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1 Introduction

Commentators have noted that U.S. budget surpluses in the late 1990s led

to a staged contraction in the supply of Treasury bonds with a series of

debt management policy changes since 1998. The Treasury’s debt buyback

program, launched in March 2000, repurchased longer term bonds from the

markets expecting that the surpluses would continue, but the U.S. fiscal

position began reverting in response to the macroeconomic slowdown of

2000-2001 and the impact of September 11, 2001. Against this background,

financial market uncertainty was growing since the Asian crises of 1997-1998,

compounded by Russia’s default and the hedge fund LTCM’s near-collapse

in autumn 1998.

Global market turmoil prompted research on the dynamics of the Trea-

sury bond market.1 In principle, Treasury bonds whose remaining time to

maturity and other characteristics are similar should trade at approximately

the same price. In practice, however, illiquid bond yields tend to be higher

than their more liquid counterparts. Thus, researchers have interpreted this

yield differential as a time-varying liquidity premium, which is expected to

be mean-reverting. Its significance has been documented across the term

structure, with the debt buyback found to be an important explanatory

variable.

1See Boni and Leach (2002), Fleming (2000, 2002), Furfine and Remolona (2002),

Krishnamurthy (2003) and Longstaff (2003).
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This raises the question of whether the above events and related un-

certainty led to a change in persistence of the Treasury liquidity premium

from a stationary, I(0), to a nonstationary, I(1), process. Determining the

location and direction of such changes is a key issue for policy makers and

market forecasters alike (Kim (2000) and Newbold et al. (2001)).

We address this question using the U.S. Treasury’s 1-year bill and 5-year

note daily on/off spreads, defined as the yield differential between the on-

the-run (most recent, or active) and the first off-the-run (older) bond issue

for each maturity. The null hypothesis is that the data is I(1) throughout,

and the alternative is a change from I(0) to I(1). The recursive procedure

of Leybourne et al. (2003b)–henceforth LKSN–is extended by adopting

weighted-symmetric estimation of the unit root coefficient.2 LKSN develop

GLS-based recursive and sequential DF unit root tests for detecting a single

possible change in persistence under the alternative.3 These tests allow for

an unknown breakpoint and, in their general form, unknown direction of

change in persistence. In the presence of GARCH and non-normality, we

also undertake a Monte Carlo study of standard and recursive weighted-

symmetric tests.

2This estimation method is known to yield more powerful t-tests than standard DF and

unit root tests using Generalized Least Squares (GLS)-detrending under trend-stationarity.

On related power gains see Leybourne et al. (2003a) and Pantula et al. (1994).
3These authors find that recursive tests are more robust to parameter instability.
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2 The model

Assume the true process for T observations on yt is

yt = dt + ut , dt = z
0
tβ (1)

ut = αut−1 + φ(L)∆ut−1 + ²t ,

where zt = [1, t]
0 and β = [β0,β1]

0. We restrict attention to β1 = 0, without

loss of generality. Lag polynomial φ(L) is of known order p − 1, where

the roots of 1 − φ(L) = 0 lie outside the unit circle. The errors follow a

martingale difference sequence and the first p − 1 values of yt are assumed

to exist. The null hypothesis H11 is that yt is I(1) throughout, or α = 1,

and the alternative is that yt undergoes a change in persistence from I(0)

to I(1) at observation τ∗T ,

|α| < 1 , t ≤ τ∗T (2)

α = 1 , t > τ∗T

or from I(1) to I(0) at τ∗T , implying the time-reversed series eyt = yT−t+1
changes from I(0) to I(1) at (1− τ∗)T , where break fraction τ∗ is unknown.

The two alternatives are denoted by H01 and H10, respectively.

