positive integer order are de�ned. The CHF for the generalized Gamma
function is examined in Glaser (1980). Lunde (1999), using a GG speci�cation, found that the
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inverted U-shaped form was strongly supported by the data. As documented by Bauwens and
Veredas (1999) the hazard function of several types of �nancial durations may be increasing for
small durations and decreasing for long durations. To account for this stylized fact, Bauwens et
al. (2000) used the GG distribution which has two shape parameters and breaks the one-to-one
correspondence between the properties of overdispersion (underdispersion) and of decreasing
(increasing) hazard.

Moreover, the conditional density of xi can be written as

g(xi) =
axap�1i e

�
�
xi
' i

�a
(' i)

ap�(p)

The log-likelihood function for the generalized Gamma ACD (GG-ACD) model is

L = c+
NX
i=1

(
(ap� 1)ln(xi)�

 
xi�

�
p+ 1

a

�
 i�(p)

!a
� apln( i)

)
;

with

c � N

�
ln(a)� (1 + ap)ln[�(p)] + apln

�
�

�
p+

1

a

���
Lunde (1999) applied the generalized Gamma ACD (GG-ACD) model to a random sample
consisting of seven stocks from the �fty stocks with the highest capitalization value on the
NYSE. He found that the suggested generalization outperformed the model employed by Engle
and Russell (1998).

3 ACD Models

The ACD model is closely related to the GARCH model and shares some of its features. Just
as the simple GARCH model is often a good starting point, the simplest version of the ACD
model seems like a natural starting point. However, as there are many alternative volatility
models, there is a rich host of candidates for the dynamic speci�cation of the conditional dura-
tion. Such speci�cation includes models analogous to long-memory, exponential and many other
GARCH models as possibilities. Fernandes and Grammig (2001) and Hautsch (2002) present a
classi�cation of di¤erent types of ACD models.

3.1 The Long-memory ACD Model

The standard ACD model accounts for short serial dependence in conditional durations and
thus compels the pattern of the autocorrelation function to decay exponentially. In empirical
applications of ACD models to high frequency intertrade durations the estimated coe¢ cients on
lagged variables sum up nearly to one. Such evidence indicates a potential misspeci�cation that
arises when an exponentially declining shape is �tted to a process showing an hyperbolic rate of
decay. This would suggest that a more �exible structure allowing for longer term dependencies
might improve the �t. In this respect, the motivation for using the long-memory ACD models
is to capture the long-term dependencies in the duration series.

In the long-memory GARCH (LMGARCH) model of Robinson and Henry (1999) (see also
Robinson, 1991 and Henry, 2001) the conditional variance of the process implies a slow hyperbolic
rate of decay for the in�uence of the squared errors. Analogously to the LMGARCH process
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for the volatility, the long-memory ACD(n; d;m) [LMACD(n; d;m)] model for the duration is
de�ned by

xi = ! +
C(L)

B(L)(1� L)d �i; (3.1)

for some !; d 2 (0;1) with

B(L) � 1�
nX
j=1

�jL
j �

nY
j=1

(1� �jL);

C(L) � 1�
mX
l=1

clL
l;

where �i � xi �  i is a martingale di¤erence sequence by construction, �j is the reciprocal of
the jth root of B(L), and d is the fractional di¤erencing parameter. Further, we assume that
all the roots of C(L) and B(L) lie outside the unit circle.

Lemma 1 The duration fxig can be written as an in�nite sum of lagged values of �i

xi = ! +
1X
j=0

!j�i�j ; (3.2a)

where

!j �
nX
r=1

�+r

jX
l=0

�
�d
j � l

�
�rl(�1)j�l; (3.2b)

with

�rl �
minfl;mgX
j=0

�l�jr (�cj) (c0 � �1);

�+r � �n�1rQn
l=1;l 6=r(�r � �l)

Proof. See Appendix A.
Moreover,  i can be expressed as an in�nite distributed lag of xi terms:

 i �
�
1� (1� L)

dB(L)

C(L)

�
xi =

1X
j=1

�jxi�j (3.3)

with �1 > 0, �j � 0 (j � 2) 2.
2The requirement 0 <

P1
j=0 !

2
j < 1 includes the case 
(L) =

P1
j=0 !jL

j = C(L)
�
[B(L)(1� L)d] ; for

d 2 (0; 0:5), and �nite order polynomials B(L) and C(L) whose zeros are outside the unit circle in the complex
plane. In this case the weights �j satisfy

P1
j=0 j�j j < 1; �0 � 1. Under max

i
E(x2i ) < 1 it follows that

E(�2i ) < 1 (see theorem 1 below), so that the innovations in (3.1) are square integrable martingale di¤erences
and xi is well de�ned as a covariance stationary process and its autocorrelations Corr (xi; xi�k) � �k(xi) =P1
j=0 !j!j+k

.P1
j=0 !

