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Abstract: In studying the evolution of wealth distribution one needs some economically meaningful mechanism of wealth
transfers. Traditional models of nontadtonnement with prices, e.g., the Edgeworth process, give us a good starting point. In
this paper we show a model of discrete-time Edgeworth process that tends to yield a Paretian decreasing density of wealth
distribution. Under the assumption that every agent has identical homothetic preferences, the process is characterized by
the iteration of a bargaining, which can be reduced to a bargaining among “wealth class representatives”. While there
are “turnovers” of the agents, the representatives’ bargaining at any instant of time renews the allocation of assets to
another. We will analyze the final allocation of this process under some idealization, and see that the “class sum wealths”
are equalized, so that the wealth distribution is hyperbolically decreasing, if the number of the agents is large and if the
turnovers of the agents are frequent in the process. Some simulation results are also given, together with a remark on the

significance of this self-organizing pattern to the Law of Demand. (JEL Classification: D310, D500)
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1 Introduction

Empirical wealth distributions are skewed to the right.
This is well known since Pareto [10]. It was only recently,
however, that we saw the general reasoning of this phe-
nomenon. The progress was made by the so-called “econo-
physicists”, who brought the tools of statistical physics into
economics. This is a very promising approach, and would
have wider applicability than to the problem at hand. But
concerning to the problem of wealth distribution, their
modeling of wealth transfers seems to have much to be
done. For example, some assume that the wealths are di-
rectly transferred from poors to riches, not a very mean-
ingful assumption in our market economy (where the equal
value exchange, or quid pro quo is the premise). It should
also be recognized that the most of recent econophysicists’
efforts are poured into the establishment of Zipf’s law, a
specific version of Pareto’s law, but the empirical validity
of the former seems to be unsettled yet.

This paper is not a critique, but rather hopes to lay
down the sound basis for the development of the new area,
considering the problem in a more traditional framework in
economics. In this paper we show a class of nontatonnement
processes (a discrete-time Edgeworth process) that tend to
yield a decreasing density of wealth distribution. As one
of traditional type of nontadtonnement models, it is a de-
terministic dynamic of the exchange of multiple “assets”,
which complies with the conservation of total assets and
qutd pro quo. Under the assumption that every agent has

identical homothetic preferences, our process is character-
ized by the iteration of a bargaining, which can be reduced
to a bargaining among “wealth class representatives”. The
representatives’ bargaining is of the type of Nash [8]. While
there are “turnovers” of the agents (the members of a class
change because the prices change the wealth of each agent),
the representatives’ bargaining at any instant of time re-
news the allocation of assets to another, under the disequi-
librium prices. We will analyze the final allocation of this
nontatonnement process, which is a Walrasian, no-trade
equilibrium, and show that, under some idealization, the
associated wealth distribution is hyperbolically decreasing,
if the number of the agents is large, and if the turnovers
of the agents are frequent during the process (in a specific
sense in this paper). Basically, this follows from the fact
that the “class sum wealths” are equalized in such a sit-
uation, leading to the reciprocal relationship between the
individual level of wealth and the number of the agents
belonging to each class.

It is important to note beforehand, however, that the
process yields decreasing density of wealth distribution if,
and only if, the prices change “wildly” enough during the
process (i.e., if their convergence is oscillatory, for exam-
ple). Here is the place where the tools of statistical physics
would most usefully be applied. However, we will see this
tendency only through some computer simulations in this
paper. Formal analysis of the nonequilibrium state is left
for the future studies, hopefully with the help of the new
tools.



The paper is organized as follows. In Section 2 we state
the model. In Section 3 we analyze the equilibrium of the
nontatonnement when the agents are numerous and the
turnovers of the agents are frequent. Section 4 gives some
simulation results. In Section 5 we give some concluding
comments, especially on the possibility of generalizing the
type of representatives’ bargaining, and on the significance
of the decreasing-ness to the emergence of the law of de-
mand.

2 The Model

There are I agents ¢ =1,--- ,I and L assets [ =1,---, L.
Each 4 trades his assets #'[t] € X = R% | under the prices
p[t] € P = RY at each period t = 0,1,2,---. We denote
(&4t],--- ,2'[t]) =: (Z°[t]) and call it the allocation at t.
We make the following assumptions (U), (D), (B), and (A)
to our discrete-time Edgeworth process (See Negishi [9] or
Hahn [6] for the general discussion of Edgeworth process).

