
Predicting the Upper Bound Values of the Numbers of Hidden Units and
Training Cycles for Backpropagation Based Networks

WING KAI, LEUNG
School of Computing

Faculty of Computing, Information and English
University of Central England

Birmingham B42 2SU
UNITED KINGDOM

Abstract: - Backpropagation and its variants have been studied by a number of researchers. However, most of the
researchers have experienced difficulties in deciding the appropriate numbers of hidden units and training cycles to
solve a specific application. In most cases, these quantities are determined empirically. In addition, no detailed
study has been made in generalising the empirical results for each type of application problems. With the
generalised results, it is possible that the upper bound values of the numbers of hidden units and training cycles
required to solve a specific type of application can be predicted mathematically. This paper attempts to summarise
and generalise all the theoretical and experimental results obtained in the previous studies by Leung et al
[1,2,3,4,5,6,7] with a view to devising a mathematical approach in predicting the numbers of hidden units and
training cycles required to solve a variety types of application problems.

Keywords: - Neural Networks, Backpropagation, Hidden Units, Training Cycles, Neural Metrics, Algorithmic
Complexity.

1. Introduction
Since their invention in the mid 1940's, Artificial
Neural Networks (ANNs) have been developed and
applied in a number of areas including speech and
image recognition. The literature in ANNs is scattered
over a vast number of publications spanning various
unrelated domains. The diversity of these sources
makes it difficult for inexperienced neural network
users to learn about ANNs and for researchers to keep
pace with current developments. The former users,
overwhelmed by the sheer volume of recent papers,
are unfamiliar with ANN terminology and certain
commonly used concepts [8]. Consequently, it is
difficult to get a complete picture of ANNs and to
combine and apply results from diverse sources to
practical problems. Lawrences [9] reported that 85%
of neural network researchers produce their own
software, much of which is either unavailable to the
rest of the research community or is not modifiable for
similar research.

In addition, difficulties in implementing such systems
in a well specified and computationally measurable
manner have restrained research in this area for years.
However, the advancements in technology such as the

exponential increase in computer hardware power, has
resurrected interests in this field in the last decade.
One major discovery is the backpropagation of errors
training algorithm (BPA) [10] which was applied to
Multi Layer Perceptrons (MLP's).

Due to the lack of applicable measurements, no
comprehensive analysis has been carried out on the
quality characteristics (e.g. efficiency and algorithmic
complexity) of any backpropagation based network
system simulated on a conventional computer. This is
also true for variants of MLP. Hence, users of such
systems with little or no specialist expertise in this area
do not generally know how efficient the MLP
performs nor how complicated the training process is
for solving a specific application problem. In addition,
the construction of the actual training programs using a
programming language applicable to ANNs has rarely
been presented. Therefore, it is difficult to acquire and
compare implementation details based on the
published work of each researcher. Furthermore,
researchers sometimes use minor variations on the
published algorithms without making it clear what the
variations are and why they were necessary.

The main difficulty experienced by most researchers
and users is the decision of choosing the appropriate
numbers of hidden units and training cycles to solve a
specific application. Most studies do not attempt to
generalise the results for each type of problem, e.g. the
average algorithmic complexity of the N-bit encoding
problem and the number of hidden units and training
cycles required to solve the problem. By knowing the
generalised algorithmic complexity of a specific type
of application problem, it is possible that the upper
bound values of the numbers of hidden units and
training cycles required to solve the same type of
problem can be predicted mathematically.

This study is based on the work conducted by Leung et
al [1] who proposed and defined the set of Neural
Metrics to measure the quality characteristics (e.g.
efficiency and complexity) of neural networks.
Firstly, all neural metric functions as defined in
[1,3,4,7] are generalised so that a single generic set of
neural metric functions can be used to compute the
algorithmic complexity of a specific problem whether
it is being solved by the standard BPA or its variants.
Secondly, the algorithmic complexity of each type of
problem addressed in [4,6] is generalised so that a
prediction on the upper bound values of some of the
neural metrics (e.g. the numbers of hidden units and
training cycles which would normally need to be
determined empirically) can be made on the same type

of problem. Finally, the operational requirements in
terms of CPU time required to solve each type of
problem are also summarised.

2. Generic Neural Metric Functions
In [1,3,4,7], several neural metric functions have been
defined in the analysis of the backpropagation based
training algorithms. These are the proposed computed
metrics, ACT, ADD, MUL and TOT which show the
number of activation calls, additions, multiplications
and total operations respectively required by the
network system to solve the given problem
successfully. They can be calculated (using formulae
1 to 6 below) to provide quantitative measures of the
efficiency of the network system and the algorithmic
complexity of a specific benchmark problem when
being solved by backpropagation.