2
j (k 2 N) can exhibit the usual long memory structure implied by C(L)

�
[B(L)(1� L)d] .

Even if max
i
E(x2i ) < 1 does not hold, the �autocorrelations�

P1
j=0 !j!j+k

.X1

j=0
!2j are well de�ned under

0 <
P1
j=0 !

2
j <1.
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Jasiak (1998) presented empirical evidence for the presence of long memory, and proposed
a fractionally integrated model for high frequency duration data. She applied the following
speci�cation to intertrade durations for the IBM and Alcatel stocks

B(L)(1� L)dxi = ! + C(L)�i (3.4)

By analogy to the fractionally integrated GARCH (FIGARCH) model (the FIGARCHmodel was
introduced by Baillie et al., 1996; see also Bollerslev and Mikkelsen, 1996) this process is called
fractionally integrated ACD (FIACD) model. For d > 0, xi has an unbounded �rst moment.
However, when d > 0 the FIACD process governed by (3.4) is strictly stationary and ergodic,
and the �autocorrelations�

P1
j=0 !j!j+k=

P1
j=0 !

2
j are well de�ned under

P1
j=0 !

2
j <1.

3.2 Autocorrelation function of the LMACD model

Several previous articles dealing with �nancial market data-e.g. Dacorogna et al. (1993)- have
commented on the behavior of the autocorrelation function of power transformed absolute re-
turns, and the desirability of having a model which comes close to replicating certain stylized
facts in the data (abstracted from Baillie and Chung, 2001). In this respect, one can apply the
results in this section to check whether the long-memory ACD model can e¤ectively replicate
the observed pattern of autocorrelations of the durations.

Another potential motivation for the derivation of the results in this section is that the au-
tocorrelations of the durations in (2.1) and (3.1) can be used to estimate the ACD parameters
in (3.1). The approach is to use the minimum distance estimator (MDE), which estimates the
parameters by minimizing the Mahalanobis generalized distance of a vector of sample autocorre-
lations from the corresponding population autocorrelations (see Baillie and Chung, 2001). One
motivation for the MDE approach can be found in Jacquier et al. (1994) who, on examining the
autocorrelations of transformations of �tted returns from MLE, have noted their discrepancy
when compared with the autocorrelations of actual returns.

In this section we consider the LMACD(n; d;m) process de�ned by (2.1) and (3.1) with
d 2 (0; 0:5) and the additional restriction that the roots of B(z) = 0 are simple.

Lemma 2 The condition for the existence of the second moment of the duration is�
1� 1

E("2i )

�0@ 1X
j=0

!2j

1A < 1;

where !j is de�ned by (3.2b).
Proof. See Appendix A.
In the following theorem we establish a representation for the autocorrelation function of the

durations of the LMACD(n; d;m) process, with d 2 (0; 12). Let F be the Gaussian hypergeomet-
ric function de�ned by F (a; b; c; z) �

P1
j=0

(a)j(b)j
(c)j

zj

j! , where (b)j �
Qj�1
i=0 (b+ i) is Pochhammer�s

shifted factorial.
Theorem 1 The autocorrelation function of fxig can be expressed as

�k(xi) =

P1
j=0 !j!j+kP1
j=0 !

2
j

=
zk
z0
; (k 2 N); (3.5)

where

zk �
nX
j=1

mX
l=0

	l�jC(d; k; l; �j) (k � 0);
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with

	l �
m�lX
r=0

crcr+l (c0 � �1); �j �
�+jQn

r=1(1� �j�r)
;

C(d; k; l; �j) � �(d+ k + l)

�(1� d+ k + l)F (d+ k + l; 1; 1� d+ k + l;�j) +

+1l
�(d+ k � l)

�(1� d+ k � l)F (d� k + l; 1; 1� d� k + l;�j) +

�j

�
1l
�(d+ k + 1� l)
�(2� d+ k � l)F (d+ k + 1� l; 1; 2� d+ k � l;�j)+

+
�(d+ k � 1 + l)
�(k � d+ l) F (d� k + 1� l; 1; 2� d� k;�j)

�
;

and

1l �
�
0; if l = 0;
1; if l 6= 0 ;

if and only if
h
1� 1

E("2i )

i
z0 � 1.