(U) Every i has identical homothetic preference relation,
which is represented by a homogeneous of degree one utility
u's X — Ry

(D) At each t, each i determines his demand y'[t], as the
solution to the problem:

maxu'(y’) st plt]-y = plt] -3 (1)

Our process is a nontatonnement, i.e., trade takes place
even if 3, y'lt] # ¥, 5[t

Let w'[t] := p[t] - [t] be the wealth of i at t. Since the
@'[t] = w't]/ max; wi[t] € (0,1], we
divide this unit interval into K segments of length 1/K,
and call C¥[t] := {i: (k—1)/K < @'[t] < k/K} the class
katt, k=1,---,K. We call wk[t] := 2ok w'[t] the
class sum wealth of k at t. For convenience, we assume
I = K? to study the histogram of (#C*[t]/K) and its
limit of K — oo, the density function.

normalized wealth

(B) At each t, a bargaining determines agreement (2°[t]) as
the solution to the problem:

oy TI(IT ™) @

k
Zx :ZQEt, (3)

Pl - = plf]-2[1] Vi, (4)
(@) < u'ah) Vi (5)

We call the type of Eq. (3) the conservation (CSV)
and Eq. (4) the quid pro quo (QPQ). Ineq. (5) is called the
individual rationality (IR).

Literally, (B) is the maximization of the product of
agents’ utilities powered by their wealth shares in class
(w'[t]/w"[t], i € C*[t]). It is well known that the pref-
erences of agents are aggregated under (U) in that there is
an aggregate preference relation that generates their aggre-
gate demand (Antonelli [1]; see Shafer and Sonnenschein
[11] for the issue of aggregation). Also, Eisenberg’s [3] the-
orem tells us that the aggregate preference relation of the
agents in C*[t] is represented by the homogeneous of degree
one function

wift]

Uk := max ut(zh) @k gt
")k H
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T =x,

Ck[t] Ck[t]

if the wealth shares are fixed (this is the case for our one-
shot bargaining). It is then quite natural to have the fol-
lowing lemma.

Lemma. Let i‘k[t] = Eck[t] :Ei[t], :ﬁk[t] = EC’V[t] i"[t]

Then (£"[t]) solves the representatives’ bargaining:

®B)  max []0"GY) ™)
z k
> et = Z z*[t], ®)
- -
plt] 2" = p[t] z't] vk, 9)

U*(z"[t]) < U*(a") V&, (10)
where

wit]
CUORER S Zw =" (11)

Ck[t] Ck[t]

plt] - &' = p[t] - 2'[t], v (Z'[t]) < u'(z") Vie CF[t]. (12)

U*(z") := {niaix H Yz
zt )k

Proof. We can regard (B) as a two-step problem as follows:
1) the choice of (z*) such that 3, z¥ =3, & _k[t] and pl[t] -

z = p[t] - Z*[t] for all k; '2) the distribution of 2" such that
max(zz)k [eowpu ut(zf)v [/ ] subJect to ch[t]m =z*,

p[t] - z* = p[t] - Z°[t] and «'(Z[t]) < wi(z’) for all i. But
this is nothing but the problem (RB). Note that, since
(z%) = (&%) gives U*(Z*[t]) = U*(«*[t]) Vk and since the
bargaining set is convex, there is a Pareto improving (z*)
such that U*(z*[t]) < U*(z*)Vk in case (Z*[t]) and its
distributions are suboptimal. [

Note that the definition of U* has two additional con-
straints (QPQ and IR) compared to that of U*. They are
the restrictions of possible agreements in the bargaining.
They could be dropped under (U), but we do not try it in
this paper. By the addition of them U* depends on p[t] and
(Z'[t]), and in this sense, it may not be the representation
of “pure” preferences. Nevertheless, it does serve for our
purpose. Note also that the representatives’ bargaining is
of the type of Nash [8].

Finally, we add the following assumption on the ad-
justments in the process.



(A) The allocation (Z[t]) and the prices p[t] of the assets
change as follows:

't +1] = &[] + (@' - 2'[t]) Vi, (13)
plt+1] = plt] + Wz[t](z Yyt =21, (14)
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where 71 € (0,1] is a constant, and 72[t] > 0 is an appro-
priate real number which secures that p[t + 1] € P.

Note that (z*[t +1]) satisfies 3, z'[t + 1] = 3, Z*[t] (CSV)
and p[t] - [t + 1] = p[t] - '[t] Vi (QPQ), two common
constraints in the nontdtonnement with prices (see Hahn
[6]). However, it is generally the case that

plt +1]- [t + 1] # plt] - 2'[¢], (15)

ie., w'[t + 1] # w'[t]. This is the basic mechanism of
wealth transfers, which cause the turnovers of the agents.
Also note that, in the aggregate, it is generally the case
that w*[t 4+ 1] # w”[t], and even U (z*[t + 1]) < U*(z*[t])
is possible.