Our test statistics are constructed as follows. After detrending the whole

series by OLS, ydt = yt − β̂0(τ), t = 1, 2, ..., T , an ADF regression with no

deterministic trend is ran recursively on ydt using only the first τT observa-

tions,
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∆ydt = bρ(τ)ydt−1 +Σp−1j=1 φ̂j(τ)∆y
d
t−j + ²̂t , t = 1, 2, ..., τT (3)

for varying break fraction τ .4 Following Fuller (1996), weighted-symmetric

estimation of ρ(τ) minimizes

Q(θ) =
TX

t=p+1

wt

∆ydt − ρ(τ)ydt−1 −
p−1X
j=1

φj(τ)∆y
d
t−j

2 (4)

+

T−pX
t=1

(1−wt+1)
∆ydt − ρ(τ)ydt+1 +

p−1X
j=1

φj(τ)∆y
d
t+j+1

2 (5)
for all τ , where θ = (ρ,φ), φ = {φ1,φ2, ...,φp−1} and wt is

wt =


0, 1 ≤ t < p+ 1

(t− p)/(T − 2p+ 2), p+ 1 ≤ t < T − p+ 2

1, T − p+ 2 ≤ t ≤ T .
The estimated error standard deviation is bσ(τ) = Q(bθ)

T−p−2 . The t-statistic for

bρ(τ) is WS(τ) = bρ(τ)√dvar(bρ(τ)) , where dvar(bρ(τ)) = bσ2(τ)hPP and hPP is the
[1, 1] element of

³
∂2Q(θ)
∂θ∂θ0

´−1
. The statistic for testing alternative H01 is

WSf inf (τ ) = inf τ∈ Λ WS
f (τ), (6)

where f denotes the recursive test on the forward series, Λ is a non-empty

closed interval in (0, 1) and the break fraction minimizing (6) is τ∗. When

the alternative is a switch from I(1) to I(0), this statistic can be applied to

the time-reversed series eydt
4In our application τ varies between 0.15 and 0.85 in 0.01 increments. Note that LKSN

use GLS-detrending and trim at 0.20 employing the usual ADF statistics.
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∆eydt = eρ(τ)eydt−1 +Σp−1j=1
eφj(τ)∆eydt−j +e²t , t = 1, 2, ..., (1− τ)T (7)

where τ∗ in forward time is (1 − τ∗) in reverse time. Denoting the t-ratio

for eρ(τ) by WSr(τ), the statistic for testing H11 against H10 is

WSr inf (τ) = inf τ∈ Λ WS
r(τ) , (8)

with r denoting the test on the reverse series.

If one is a priori uncertain about the direction of change in persistence,

a “two-sided” test can be constructed whose null is I(1) throughout against

the alternative of a change from I(0) to I(1) or vice versa at break fraction

τ∗. The statistic is then the pairwise minimum of WSf inf and WSr inf

min(WSf inf ,WSr inf) (9)

Following LKSN and existing asymptotic results in Pantula et al (1994)

and Park and Fuller (1995) it can be shown that the WSf inf and WSr inf

tests are consistent only in the direction for which they are designed. Thus,

the min(WSf inf ,WSr inf) test will also be consistent under H01 or H10.

Moreover, all test statistics will estimate the break fraction consistently

against the true alternative.

3 Application: Treasury bond on/off spreads

Our sample period is 17.6.1991-31.12.2002, i.e. 504 weekly observations for

the 1-year Treasury bill on/off spread level–the yield differential between
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the first off-the-run and the on-the-run issues–and 592 for the 5-year note

on/off spread.5 The spreads are expected to be positive on average. Figure 1

shows the series in basis points and Table 1 summarizes their distributional

properties.

FIGURE 1 & TABLE 1 HERE

Both spreads are tightly distributed around their mean until the late

1990s when they become more volatile. There is significant excess kurtosis

and also GARCH effects. The GARCH φ1 coefficient (short-run variation in

volatility) was estimated close to 0.1 in both cases, and φ1+φ2 (persistence

in volatility) was around 0.8. Table 2, Panel A reports ADF and standard

WS tests on the whole sample.

TABLE 2 HERE

Lag order p is selected using the sequential 0.10 level t-tests for the

longest lag coefficient’s significance, recommended by Ng and Perron (1995).

Nonstationarity is rejected for the 1-year bill and not rejected for the 5-year

note, as ADF and standard WS tests are inconsistent in the presence of a

break in persistence. Critical values for all tests are given in Appendix A.