Proof. See Appendix A.
To illustrate the general result we consider the LMACD(1,d,1) process. In this case 1 �

C(L) = c1L � cL and 1�B(L) = �1L � �L.
Corollary 1 For the LMACD(1,d,1) model, with jcj; j�j < 1 and d 2 (0; 12), the autocorre-

lation function of fxig is given by

�k(xi) =
zk
z0

(k 2 N); (3.6)

where

zk � � (1� 2d)
(1� �2)� (d)� (1� d)

�
� (d+ k)

� (1� d+ k) [(1 + c
2 � �c)

�F (d+ k; 1; 1� d+ k;�)� c�F (d� k; 1; 1� d� k;�)]

+
� (d+ k � 1)
� (k � d) [�(1 + c2)� c]F (d� k + 1; 1; 2� d� k;�)

�� (d+ k + 1)
� (2� d+ k)cF (d+ k + 1; 1; 2� d+ k;�)

�
(k � 0);

if and only if
h
1� 1

E("2i )

i
z0 � 1.

Proof. The proof follows from lemma 2 and theorem 1, by setting C(L) � 1 � cL and
B(L) � 1� �L. �

Figure 1 plots the theoretical ACF of the duration of the above process (for various values
of the three parameters c, � and d).

Remark 1. As expected, the autocorrelation function of the LMACD(1,1) process decays
at a very slow rate. When c = 0, � = :6 and d = :45, for instance, the duration still has an
autocorrelation coe¢ cient around 0.5 at lag 1,000.

3.3 Exponential ACD Models

One limitation of the linear ACD speci�cation results from the nonnegativity constraints on the
parameters which are imposed to ensure that  i remains nonnegative for all i. These constraints
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imply that an increasing f("i) in any period increases  i+j for all j � 1, ruling out oscillatory
behavior in the  i process. Alternatively, one can use a model in which the logarithm of
the conditional duration follows an ACD-like process. This is analogous to Nelson�s (1991)
exponential GARCH model for the conditional variance.

Consider the following ACD(n;m)

B(L)ln( i) = ! + C(L)f("i); (3.7a)

with

B(L) � �
nX
j=0

�jL
j =

nY
j=1

(1� �jL) (�0 � �1); (3.7b)

C(L) �
mX
j=1

cjL
j ; (3.7c)

where �j is the reciprocal of the jth root of the autoregressive polynomial B(L). Without loss
of generality, assume that �n and cm are both not equal to zero.

We will call the models in the class where

f("i) = ln("i); (3.8)

and the innovations "i follow the GG distribution, generalized Gamma-logarithmic EXACD
(GG-LG-EXACD). When the conditional distribution of the durations is the generalized F,
these models will be called generalized F-logarithmic EXACD (GF-LG-EXACD).

Furthermore, models in the class where

f("i) = "ai ; (3.9)

and the innovations are drawn from the generalized Gamma distribution3, will be called gener-
alized Gamma-exponential ACD (GG-EXACD).

Bauwens and Giot (2000) proposed a version of the EXACD model, with f("i) = "i and
Weibull errors, under the name logarithmic ACD model. Bauwens and Giot (2000) applied this
ACD speci�cation to price durations relative to the bid-ask quote process of three securities
listed on the NYSE. Lunde (1999), using duration data for seven stocks traded on the NYSE,
estimated a version of the GG-EXACD(1,1) model with f("i) = "i. Bauwens and Giot (2001a),
using duration data for several stocks traded on the NYSE, estimated the EXACD(1,1) and
LG-EXACD(1,1) models with an exponential distribution for the error term. Giot (2000) used
an EXACD(1,1) model to compute the Value-at-Risk for three stocks traded on the NYSE.

3 In (3.9) a is one of the parameters of the generalized Gamma distribution (see eq. 2.4).
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3.4 Moments of Exponential ACD models

Durations between stock market events are often characterized by overdispersion. Another im-
portant stylized fact is the shape of the ACF of the durations, which usually decreases slowly
from a relatively low positive �rst-order autocorrelation. It is essential that, for some parameter
values, the ACD models can accommodate such stylized facts. In the light of this, it is impor-
tant (a) to know whether the general shape of the sample autocorrelations is captured by the
estimated model and (b) to �nd the model for which the estimated theoretical ACF is closest
to the ACF of the data and, therefore, has the best �t as far as the ACF is concerned. To
gain further insight into how well an ACD model �ts the data we need to check whether the
unconditional moments computed from the analytical formulae are in line with the empirical
ones. Therefore, analytical results on the moments and autocorrelations of the durations for
the logarithmic and exponential ACD models can indicate whether these speci�cations provide
a better alternative to the standard ACD model.