There are essentially two distinct types of neural
metric functions, one for continuous and the other for
periodic weight update. Depending on the type of
optimisation techniques being used during the training
process, the definition of a metric function may vary
further. By generalising the results obtained in
[1,3,4,6,7], a set of the generic neural metric functions
for continuous weight update can be defined as

ADD M m n n n m(, , , , ... ,)[] [] []1 2 = M k ks s s

s

m

n n n(()[] [] []
1

1
2

1

2

1

1+ −

=

−

+ −∑ + k km mn n2 3
1 1[] []())− + (1)

MUL M m n n n m(, , , ,...,)[] [] []1 2 = M k k ks s s

s

m

n n n(()[] [] []
4

1
5

1
6

2

1
+ −

=

−

+ +∑ + k k km mn n7 8
1

9
[] []())− + (2)

ACT M m n n n m(, , , ,...,)[] [] []1 2
=M s

s

m

n[]

=
∑

2

 (3)

TOT M m n n n m(, , , ,...,)[] [] []1 2
= M k k k ks s s

s

m

n n n(()[] [] []
10 11

1
12

1
13

2

1
+ −

=

−

+ +∑ + [] []())m mn nk k14
1

15
− + (4)

and for periodic weight update as
ADD P M m n n n m(, , , , ,...,)[] [] []1 2 =

 PM k k k k ks s s m m

s

m

n n n n n(() ())[] [] [] [] []
16

1
17

1
18 19

1
20

2

1
+ − −

=

−

+ + + +∑ + M ks

s

m
sn n[] []()

=

−∑ +
2

1
21 (5)

MUL P M m n n n m(, , , , ,...,)[] [] []1 2 =

 PM k k ks s s

s

m

n n n(()[] [] []
22

1
23

1
24

2

1
+ −

=

−

+ +∑ + k k km mn n25 26
1

27
[] []())− + (6)

ACT P M m n n n m(, , , , ,...,)[] [] []1 2
 = PM s

s

m

n[]

=
∑

2

 (7)

TOT P M m n n n m(, , , , ,...,)[] [] []1 2 =

PM k k ks s s

s

m

n n n(()[] [] []
28

1
29

1
30

2

1
+ −

=

−

+ +∑ + [] []())m mn nk k31
1

32
− + + M ks

s

m
sn n[] []()

=

−∑ +
2

1
33

(8)

Constant Standard BPA BPA + Momentum BPSA

k 0 1 1 2
k1 2 3 2
k2 1 1 2
k3 2 3 1
k 4 1 1 3
k5 3 4 3
k 6 2 2 5
k 7 1 2 1
k8 3 2 3
k 9 2 1 4
k10 1 1 5
k11 2 2 1
k12 5 7 1
k13 2 2 1
k14 5 7 5
k15 4 4 7
k16 1 1 2
k17 1 2 1
k18 0 0 -1
k19 1 2 1
k20 2 1 2
k21 0 0 1
k22 1 1 3
k23 3 4 3
k24 2 2 5
k25 1 2 1
k26 3 2 3
k27 1 1 4
k28 2 2 5
k29 4 6 4
k30 3 3 5
k31 4 6 4
k32 5 5 7
k33 0 0 1

Table 1 Constant Values in Generic Neural Metric Functions

where kn (n = 0, 1, 2, ..., 33) are constants whose
values depend on the type of optimisation being used
in the training process, n[s] is the number of units in
layer s, M is the number of training cycles and P is

the number of input patterns. Table 1 shows the
values of constants kn for the cases of standard BPA
(where no optimisation techniques are used), BPA
with the momentum term (where the momentum term

is used to optimise the training process), and BPSA
(where optimisation is made through the gradient
descent of the sigmoidal steepness variable [2,5]).

3. Predicting the Numbers of Hidden

Units and Training Cycles
It has been suggested and shown in [1,3,7] that most
problems being solved by a backpropagation based
algorithm have the average algorithmic complexity
function O(Nk) where N is the number of connection
weights in the network and k is an integer constant ∈
(3,5). This means each such problem has a
polynomial-bound solution and thus belongs to the
class of feasible problems. The average algorithmic
complexity for each type of problem addressed in
this study is generalised and shown in Table 2. It can
be seen that each type of problem has the same order
of algorithmic complexity. For example, the
Encoding problem is O(N3) whether it is 4-bit, 8-bit
or 10-bit. Suggested values of N obtained through
this study for each problem are also shown in Table
2. The value of N is dependent on the number of
units on each layer of the network, i.e.