5The data source is GovPX. We use Wednesday observations from the daily data to

address day-of-the-week effects. Inflation-indexed and callable bond issues are excluded,

as are holidays and observations more than 30 basis points, reflecting posting errors not

filtered out by GovPX. The 1-year bill was discontinued in May 2001.
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Although standard DF tests are asymptotically robust to GARCH, they

tend to overreject when φ1 + φ2 is close to unity; see Kim and Schmidt

(1993) and Seo (1999). Given the time-varying volatility in our series, we

quantify this finding forWS-based tests in Monte Carlo simulations. When

the standard WS statistic is corrected for GARCH using White’s (1980)

covariance matrix, nonstationarity is not rejected for either series; WSw

denotes the White-corrected statistic.

Our discussion in section 1 suggests that the alternative hypothesis is

a change in persistence from I(0) to I(1) at observation τ∗T . Thus, we

apply the WSf inf test in equation (6) to the series. The results in Table

3, Panels A and B are for the non-White-corrected and White-corrected

versions of WSf inf and WSf infw , and we also include the reverse and “two-

sided” statistics, WSr inf and min(WSf inf ,WSr inf) respectively.

TABLE 3 HERE

For the 1-year Treasury bill, WSf,inf and min(WSf,inf ,WSr inf) both

reject the null at the 0.05 level. Supporting this, the null is not rejected under

WSr inf . Note that theWhite-corrected statisticsWSf infw andWSr infw point

in the same direction. The rejections are less significant due to lower test

power, confirmed in the subsequent Monte Carlo study. For the 5-year note,

WSf,infw does not reject the null at the 0.05 level and min(WSf inf ,WSr inf)

does not reject at the 0.10 level, both narrowly. The switch points from

I(0) to I(1) according to the non-White-corrected statistics are found in
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July 1997 for the 5-year note, and March 1999 for the 1-year bill. The

corresponding changes identified by the White-corrected statistics are in

May 1998 and March 1999.

Finally, in Table 4 we report standard WS tests on the pre- and post-

break subsamples. Break dates are determined by forward-based recursive

test (6).

TABLE 4 HERE

The pre-break and post-break subsamples are stationary and nonsta-

tionary, respectively, with and without the White-correction. Our findings

suggest that a significant switch from I(0) to I(1) in U.S. Treasury bond

on/off spread levels occurred in the late 1990s. This was likely triggered

by emerging market financial crises and the Treasury’s debt management

policy changes.

4 Monte Carlo simulations

This section investigates the size and power properties of WS-based tests

and their White-corrected versions under non-normality and conditional het-

eroscedasticity.We assume yt follows the AR(1) process yt = ayt−1+²t, where

²t = h
1/2
t vt, ht = φ0 + φ1²

2
t−1 + φ2 ht−1. The errors vt are t(5) or χ2(3)-

distributed with the degrees of freedom based on the higher-order sample

moments in Table 1. The standard normal is also considered for comparison
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purposes. We focus on cases of near integration, namely (φ1,φ2) GARCH

combinations {(0.05, 0.9), (0.1, 0.8), (0.3, 0.6)}. The rejection frequencies at

the nominal 0.05 level are in Table 5.

TABLE 5 HERE

The standardWS statistic is slightly oversized when T = 100, and more

so with greater short-run volatility φ1, as in Kim and Schmidt (1993) and

Seo (1999). In large samples, size distortions persist for χ2 errors only. The

WSw statistic effectively corrects these overrejections but can be somewhat

undersized. As α declines, power increases across GARCH parameteriza-

tions for given sample size. Similarly for fixed α when T increases, reflecting

consistency of the tests. Note that the ability of WSw to control for size

comes at some loss in power. Differences in power between WS and WSw

decline with sample size and are larger under non-normal errors.

Table 6 reports Monte Carlo simulations for recursive statistic WSf inf .6

TABLE 6 HERE

To some extent, the results are similar to the standard WS statistic in

Table 5. At T = 200, size distortions are larger for greater φ1 and persist

for T = 500, but are effectively corrected using WSf infw .7 In terms of power,

consistency of the recursive test is apparent. Moreover, both WSf inf and

6Results for the reverse and min tests are available upon request.
7Recursive tests can also be oversized when GARCH effects are less persistent in the

case of large φ1 and non-normal errors. The condition for the existence of the errors’
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WSf infw statistics gain power for larger τ∗; their power difference generally

declines with sample size.