3 Equilibrium of the Process

Let us consider the convergence of the process. We can
choose the simple sum of utilities

> @) (16)

as the monotonically increasing Liapunov function, and
prove the convergence of the allocation (Z'[t]).! If the
prices p[t] also converge, then we can say that the pro-
cess is globally stable. (See Negishi [9] or Hahn [6] for the
global stability of Edgeworth process.) The equilibrium al-
location then is a Walrasian equilibrium with no trade, in
that every individual demand y'[t] specified by (D) equals
Z'[t] (in the limit of ¢ — co). We will consider such an
equilibrium state in this section.

What we want to know in this paper is the “shape” of

this final allocation (a‘:’) = (a_zl, e

, &) (we will omit [t]
when we speak of the final state), i.e., how the total assets
=3, Z' are distributed among the agents except that
it is Walrasian. Is it condensed or sparse, or, in terms of
the final wealths w® = p- Z*, how does the density function
of the wealth look like?

Of course any Walrasian equilibrium with no trade can
be the final allocation, if we start from there with its sup-
porting price vector. We thus start from a disequilibrium

state. Also, in order for the “natural” tendency of wealth

1By IR, u?(Z[t + 1]) > u?(Z*[t]) Vi. The inequality holds for
at least one i during the disequilibrium state, so that > u?(Z*[t+
1]) > Y u?(z![t]) during the process. By the boundedness of
Z'[t] the utility sum reaches its maximum, and the maximizer
is unique by virtue of the concavity of u*. Note that the final

outcome depends on the choice of y2[t] during the process.

movement to reveal itself, if any, a sufficient amount of
wealth transfers under QPQ (realized by Ineq. (15)) is
needed. In our discrete-time model, an oscillatorily con-
verging price may entail such transfers.

Now, as we noted earlier, the turnovers of the agents
generally cause w*[t + 1] # w®[t] and U*(z*[t + 1]) #
U*(z"*[t]) for any class k. Hence, throughout the entire
iterations of (RB), only the values of (CSV) are definite,
and those of the (QPQ) and (IR) are under incessant fluc-
tuations. This is a difficult point, but, in reference with
the results of simulations, we want to hypothesize that the
effects of those fluctuating constraints are wiped out, if the
turnovers are such big.

Claim. Suppose that frequent turnovers of the agents
drive the entire process to

max Hﬁk(wk) an

@)
st. Yzt =) "z"[t]. (18)
k 7

Then the equilibrium density of wealth distribution is hy-
perbolically decreasing if the agents are numerous.

Proof. Note that (£*) = (z°) and (&) is colinear at equilib-
rium. To formulate the Lagrangian, we use the logarithm
of the maximand. It is

SmtEh) - (et -3, (9)
k k k
and the first-order conditions are
VU (&%) .
f]’“(:ﬁk)
Now, as I = K? — oo, we have K (w'/w®) — 1/(#C*/K)

(where #C* / K is finite), Vu' (2') /u’(4%) = VI (27) /uw? (&7)
for any i,j € C*, and

Vk. (20)

UM@Y) _ o w' DU s
Greny 2wt ey D E) @D
1 Du'(d) iecCk (22)

T HCOF K W)

where Dz'(2") is the Jacobian of the distribution rule in
U*, and by Sk & (z%) = ¥, their sum over C* is iden-
tity matrix. Du’(2) is identical for every i, and u'(2)
is proportional to w’ at equilibrium. The identicalness of
KVU*(2*)/U" (") then implies that the class sum wealths
are identical among the classes, and the density of wealth
distribution is hyperbolically decreasing. [

Actually the QPQ of (RB) has no effect at equilibrium
because the equilibrium allocation is in the core (in the
sense of Debreu and Scarf [2]). Thus we may also add IR
of the form

0<U**) vk (23)

in the above hypothesis, without changing the result.



4 Simulations

The simulations were performed on PC with GAUSS 5.0
(Aptech). The built-in function sqpSolve was used to com-
pute the solution of (B). This function uses the Sequential
Quadratic Programming method for the computation.

In order to visualize the movement of asset allocation
the number of assets was fixed to two (L = 2). The util-
ity function used was Cobb—Douglas, wf/ 5952/ ° During the
runs the parameter 7; for the allocation adjustment was
fixed to .5 or 1. The parameter 72[t] for the price adjust-
ment was calculated at each iteration, such that it would
be 1) initially set to one, and 2) decreased by multiply-
ing .9 until both prices became positive and made at least
one pair of seller and buyer. This seemed to produce a
sufficient fluctuation of prices, which were also converging.