Assumption 1. The polynomials B(L) and C(L) in (3.7) have no common roots.
Assumption 2. B(z) = 0 and C(z) = 0 have no roots in the closed disc fz : jzj � 1g.
In what follows we only examine the case where the roots of the autoregressive polynomial

B(L) are distinct.
Lemma 3 Under assumptions 1 and 2, the �th power of the duration for the ACD model

in (2.1) and (3.7) can be expressed as

x�i = e
�!
B(1) "�i �

1Y
l=1

[e�lf("i�l)] (� 2 R+); (3.10a)

with

�l � ��l � �
nX
f=1

�fzfl; (3.10b)

and

�f �
�n�1fQn

j=1;j 6=f (�f � �j)
;

zfl �
( Pl�1

j=0 cl�j�
j
f ; if l � m;

zfm�
l�m
f ; if l > m

;

where cl, �f are de�ned in (3.7).
Proof. See Appendix B.
Lemma 4 Let assumptions 1 and 2 hold. Suppose further that E("2�i ), E(e

2�lf("i)), and
E("�i e

�lf("i)) are �nite for all l. Then the 2�th moment of the duration and the kth (k 2 N)
autocorrelation of the �th power of the duration, for the ACD model in (2.1) and (3.7), have
the form

10



E(x2�i ) = e
2�!
B(1)E("2�i )�

1Y
l=1

[E(e2�lf("i�l))]; (3.11a)

�k(x
�
i ) = E("�i )

(
k�1Y
l=1

[E(e�lf("i�l))]� E["�i�ke
�kf("i�k)]�

1Y
l=1

[E(e(�k+l+�l)f("i�k�l))]

�
" 1Y
l=1

[E(e�lf("i�l))]

#2
� E("�i )

9=;
�

8<:E("2�i )
1Y
l=1

h
E(e2�lf("i�l))

i
� [E("�i )]

2

" 1Y
l=1

[E(e�lf("i�l))]

#29=;
�1

; (3.11b)

Note that, when k = 1, the �rst product term in (3.11b) is replaced by 1.
Proof. See Appendix B.
Remark 3. For the practical computation of the moments in lemma 4 , the in�nite products

that appear in the expression (3.11) can be truncated after a su¢ ciently large number of terms
since �l tends to zero. In practice, we found that for �rst and second moments, truncation after
1000 terms was more than su¢ cient to get a high accuracy (see also Bauwens and Giot, 2001a
and Bauwens et al., 2002).

The 2�th moment and the kth autocorrelation of the duration have been independently
obtained by Bauwens et al. (2002). When considering the ACD(n;m) model in (3.7), theorems
1 and 2 in Bauwens et al. (2002) and (3.11) are equivalent.

Fernandes and Grammig (2001) propose an exponential ACD model with f("i) = [j"i � bj+

("i � b)]�, under the name asymmetric Box-Cox ACD (ABC-ACD) model. This speci�cation
provides a �exible functional form that permits the logarithm of the conditional duration to
respond in distinct manners to small and large shocks. For the ABC-ACD(1,1) model they
report expressions for the 2�th moment and kth autocovariance of the duration which are
similar to our equation (3.11).

Theorem 2 Suppose that assumptions 1 and 2 hold and that both 2�
a ,

2�l
a 2 (�p; q). Then

the 2�th moment of the duration and the kth autocorrelation of the �th power of the duration,
for the GF-LG-EXACD(n;m) model in (3.7)-(3.8), are given by

E(x2�i ) = e
2�!
B(1) �B2� �

1Y
l=1

(B2�l); (3.12a)

�k(x
�
i ) =

B�

hQk�1
l=1 (B�l)�B�+�k �

Q1
l=1(B�k+l+�l)�

�Q1
l=1(B�l)

�2 �B�i
B2� �

Q1
l=1(B2�l)� (B�)2 �

�Q1
l=1(B�l)

�2 ;

(3.12b)

with

B�l �
[B(p; q)](�l�1)B

�
p+ �l

a ; q �
�l
a

��
B
�
p+ 1

a ; q �
1
a

���l ;

where B(�) is the beta function, �l is de�ned in lemma 3, and p; q; a are the parameters of the
GF distribution (see eq. 2.3). Note that, when k = 1, the �rst product term in the numerator
of (3.12b) is replaced by 1.
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Proof. See Appendix B.
To illustrate the preceding general theory we consider the LG-EXACD(1,1) process when the

distribution of the innovations is either Lomax or Fisk (these models will be called Lomax-LG-
EXACD (L-LG-EXACD) and Fisk-LG-EXACD (F-LG-EXACD) respectively). In these cases
�l � �c�l�1, where c � c1, � � �1. We have the following corollaries.