Finally, Table 7 reports on the accuracy of the estimated break point.

TABLE 7 HERE

Estimation becomes more accurate with sample size. Although for a

larger break fraction WSf infw mildly underestimates as α increases and this

is more pronounced for non-normal errors and greater φ1, overall WS
f inf
w

is more accurate than WSf inf . The latter tends to overestimate the break

point mainly for smaller sample sizes and break fractions.

We conclude that employing the White-corrected version of the standard

WS test is advisable to the extent that GARCH effects are persistent and

φ1 is large. The same applies to the recursive test when φ1 is large. In both

cases, correcting works relatively better in large samples. If φ1 is small,

White-corrected tests are not oversized but become somewhat less powerful.

5 Concluding remarks

This paper extended the recursive test procedure of LKSN by adopting

weighted-symmetric estimation to detect a single change in time series per-

sistence. An application to U.S. Treasury bond on/off spreads found a sig-

nificant break from I(0) to I(1) in the late 1990s. Our results suggest that

fourth moment under White correction is 3φ21 + 2φ1φ2 + φ22 < 1.
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financial and macroeconomic uncertainty–the ongoing reversal in the U.S.

fiscal position following the debt reduction initiative–have affected the per-

sistence properties of Treasury bond liquidity premia.
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Appendix A

Simulated critical values

Panel A
Statistic T 0.01 0.05 0.10

Panel B
Statistic T 0.01 0.05 0.10

ADF 500 -3.420 -2.875 -2.578 ADFw 500 -3.453 -2.905 -2.598
WS 100 -3.124 -2.552 -2.235 WSw 100 -2.857 -2.299 -2.007

250 -3.160 -2.554 -2.255 250 -2.796 -2.262 -1.982
350 -3.111 -2.538 -2.255 350 -2.737 -2.232 -1.971
400 -3.080 -2.543 -2.222 400 -2.733 -2.225 -1.949
500 -3.109 -2.540 -2.228 500 -2.745 -2.220 -1.942

WSf inf 504 -3.909 -3.325 -3.030 WSf inf 504 -3.529 -3.004 -2.729
592 -3.865 -3.318 -3.015 592 -3.515 -2.990 -2.707

WSr inf 504 -3.943 -3.323 -3.033 WSr infw 504 -3.578 -3.003 -2.721
592 -3.887 -3.320 -3.027 592 -3.538 -2.993 -2.714

min(., .) 504 -4.162 -3.586 -3.309 minw(., .) 504 -3.770 -3.252 -2.993
592 -4.105 -3.568 -3.300 592 -3.748 -3.222 -2.975

Note: Statistic min(WSf,infw ,WSr,infw ) is abbreviated by min(., .).



TABLE 1
On/off bond spread statistics: 1991-2002

Statistics 1Y 5Y
Mean -1.632 0.684

Std. Dev. 6.311 4.202
Max 28.90 12.00
Min -26.50 -14.80

Skewness 1.518 -0.771
Kurtosis 8.437 4.947

Jarque-Bera 820.76 152.18

Note: T = 504 (592) weekly observations
for the 1-year bill (5-year note). Units are
basis points.

TABLE 2
Standard WS and ADF unit root tests: whole sample

Panel A
Series WS ADF
1Y -3.168a -3.009b

5Y -1.711 -1.409

Panel B
Series WSw ADFw
1Y -1.680 -2.102
5Y -1.209 -1.299

Note: a, b, c denote 0.01, 0.05 and 0.10
significance levels.