We performed two types of simulation as follows. In the
Type 1, the number of agents was 36 (K = 6, [ = 36) and
the “full” optimization (where the internal maximum iter-
ation parameter _sqp_MaxIters of sqpSolve was default)
was done on each step of the process. The parameter 7;
was set to .5, to let the process be more susceptible to the
fluctuation of prices. The setting of type 1 simulation is
best conforming to that of our model, and its typical result
is shown in Figure 1. The 2D-plot of equilibrium allocation
and the histogram of the associated wealth distribution are

shown.

Fig. 1: Type 1. Full optimizations (y; = .5)

Initial state (K =6, I = 36)

After 2,000 iterations

To perform simulations with a larger number of agents,
we set, in the simulation of Type 2, the internal maximum
iterations _sqp_MaxIters of sgpSolve to 1. That is, we
truncated the computation of true maximum on each step.
This may have the effect that is similar to setting y1 < 1,
but the facial value of v; was set to 1. Figure 2 is a typical
result. The number of agents was 144.

Fig. 2: Type 2. Truncated optimizations (y; = 1)
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After 2,000 iterations

Many patterns were tested for each type of simulations
and we obtained similar results. Although the scale of
the simulations is very small, they all seem to show the
characteristic of the process considered.

5 Concluding Comments

We have considered the emergence of a decreasing density
of wealth distribution in the framework of Edgeworth pro-
cess. Our special assumption was on the “bargaining pow-
ers” of the agents. They were set as if the agents were per-
forming a coalitional bargaining among the wealth classes.
Actually, the formulation of bargaining in (B) mostly
comes from a rather naive thought: If the demand be-
haviors of the agents aggregate, why not their bargaining
behaviors? If we push this thought a step further, however,
a more appropriate formulation of bargaining would be
wi[t]

(B) max ][ u'(z") =10 (24)

(CD
s.t. Zazi:Z:ﬁi[t], (25)

plt]- =" =plt] - '[t] Vi, (26)
u'(3[t]) < u'(z’) Vi, (27)

where w[t] := >, w'[t] is the total wealth of the agents at
t. The reason is as follows. Let (S*[t]) be any partition of
I agents at t. Then since

. A .
oo wi] Wl RPN 1)
H( H ul(a:l)wxlt]) wltl _ Hul(ilfl) w[tt] , (28)

A S



(B') is represented by

~ w[]
(RB) max 197 @) 5w (29)
z A

s.t. Z o = Z z[t], (30)
A A

plt] -« =plt]-2*[] VA, (31)
U@ < UM@Y) VA, (32)

where U* and other symbols are similarly defined as in
(RB). That is, we can reduce (B') to any form of represen-
tatives’ bargaining (RB'). That this arbitrary reducibility
requires the form of bargaing (B') may also be clear (con-
sider the Eisenberg’s theorem).

If we use (B') and (RB’') instead of (B) and (RB) in
our model, however, the conclusion of our Claim, the iden-
ticalness of (1/(#C*/K))(Vu'(2')/u*(2")), is modified to
that of o

1 w® Dui(d?)
#CF/K w ui(2i)

The reason we did not adopt (B’) was that we cannot de-

(33)

duce implications from the identicalness of the above ex-
pression (except that the equality of wh Jw is equivalent to
the previous condition, which is almost tautological), for
one thing, and the results of simulation using (B') were
ambiguous, for another thing. However, there is a strong
reason that (B') may also lead to a similar result: In our
process, those who gain are those who buy or sell on the
long side of the markets. For example, if one sells as much
as he wants in the excess supply market, he can avoid the
loss from falling price the best. Roughly speaking, (B')
favors for the wealthier agents. As some econophysicists’
simple models suggest, this would lead to some kind of
decreasing wealth distribution.

There is another, possibly more significant, theoretical
importance in the problem of wealth distribution. We will
shortly comment on this point here. Since the pioneering
work of Hildenbrand [7], it is known that the law of demand
holds in the consumption sector of economy if the wealth
(income, or expenditure, in his treatment) distribution is
decreasing. The heterogeneity of the agents’ tastes is also
known to yield the law of demand (Grandmont [4, 5]). In
our view, however, the distribution of wealth is more easily
observed than that of preferences, and, more importantly,
would be better treated as an “endogenous” variable of
our economic system. It would be worth mentioning that
the hyperbolically decreasing density of wealth distribution
conforms to the type of distribution that Grandmont ([4],
Proposition 1) has generalized the Hildenbrand’s [7], which
secures the establishment of the law of demand.

Finally, we note that our analysis was solely limited
to the equilibrium state of the system (with some ideal-
ization). In order to study the disequilibrium state of the
process, it is certainly desirable to exploit the tools in sta-
tistical physics, by modeling the large economy from the
outset. It may also be true that the more satisfactory simu-
lations will reveal the nature of the process more precisely.

We hope that our study could show a possible link be-
tween the traditional mainstream economics and those of
the newborn active areas of researches.
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