N = n[2]*(n[1] + n[3]) (9)

where n[1], n[2] and n[3] are the number of units on
the input, hidden and output layers respectively. The
values for n[1] and n[3] are normally given from the
problem but that for n[2] needs to be determined
empirically. The results obtained in [4,6] show that

n[2] ⊆ P (10)

for P input patterns used in training the network
(Table 2). Since P is a known value, the order of
magnitude of n[2] can be predicted by formula (10).

Once n[2] is determined, the value of N can be
obtained from formula (9). As defined in [1], the
algorithmic complexity of a problem is the product of
P, M and N, i.e.

 PMN ⊆ O(Nk) (11)

where the number of training cycles M required to
train the network is another quantity that needs to be

determined experimentally. However since P is
given, N can be obtained from formula (9), and k is
constant for the same type of problem, the value of
M can be predicted by formula (11).

For example, to predict the upper bounds of the
numbers of hidden units and training cycles required
in the training of the 6-bit Encoding problem (which
was not covered in the Table 2), the following
calculations are taken

1. the values of P, n[1] and n[3] are all given as 6.

2. using formula (10), the upper bound value of n[2]

is therefore 6.

3. the upper bound value of N = 6*(6 + 6) = 72 as

from formula (9).

4. the upper bound value of M = Nk / PN = Nk-1 / P

= 72 3-1 / 6 = 722 / 6 = 864 as from formula (11)
where k = 3 for Encoding type of problem (Table
2).

This means a maximum of 6 hidden units and 864
training cycles are sufficient to solve the 6-bit
Encoding problem.

Table 2 can serve as a general reference for the
average algorithmic complexity involved in solving a
particular type of problem. It also provides a
categorisation of the average algorithmic
complexities for all types of problems addressed in
this study. For instance, both the Parity and Binary
Addition problems belong to the same category since
they have the same order of magnitude of algorithmic
complexity. The same is true for the Symmetry and
Diabetes problems. In addition, the value of N in the
table also indicates the size of the network required
for each problem. For example, the size of the
network required for the 2-Spirals problem (which
has N ≥ 270 weights) is much larger than that
required for the Symmetry problem (which has N =
20 weights) even though they have the same order of
magnitude of algorithmic complexity.

4. Empirical Results on Application

Problems

In addition to evaluating the values of neural metrics
for each application problem, this study also
evaluated the operational requirement in terms of
CPU time taken for each problem. Since the amount

of CPU time required to solve a specific problem is
machine dependent (e.g. a Pentium II PC with 120
MHz and 16 MB RAM was used in this research), it
was not included in [1,3] as one of the neural metrics.

Type of Problem Average

Algorithmic
Complexity

Number of Weights N Number of
Input
Patterns P

Number of
Hidden
Units n[2]

Encoding O(N3) 24 for 4-bit Encoding

80 for 8-bit Encoding
120 for 10-bit Encoding

4
8

10

3
5
6

Parity O(N4) 15 for 2-bit Parity

28 for 3-bit Parity
50 for 4-bit Parity

4
8

16

5
7

10

Binary Addition O(N4) 42 for 2-bit Binary

Addition
16 6

Symmetry O(N5) 20 for 4-bit Symmetry 16 4

2-Spirals O(N5) greater than 270 194 90

Proben1 - Glass O(N4) 150 107 10

Proben1 - Cancer O(N4) 55 350 5

Proben1 - Diabetes O(N5) 90 384 9

Table 2 Average Algorithmic Complexities of Problems

Table 3 shows the CPU requirement for each type of
problems. It can be seen that the value is directly
proportional to the number of training cycles required
to train the network for each type of problems. Table
3 also shows the values of total squared errors where
convergence takes place. For problems (such as
those collected in Proben1) with large training data
sets, three types of squared errors were measured to
evaluate the generalisation performance of the
network. These are Training, Validation and Test
errors. In general, the Test error is higher than the
Training error as the training process takes place.
The Validation error provides the actual error
measurement for the network.

5. Conclusion
The objective of this study, which attempts to predict
the upper bound values of the numbers of hidden

units and training cycles required to solve a variety
types of application problems, has been achieved.
By obtaining such upper bound values, users do not
have to spend considerable time and effort to
determined empirically the numbers of hidden units
and training cycles for the same type of problem. It
is also believed that the summarised and generalised
results presented in this study may provide users with
enhanced knowledge in the average algorithmic
complexity and run time requirement (e.g. CPU time)
for each type of application problem addressed.

References:
[1] LEUNG W.K. and WINFIELD M., 2000, A

Complexity Analysis of the Backpropagation
Algorithm, Proceedings of the WSES 2000
International Conference on Applied and Theoretical
Mathematics, pp. 2441-6, Athens, Greece, December.