TABLE 3
Recursive WS tests for a change in persistence

Panel A
Series WSf inf Break date WSr inf Break date min(., .) Break date
1Y -3.602b 03/03/99 -2.808 n/a -3.602b 03/03/99
5Y -3.603b 30/07/97 -2.371 n/a -3.603b 30/07/97

Panel B
Series WSf infw Break date WSr infw Break date min(., .) Break date
1Y -3.282b 24/03/99 -1.692 n/a -3.282b 24/03/99
5Y -2.927c 27/05/98 -1.555 n/a -2.927 n/a

Note: Statistic min(WSf,infw ,WSr,infw ) is abbreviated by min(., .). Break dates are reported only when the null
is rejected. The significant break points are 395 (03/03/99), 314 (30/07/97), 398 (24/03/99), 357 (27/05/98).

TABLE 4
Standard WS unit root tests: subsamples

Panel A WSf inf

Series Pre-break Post-break
1Y -3.602a -1.847
5Y -3.603a -1.736

Panel B WSf infw

Series Pre-break Post-break
1Y -3.282a -1.651
5Y -2.927b -1.261



TABLE 5
Empirical size and power of WS test at nominal 0.05-level under GARCH(1,1)

T = 100

φ1 φ2 α: 0.70 0.80 0.90 1.00
WS WSw WS WSw WS WSw WS WSw

0.05 0.9 N(0, 1) 1.000 0.992 0.968 0.927 0.531 0.483 0.055 0.056
t(5) 0.999 0.960 0.974 0.846 0.623 0.469 0.055 0.042
χ2(3) 0.996 0.909 0.958 0.746 0.546 0.368 0.050 0.046

0.1 0.8 N(0, 1) 0.999 0.986 0.964 0.898 0.536 0.465 0.058 0.053
t(5) 0.998 0.936 0.971 0.808 0.625 0.438 0.057 0.040
χ2(3) 0.994 0.885 0.956 0.706 0.564 0.351 0.059 0.045

0.3 0.6 N(0, 1) 0.995 0.922 0.944 0.764 0.553 0.387 0.072 0.050
t(5) 0.996 0.856 0.955 0.690 0.626 0.364 0.075 0.036
χ2(3) 0.989 0.811 0.948 0.628 0.613 0.312 0.079 0.046

T = 200

0.05 0.9 N(0, 1) 1.000 1.000 1.000 0.999 0.960 0.913 0.058 0.060
t(5) 1.000 0.994 1.000 0.981 0.975 0.856 0.058 0.047
χ2(3) 1.000 0.990 0.999 0.948 0.960 0.735 0.058 0.048

0.1 0.8 N(0, 1) 1.000 1.000 1.000 0.995 0.956 0.885 0.060 0.058
t(5) 1.000 0.986 0.999 0.960 0.971 0.809 0.063 0.046
χ2(3) 1.000 0.974 0.998 0.916 0.956 0.678 0.061 0.046

0.3 0.6 N(0, 1) 1.000 0.982 0.998 0.942 0.934 0.716 0.076 0.051
t(5) 0.999 0.942 0.998 0.874 0.955 0.648 0.074 0.043
χ2(3) 0.998 0.916 0.995 0.800 0.949 0.535 0.082 0.044

T = 500

0.05 0.9 N(0, 1) 1.000 1.000 1.000 1.000 1.000 1.000 0.056 0.053
t(5) 1.000 0.998 1.000 0.995 1.000 0.986 0.054 0.043
χ2(3) 1.000 0.999 1.000 0.997 0.999 0.965 0.058 0.050

0.1 0.8 N(0, 1) 1.000 1.000 1.000 1.000 1.000 1.000 0.056 0.052
t(5) 1.000 0.966 1.000 0.990 1.000 0.971 0.053 0.040
χ2(3) 1.000 0.997 1.000 0.988 0.999 0.930 0.061 0.046

0.3 0.6 N(0, 1) 1.000 0.996 1.000 0.987 0.999 0.941 0.064 0.044
t(5) 1.000 0.977 1.000 0.946 0.999 0.850 0.065 0.035
χ2(3) 1.000 0.960 1.000 0.904 0.997 0.755 0.080 0.035

Note: The DGP is yt = αyt−1 + ²t, where ²t = h
1/2
t vt, ht = φ0 + φ1²

2
t−1 + φ2 ht−1 and vt is

distributed as in the first column. The t and χ2 distributions are standardized as t(n)

( n
n−2 )

1/2 and
χ2(n)−n
(2n)1/2

with n degrees of freedom. The unconditional variance is 1 by setting φ0 = 1− φ1 − φ2, without loss
of generality. The number of replications is 5000.