Corollary 2a For the L-LG-EXACD(1,1) model, with q = 3, �:5 < c < 1 (c 6= 0), j�j < 1
and �:5 < c�, the kth autocorrelation of the duration is given by (3.12b) with

B�l � �(1 + �l)�(3� �l)2
(�l�1); �l � c�l�1

Proof. The proof follows from theorem 2, by setting p = a = � = 1, q = 3 and �l � c�l�1. �
Corollary 2b For the F-LG-EXACD(1,1) model, with a = 4 and jcj; j�j < 1; the kth

autocorrelation of the duration is given by (3.12b) with

B�l �
�
�
1 + �l

4

�
�
�
1� �l

4

��
�
�
5
4

�
�
�
3
4

���l ; �l � c�l�1

Proof. The proof follows from theorem 2, by setting p = q = � = 1, a = 4 and �l � c�l�1. �
Figures 2 and 3 plot the theoretical ACF of the duration of the above processes with

(c; �) 2 f(0:05; 0:995); (0:8; 0:995); (0:05; 0:98); (0:8; 0:98)g (we used Maple to evaluate the au-
tocorrelations).

Theorem 3 Let assumptions 1 and 2 hold and 2�
a ;

2�l
a > �p. Then the 2�th moment of

the duration and the kth autocorrelation of the �th power of the duration, for the GG-LG-
EXACD(n;m) model in (2.1) and (3.7)-(3.8), are given by

E(x2�i ) = e
2�!
B(1) � �2� �

1Y
l=1

(�2�l); (3.13a)

�k(x
�
i ) =

��

hQk�1
l=1 (��l)� ��+�k �

Q1
l=1(��k+l+�l)�

�Q1
l=1(��l)

�2 � ��i
�2� �

Q1
l=1(�2�l)� (��)2 �

�Q1
l=1(��l)

�2 ; (3.13b)

with

��l �
�
�
p+ �l

a

�
[�(p)](�l�1)

[�
�
p+ 1

a

�
]�l

;

where �(�) is the gamma function, �l is de�ned in lemma 3, and p; a are the parameters of the
GG distribution (see eq. 2.4). Note that, when k = 1, the �rst product term in the numerator
of (3.13b) is replaced by 1.

Proof. See Appendix B.
To illustrate the general result we consider the LG-EXACD(1,1) process with innovations

that are drawn from either the Rayleigh or the Exponential distribution (these models will
be called Rayleigh-LG-EXACD (R-LG-EXACD) and Exponential-LG-EXACD (E-LG-EXACD)
respectively). In these cases �l � �c�l�1. We have the following corollaries.

Corollary 3a For the R-LG-EXACD(1,1) model satisfying jcj; j�j < 1, the kth autocorrela-
tion of the duration is given by (3.13b) with

��l �
�
�
1 + �l

2

��
�
�
3
2

���l ; �l � c�l�1

12



Proof. The proof follows from theorem 3, by setting p = � = 1, a = 2 and �l � c�l�1. �
Corollary 3b For the E-LG-EXACD(1,1) model satisfying �:5 < c < 1 (c 6= 0), j�j < 1

and �:5 < c� the kth autocorrelation of the duration is given by (3.13b) with

��l � �(1 + �l); �l � c�l�1

Proof. The proof follows from theorem 3, by setting p = a = � = 1, and �l � c�l�1. �
For the E-LG-EXACD(1,1) model Bauwens and Giot (2001a) illustrate the variation of �1(xi)

as a function of c (from 0 to 0:2) and � (from 0:8 to 0:98).
Figures 4 and 5 plot the theoretical ACF of the duration of the above processes with (c; �) 2

f(0:05; 0:995); (0:8; 0:995); (0:05; 0:98); (0:8; 0:98)g.
Theorem 4 Suppose that assumptions 1 and 2 hold and 2�

a > �p, 2�l < '�a. Then the
2�th moment of the duration and the kth autocorrelation of the �th power of the duration, for
the GG-EXACD(m;n) model in (2.1), (3.7) and (3.9), are given by

E(x2�i ) = e
2�!
B(1) � �2� �

1Y
l=1

(�2�l); (3.14a)

�k(x
�
i ) =

��

hQk�1
l=1 (��l)���;�k �

Q1
l=1(��k+l+�l)�

�Q1
l=1(��l)

�2 � ��i
�2� �

Q1
l=1(�2�l)� (��)2 �

�Q1
l=1(��l)

�2 ;

(3.14b)

with

��;�k �
�
�
p+ �

a

�
[�(p)](��1)[�

�
p+ 1

a

�
]pa��

�(p+ 1
a)
�a � �k[�(p)]a	(p+�

a )
;

��l �
[�
�
p+ 1

a

�
]pa��

�(p+ 1
a)
�a � �l[�(p)]a	p ;

where �l; �� are de�ned in lemma 3 and theorem 3 respectively, and p; a; ' are the parameters of
the GG distribution. Note that, when k = 1, the �rst product term in the numerator of (3.14b)
is replaced by 1.