[2] LEUNG W.K. and WINFIELD M., 2000,
Implementing Backpropagation with Momentum,
Periodic Weight Update and Gradient Descent on
Steepness, Proceedings of the WSES 2000
International Conference on Applied and Theoretical
Mathematics, pp. 2431-6, Athens, Greece, December.

[3] LEUNG W.K. and SIMPSON R., 2000, Neural
Metrics - Software Metrics in Artificial Neural
Networks, Proceedings of the KES 2000 International
Conference of the Knowledge Base Engineering
Systems, Vol 1, pp. 209-12, Brighton, UK, August.

[4] LEUNG W.K., 2001, An Empirical Study of Software
Metrics in Artificial Neural Networks, Proceedings of
the 5th IEEE/WSES 2001 International Conference on
Circuits, Systems, Communications and Computers,
pp. 4541-6, Crete, Greece, July.

[5] LEUNG W.K., 2001, The Performance of
Backpropagation Networks which use Gradient
Descent on Sigmoidal Steepness, Proceedings of the
5th IEEE/WSES 2001 International Conference on
Circuits, Systems, Communications and Computers,
pp. 4561-6, Crete, Greece, July.

[6] LEUNG W.K., 2001, Solving Application Problems
involving Large Real Type Data Sets by Single
Layered Backpropagation Networks, Proceedings of
the 5th IEEE/WSES 2001 International Conference on
Circuits, Systems, Communications and Computers,
pp. 4551-6, Crete, Greece, July.

[7] LEUNG W.K., 2001, On the Complexity of
Backpropagation with Momentum and Gradient
Descent on Steepness, Proceedings of the WSES 2001
International Conference on Neural Network and
Applications, pp. 4811-6, Tenerife, Spain, February.

[8] MEHRA P., and WAH B.W. 1992, Artificial Neural
Networks: Concepts and Theory, IEEE Computer
Society Press.

[9] LAWRENCES J. 1996, Correctness, Efficiency,
Extendibility and Maintainability in Neural Network
Simulation, Available From
:www.neci.nj.nec.com/homepages/lawrence.

[10] RUMELHART D.E., HINTON G.E., and
WILLIAMS R.J. 1986, Learning Representations by
BackPropagating Errors, Nature Vol. 323, pp. 533-536,
October.

Problem Number of Train Cys. Total Sq. Errors CPU Time (Second)
 Mean Confidence Mean Confidence Mean Confidence

4-bit Encoding
8-bit Encoding
10-bit Encoding

15 ± 3
70 ± 7

120 ± 7

15 ± 2
70 ± 3

120 ± 3

0.10 ± 0.02
0.04 ± 0.02
0.05 ± 0.06

0.10 ± 0.01
0.04 ± 0.01
0.05 ± 0.03

6.39 ± 0.24
8.81 ± 1.11

11.74 ± 0.62

6.39 ± 0.09
8.81 ± 0.40

11.74 ± 0.23

2-bit Parity
3-bit Parity
4-bit Parity

60 ± 8
360 ± 11

1090 ± 14

60 ± 3
360 ± 4

1090 ± 6

0.15 ± 0.03
0.012 ± 0.004
0.013 ± 0.004

0.15 ± 0.02
0.012 ± 0.002
0.013 ± 0.002

7.41 ± 0.82
52.10 ± 4.60

150.87 ± 7.55

7.41 ± 0.30
52.10 ± 1.65

150.87 ± 2.71

Binary Addition 500 ± 13 500 ± 5 0.015 ± 0.003 0.015 ± 0.002 149.90 ± 16.07 149.90 ± 5.76

Symmetry 170 ± 7 170 ± 3 0.154 ± 0.009 0.154 ± 0.004 77.50 ± 5.90 77.50 ± 2.12

Proben1 - Glass 1000 ± 48 1000 ± 18 171.48 ± 9.10 171.48 ± 3.26
Training Errors 0.069 ± 0.006 0.069 ± 0.003
Validation Errors 0.073 ± 0.008 0.073 ± 0.003
Test Errors 0.087 ± 0.006 0.087 ± 0.003

Proben1 - Cancer 50 ± 5 50 ± 2 60.17 ± 2.36 60.17 ± 0.85
Training Errors 0.019 ± 0.004 0.069 ± 0.002
Validation Errors 0.023 ± 0.005 0.023 ± 0.002
Test Errors 0.031 ± 0.006 0.031 ± 0.003

Proben1 - Diabetes 2000 ± 13 2000 ± 5 249.38 ± 9.28 249.38 ± 3.33
Training Errors 0.022 ± 0.003 0.022 ± 0.002
Validation Errors 0.024 ± 0.004 0.024 ± 0.002
Test Errors 0.031 ± 0.004 0.031 ± 0.002

Table 3 Empirical Simulation Results