TABLE 6
Empirical size and power (under H01): WSf inf at 0.05 level under GARCH(1,1) as in Table 5

τ∗ = 0.5

T = 200

φ1 φ2 α: 0.70 0.80 0.90 1.00
0.05 0.9 WSf inf WSf infw WSf inf WSf infw WSf inf WSf infw WSf inf WSf infw

N(0, 1) 0.994 0.959 0.867 0.727 0.385 0.262 0.067 0.064
t(5) 0.989 0.792 0.862 0.750 0.378 0.166 0.070 0.042
χ2(3) 0.991 0.774 0.874 0.521 0.392 0.199 0.059 0.047

0.1 0.8 N(0, 1) 0.991 0.935 0.859 0.704 0.387 0.262 0.066 0.059
t(5) 0.984 0.780 0.846 0.509 0.386 0.171 0.071 0.039
χ2(3) 0.990 0.766 0.871 0.514 0.415 0.203 0.060 0.044

0.3 0.6 N(0, 1) 0.984 0.843 0.862 0.592 0.455 0.227 0.093 0.061
t(5) 0.978 0.705 0.846 0.452 0.445 0.161 0.098 0.042
χ2(3) 0.984 0.734 0.891 0.499 0.493 0.212 0.088 0.050

T = 500

0.05 0.9 N(0, 1) 1.000 1.000 1.000 0.999 0.959 0.881 0.061 0.061
t(5) 1.000 0.981 1.000 0.946 0.957 0.700 0.068 0.049
χ2(3) 1.000 0.980 1.000 0.924 0.961 0.670 0.063 0.050

0.1 0.8 N(0, 1) 1.000 1.000 1.000 0.996 0.952 0.855 0.061 0.056
t(5) 1.000 0.975 1.000 0.928 0.950 0.664 0.070 0.042
χ2(3) 1.000 0.971 0.999 0.897 0.958 0.621 0.066 0.045

0.3 0.6 N(0, 1) 1.000 0.988 1.000 0.947 0.939 0.680 0.091 0.048
t(5) 1.000 0.936 0.999 0.831 0.936 0.508 0.103 0.036
χ2(3) 1.000 0.919 0.997 0.810 0.957 0.506 0.097 0.041

τ∗ = 0.7

T = 200

φ1 φ2 α: 0.70 0.80 0.90 1.00
0.05 0.9 WSf inf WSf infw WSf inf WSf infw WSf inf WSf infw WSf inf WSf infw

N(0, 1) 1.000 0.995 0.981 0.885 0.503 0.351 0.067 0.064
t(5) 0.998 0.905 0.971 0.691 0.492 0.224 0.070 0.042
χ2(3) 0.999 0.874 0.979 0.663 0.538 0.253 0.059 0.047

0.1 0.8 N(0, 1) 1.000 0.990 0.978 0.865 0.516 0.343 0.066 0.059
t(5) 0.998 0.892 0.967 0.668 0.508 0.225 0.071 0.039
χ2(3) 0.999 0.867 0.976 0.646 0.559 0.258 0.060 0.044

0.3 0.6 N(0, 1) 0.998 0.924 0.964 0.725 0.573 0.284 0.093 0.061
t(5) 0.996 0.806 0.955 0.567 0.551 0.205 0.098 0.042
χ2(3) 0.997 0.817 0.973 0.598 0.641 0.254 0.088 0.050

T = 500

0.05 0.9 N(0, 1) 1.000 1.000 1.000 1.000 0.999 0.981 0.061 0.061
t(5) 1.000 0.990 1.000 0.976 0.997 0.989 0.068 0.049
χ2(3) 1.000 0.993 1.000 0.968 0.997 0.794 0.063 0.050