As an illustration we consider the GG-EXACD(1,1) model. Let � be the basic hypergeo-
metric series denoted by 1�0(a; b; z) �

P1
j=0

(a;b)j
(b;b)j

zj , where (a; b)j is the b-shifted factorial.

Corollary 4a For the GG-EXACD(1,1) model satisfying j�j < 1,�1 < c < '(�a)

2� (c 6= 0)

and c� < '(�a)

2� the kth autocorrelation of the �th power of the duration is given by

��

n�
1�0(�

k�1;�; c�)
�p ���;�k � [1�0(0;�; ck)]p � [1�0(0;�; c�)]p ��o

�2� [1�0(0;�; 2c�)]
p � (��)2 [1�0(0;�; c�)]2p

; (3.15)

with

c� � c� [�(p)]a�
�(p+ 1

a)
�a ; ck � c�(1 + �k); �l � �c�l�1;

where �� and ��;�kare de�ned in lemma 3 and theorem 4 respectively.
Proof. The proof follows from theorem 4, by setting �l � �c�l�1. �
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As a further illustration we consider the Rayleigh-EXACD (R-EXACD) and Exponential
EXACD (E-EXACD) processes of order (1,1). We have the following corollaries.

Corollary 4b For the R-EXACD(1,1) model satisfying j�j < 1, �1 < c < :393 (c 6= 0),
c� < :393 the kth autocorrelation of the duration is given by (3.15), with p = � = �� = 1 and

�1;�k �
1

f1� 1:273�kg
3
2

; c� � 1:273c

Proof. The proof follows from corrolary 4a, by setting p = � = 1, and a = 2. �
Figure 6 plots the theoretical ACF of the duration of the above process with (c; �) 2

f(0:05; 0:995); (0:3; 0:995); (0:05; 0:98); (0:3; 0:98)g.
Corollary 4c For the E-EXACD(1,1) model satisfying j�j < 1, �1 < c < 0:5 (c 6= 0) and

c� < :5 the kth autocorrelation of the duration is given by (3.15), with p = � = �� = 1 and

�1;�k �
1

(1� �k)2
; c� � c

Proof. The proof follows from corollary 4a, by setting p = a = � = 1. �
For the E-EXACD(1,1) model Bauwens and Giot (2001a) illustrate the variation of �1(xi)

as a function of c (from 0 to 0:2) and � (from 0:8 to 0:98).
Figure 7 plots the theoretical ACF of the duration of the above process with (c; �) 2

f(0:05; 0:995); (0:4; 0:995); (0:05; 0:98); (0:4; 0:98)g.
For all the models in corollaries 2-4 the parameters c and � control the decay of the theoretical

autocorrelation function. We have the following remarks.
Remark 4a. In all cases it is seen that the autorrelations start higher and decrease more

rapidly when the value of c is high than when it is low.
Remark 4b. In all cases, when the value of c is low, the model based autocorrelations seem

to start higher and decrease slower when the value of � is high than when it is low.
Remark 4c. In all cases, when the value of c is high, it is seen that the autocorrelations start

higher and decrease faster when the value of � is high than when it is low.
Until the present contribution and the papers by Bauwens and Giot (2001a), and Bauwens

et al. (2002) the unconditional moments implied by the logarithmic and exponential ACD
models were not available analytically. Bauwens and Giot (2000) relied therefore on numerical
simulations to compute these moments.

4 Conclusions

This paper has provided a detailed description of the long-memory, and exponential ACDmodels.
We also investigated the properties of the generalized Gamma and generalized F distributions
which allow for non-monotonic hazard functions. For all ACD speci�cations we derived analytical
expressions of the autocorrelation function of the durations. Conditions for the existence of the
�rst two moments of the durations were also established. The derivation of the autocorrelations
of the durations and their comparison with the corresponding sample equivalents will help the
investigator (a) to decide which is the most appropriate method of estimation (e.g. maximum
likelihood estimation (MLE), minimum distant estimator (MDE)) for a speci�c model, (b) to
chose, for a given estimation technique, the model (e.g. LMACD, LG-EXACD, EXACD) that
best replicates certain stylized facts of the data and, (c) in conjunction with the various model
selection criteria, to identify the optimal order of the chosen speci�cation.
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Figure 1. Autocorrelation function of xi. FIACD(1,1) model.

Figure 1a: c = 0:2, � = 0:3, d = 0:45. Figure 1b: c = 0:2, � = 0:3, d = 0:35.

Figure 1c: c = 0:2, � = 0:6, d = 0:45. Figure 1d: c = 0:2, � = 0:6, d = 0:35.

Figure 1e: c = 0:4, � = 0:6, d = 0:45. Figure 1f: c = 0:4, � = 0:6, d = 0:35.
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Figure 1g: c = 0, � = 0:3, d = 0:45. Figure 1h: c = 0, � = 0:3, d = 0:35.

Figure 1i: c = 0:2, � = 0, d = 0:45. Figure 1j: c = 0:2, � = 0, d = 0:35.

Figure 1k: c = 0:6, � = 0, d = 0:45. Figure 1l: c = 0:6, � = 0, d = 0:35.
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Figure 2. Autocorrelation function of xi; L-LG-EXACD(1,1), q = 3.

Figure 2a: c = 0:05, � = 0:995. Figure 2b: c = 0:8, � = 0:995.

Figure 2c: c = 0:05, � = 0:98. Figure 2d: c = 0:8, � = 0:98.

Figure 3. Autocorrelation function of xi; F-LG-EXACD(1,1), a = 4.
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Figure 3a: c = 0:05, � = 0:995. Figure 3b: c = 0:8, � = 0:995.
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Figure 3c: c = 0:05, � = 0:98. Figure 3d: c = 0:8, � = 0:98.

Figure 4. Autocorrelation function of xi; R-LG-EXACD(1,1).

Figure 4a: c = 0:05, � = 0:995. Figure 4b: c = 0:8, � = 0:995.
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Figure 4c: c = 0:05, � = 0:98. Figure 4d: c = 0:8, � = 0:98.
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Figure 5. Autocorrelation function of xi; E-LG-EXACD(1,1).

Figure 5a: c = 0:05, � = 0:995. Figure 5b: c = 0:8, � = 0:995.

Figure 5c: c = 0:05, � = 0:98. Figure 5d: c = 0:8, � = 0:98.

Figure 6. Autocorrelation function of xi; R-EXACD(1,1).
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Figure 6a: c = 0:05, � = 0:995. Figure 6b: c = 0:3, � = 0:995.
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Figure 6c: c = 0:05, � = 0:98. Figure 6d: c = 0:3, � = 0:98.

Figure 7. Autocorrelation function of xi; E-EXACD(1,1).

Figure 7a: c = 0:05, � = 0:995. Figure 7b: c = 0:4, � = 0:995.
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Figure 7c: c = 0:05, � = 0:98. Figure 7d: c = 0:4, � = 0:98.
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A Appendix

Proof. [Lemma 1] From (3.1) we have that

xi = ! + (1� L)�d
24 nY
j=1

(1� �jL)

35�1C(L)�i;
where the operator (1� 
L)�d is de�ned as

(1� 
L)�d �
1X
j=0

�
�d
j

�
(�
)jLj

Hence, on account of

nY
j=1

(1� �jL) =
nX
j=1

�n�1jQn
l=1;l 6=j(�j � �l)(1� �jL)

;

and

(1� �jL)�1C(L) =
minfl;mgX
f=0

1X
l=0

�l�fj (�cf )Ll;

we obtain (3.2a). �

Proof. [Lemma 2] Rewriting equation (3.2a) we have

xi = ! +

iX
j=0

!j�i�j ; (A.1)

where !j is de�ned in (3.2b).
From (A.1) it follows that

Var(xi) =

0@ 1X
j=0

!2j

1AE(�2i ) (A.2)

Using the fact that

E(�2i ) = E(x
2
i )

�
1� 1

E("2i )

�
;

we obtain the second moment of the duration

E
�
x2i
�
=

[E (xi)]
2

1�
h
1� 1

E("2i )

i �P1
j=0 !

2
j

�
�

Proof. [Theorem 1] Applying (3.2b) yields

�k(xi) =

P1
j=0 !j!j+kP1
j=0 !

2
j

=

P1
r=0

P1
j=�1 �r;k�jvjP1

r=0

P1
j=�1 �r;�jvj

;
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where

�r;k�j �
�

�d
jk � jj+ r

��
�d
r

�
(�1)jk�jj;

vj �
nX
l=1

nX
s=1

1X
f=0

�+l �
+
s �lf�s;f+jjj;

with

�lf �
minff;mgX
r=0

�f�rl (�cr);

�+l �
�n�1l

nQ
r=1;r 6=l

(�l � �r)

But since

1X
r=0

�r;k�j �
�(1� 2d)�(d+ jk � jj)

�(d)�(1� d)�(1� d+ jk � jj) ; and
nX
r=1

�+l �
+
r

1� �l�r
� �l;

it follows that

�k(xi) =

P1
j=�1

� (d+jk�jj)
� (1�d+jk�jj)

Pn
r=1

Pm
l=0	l�r(1l�

jjjj�lj
r + �

jjj+l
r )P1

j=�1
� (d+j�jj)
� (1�d+j�jj)