0.1 0.8 N(0, 1) 1.000 1.000 1.000 1.000 0.999 0.962 0.061 0.056
t(5) 1.000 0.987 1.000 0.965 0.995 0.806 0.070 0.042
χ2(3) 1.000 0.984 1.000 0.943 0.996 0.746 0.066 0.045

0.3 0.6 N(0, 1) 1.000 0.994 1.000 0.973 0.993 0.813 0.091 0.048
t(5) 1.000 0.963 0.999 0.891 0.989 0.634 0.103 0.036
χ2(3) 1.000 0.950 0.999 0.868 0.990 0.606 0.097 0.041



TABLE 7
Break point estimates under H01: WSf inf at 0.05 level under GARCH(1,1) as in Table 5

τ∗ = 0.5

T = 200

φ1 φ2 α: 0.70 0.80 0.90
WSf inf WSf infw WSf inf WSf infw WSf inf WSf infw

0.05 0.9 N(0, 1) 0.583 0.552 0.599 0.562 0.611 0.566
t(5) 0.586 0.510 0.603 0.533 0.617 0.551
χ2(3) 0.586 0.492 0.604 0.510 0.615 0.524

0.1 0.8 N(0, 1) 0.566 0.535 0.582 0.549 0.598 0.553
t(5) 0.568 0.501 0.584 0.521 0.601 0.538
χ2(3) 0.569 0.481 0.587 0.497 0.599 0.512

0.3 0.6 N(0, 1) 0.564 0.519 0.580 0.525 0.590 0.529
t(5) 0.563 0.486 0.579 0.500 0.590 0.517
χ2(3) 0.565 0.469 0.580 0.480 0.594 0.486

T = 500

0.05 0.9 N(0, 1) 0.536 0.524 0.549 0.538 0.579 0.563
t(5) 0.539 0.505 0.554 0.528 0.582 0.558
χ2(3) 0.537 0.491 0.552 0.509 0.582 0.536

0.1 0.8 N(0, 1) 0.528 0.516 0.541 0.528 0.568 0.551
t(5) 0.531 0.499 0.546 0.519 0.570 0.549
χ2(3) 0.530 0.481 0.543 0.499 0.571 0.526

0.3 0.6 N(0, 1) 0.527 0.501 0.539 0.513 0.566 0.538
t(5) 0.529 0.481 0.541 0.499 0.567 0.529
χ2(3) 0.527 0.461 0.541 0.475 0.568 0.494

τ∗ = 0.7

T = 200

φ1 φ2 α: 0.70 0.80 0.90
WSf inf WSf infw WSf inf WSf infw WSf inf WSf infw

0.05 0.9 N(0, 1) 0.754 0.717 0.750 0.707 0.718 0.659
t(5) 0.755 0.668 0.751 0.662 0.720 0.637
χ2(3) 0.758 0.632 0.758 0.625 0.729 0.592

0.1 0.8 N(0, 1) 0.739 0.702 0.737 0.691 0.709 0.651
t(5) 0.741 0.655 0.738 0.649 0.709 0.622
χ2(3) 0.745 0.620 0.745 0.609 0.719 0.586

0.3 0.6 N(0, 1) 0.729 0.661 0.725 0.650 0.697 0.614
t(5) 0.727 0.618 0.723 0.612 0.693 0.590
χ2(3) 0.735 0.587 0.734 0.582 0.712 0.555

T = 500

0.05 0.9 N(0, 1) 0.733 0.721 0.742 0.726 0.751 0.726
t(5) 0.736 0.686 0.745 0.699 0.751 0.709
χ2(3) 0.734 0.675 0.743 0.681 0.753 0.679

0.1 0.8 N(0, 1) 0.726 0.710 0.733 0.715 0.741 0.713
t(5) 0.727 0.676 0.735 0.687 0.741 0.694
χ2(3) 0.726 0.661 0.735 0.665 0.742 0.661

0.3 0.6 N(0, 1) 0.720 0.675 0.726 0.677 0.730 0.675
t(5) 0.719 0.639 0.724 0.645 0.727 0.649
χ2(3) 0.720 0.617 0.727 0.616 0.733 0.604



Figure 1. U.S. Treasury bond on/off spread levels: 1991-2002.