Pn
r=1

Pm
l=0	l�r(1l�

jjjj�lj
r + �

jjj+l
r )

=

8<:
mX
l=0

1X
j=0

	l

nX
r=1

�r

�
1l� (d+ jk � l � jj)
� (1� d+ jk � l � jj) +

� (d+ k + l + j)

� (1� d+ k + l + j)

+

�
� (d+ jk � 1 + l � jj)

� (1� d+ jk � 1 + l � jj) +
1l� (d+ jk + 1� l + jj)
� (1� d+ jk + 1� l + jj)

�
�r

�
�jr

�

�

8<:
mX
l=0

1X
j=0

	l

nX
r=1

�r

�
1l� (d+ j � l � jj)
� (1� d+ j � l � jj) +

� (d+ l + j)

� (1� d+ l + j)

+

�
� (d+ j � 1 + l � jj)

� (1� d+ j � 1 + l � jj) +
1l� (d+ j1� l + jj)
� (1� d+ j1� l + jj)

�
�r

�
�jr

��1
;

where

	l �
m�lX
r=0

crcr+l (c0 � �1); �l �
�+l

nQ
r=1
(1� �l�r)

Hence, upon observing that

1X
j=0

� (d+ k + l + j)

� (1� d+ k + l + j)�
j
r =

� (d+ k + l)

� (1� d+ k + l)F (d+ k + l; 1; 1� d+ k + l;�r);

(3.5) is obtained. �
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B Appendix

Proof. [Lemma 3] The logarithm of  i in (3.7) can be expressed as an in�nite distributed lag of
f("i) terms:

ln( i) =
!

B(1)
+
C(L)

B(L)
f("i)

The above expression can be written as

ln( i) =
!

B(1)
+

1X
l=1

�lf("i�l); (B.1)

where

�l =

nX
f=1

�fzfl;

with

�f =
�n�1fQn

j=1;j 6=f (�f � �j)
;

zfl �
( Pl�1

j=0 cl�j�
j
f ; if l � m;

zfm�
l�m
f ; if l > m

From (B.1) it follows that

 i = e
!

B(1)

1Y
l=1

[e�lf("i�l)]

Raising both sides of the above equation to power � and using the fact that x�i =  �i "
�
i yields

(3.10). �

Proof. [Lemma 4] Rewriting (3.10a) we have

x�i = e
�!
B(1) "�i �

1Y
l=1

[e�lf("i�l)]; (B.2a)

or

x�i�k = e
�!
B(1) "�i�k �

1Y
l=1

[e�lf("i�k�l)] (B.2b)

Multiplying (B.2a) by (B.2b) and taking expectations yields

E(x�i x
�
i�k) = e

2�!
B(1)E("�i )E( 

�
i "
�
i�k 

�
i�k) =

= e
2�!
B(1)E("�i )�

k�1Y
l=1

[E(e�lf("i�l))]� E("�i�ke
�kf("i�k))�

1Y
l=1

[E(e(�k+l+�l)f("i�k�l))];

where �l = ��l. Using the above expression and the fact that �k(x
�
i ) =

E(x�i x
�
i�k)�[E(x

�
i ]
2

E(x2�i )�[E(x
�
i )]

2
we

obtain (3.11b). �

30



Proof. [Theorem 2] Recall that for the LG-EXACD model, we have

f("i) = ln("i) (B.3)

In addition, the �th moment for the GF distribution is

E("�i ) =
B(p+ �

a ; q �
�
a )B(p; q)

��1

B
�
p+ 1

a ; q �
1
a

�� 8 i; (B.4)

where p; q and a are the parameters of the GF distribution. Inserting (B.3) and (B.4) into (3.11)
yields (3.12). �

Proof. [Theorem 3] When the innovations f"ig are drawn from the GG distribution, we have

E("�i ) =
�(p+ �

a )�(p)
��1

�
�
p+ 1

a

�� 8 i; (B.5)

where p and a are the parameters of the GG distribution. Inserting (B.3) and (B.5) into (3.11)
yields (3.13). �

Proof. [Theorem 4] Recall that for the GG-EXACD model, we have

f("i) = "ai ; (B.6)

where a is one of the parameters of the GG distribution. Further, by direct computation we
obtain

E("�i e
�k"

a
i ) =

�(p+ �
a )[�(p)]

(��1) �� �p+ 1
a

��pa��
�
�
p+ 1

a

��a � �k[�(p)]a	(p+�
a )

8 i (B.7)

Note that (B.7), when �k = 0, gives (B.5). Inserting (B.5)-(B.7) into (3.11) yields (3.14). �
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