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Abstract: - Backpropagation and its variants have been studied by a number of researchers.  However, most of the 
researchers have experienced difficulties in deciding the appropriate numbers of hidden units and training cycles to 
solve a specific application.  In most cases, these quantities are determined empirically.  In addition, no detailed 
study has been made in generalising the empirical results for each type of application problems.  With the 
generalised results, it is possible that the upper bound values of the numbers of hidden units and training cycles 
required to solve a specific type of application can be predicted mathematically.  This paper attempts to summarise 
and generalise all the theoretical and experimental results obtained in the previous studies by Leung et al 
[1,2,3,4,5,6,7] with a view to devising a mathematical approach in predicting the numbers of hidden units and 
training cycles required to solve a variety types of application problems. 
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1. Introduction 
Since their invention in the mid 1940's, Artificial 
Neural Networks (ANNs) have been developed and 
applied in a number of areas including speech and 
image recognition.  The literature in ANNs is scattered 
over a vast number of publications spanning various 
unrelated domains.  The diversity of these sources 
makes it difficult for inexperienced neural network 
users to learn about ANNs and for researchers to keep 
pace with current developments.  The former users, 
overwhelmed by the sheer volume of recent papers, 
are unfamiliar with ANN terminology and certain 
commonly used concepts [8].  Consequently, it is 
difficult to get a complete picture of ANNs and to 
combine and apply results from diverse sources to 
practical problems.  Lawrences [9] reported that 85% 
of neural network researchers produce their own 
software, much of which is either unavailable to the 
rest of the research community or is not modifiable for 
similar research. 
 
In addition, difficulties in implementing such systems 
in a well specified and computationally measurable 
manner have restrained research in this area for years.  
However, the advancements in technology such as the 

exponential increase in computer hardware power, has 
resurrected interests in this field in the last decade.  
One major discovery is the backpropagation of errors 
training algorithm (BPA) [10] which was applied to 
Multi Layer Perceptrons (MLP's). 
 
Due to the lack of applicable measurements, no 
comprehensive analysis has been carried out on the 
quality characteristics (e.g. efficiency and algorithmic 
complexity) of any backpropagation based network 
system simulated on a conventional computer.  This is 
also true for variants of MLP.  Hence, users of such 
systems with little or no specialist expertise in this area 
do not generally know how efficient the MLP 
performs nor how complicated the training process is 
for solving a specific application problem.  In addition, 
the construction of the actual training programs using a 
programming language applicable to ANNs has rarely 
been presented.  Therefore, it is difficult to acquire and 
compare implementation details based on the 
published work of each researcher.  Furthermore, 
researchers sometimes use minor variations on the 
published algorithms without making it clear what the 
variations are and why they were necessary. 
 



The main difficulty experienced by most researchers 
and users is the decision of choosing the appropriate 
numbers of hidden units and training cycles to solve a 
specific application.  Most studies do not attempt to 
generalise the results for each type of problem, e.g. the 
average algorithmic complexity of the N-bit encoding 
problem and the number of hidden units and training 
cycles required to solve the problem.  By knowing the 
generalised algorithmic complexity of a specific type 
of application problem, it is possible that the upper 
bound values of the numbers of hidden units and 
training cycles required to solve the same type of 
problem can be predicted mathematically. 
 
This study is based on the work conducted by Leung et 
al [1] who proposed and defined the set of Neural 
Metrics to measure the quality characteristics (e.g. 
efficiency and complexity) of neural networks.  
Firstly, all neural metric functions as defined in 
[1,3,4,7] are generalised so that a single generic set of 
neural metric functions can be used to compute the 
algorithmic complexity of a specific problem whether 
it is being solved by the standard BPA or its variants.  
Secondly, the algorithmic complexity of each type of 
problem addressed in [4,6] is generalised so that a 
prediction on the upper bound values of some of the 
neural metrics (e.g. the numbers of hidden units and 
training cycles which would normally need to be 
determined empirically) can be made on the same type 

of problem.  Finally, the operational requirements in 
terms of CPU time required to solve each type of 
problem are also summarised. 
 
 
2. Generic Neural Metric Functions 
In [1,3,4,7], several neural metric functions have been 
defined in the analysis of the backpropagation based 
training algorithms.  These are the proposed computed 
metrics, ACT, ADD, MUL and TOT which show the 
number of activation calls, additions, multiplications 
and total operations respectively required by the 
network system to solve the given problem 
successfully.  They can be calculated (using formulae 
1 to 6 below) to provide quantitative measures of the 
efficiency of the network system and the algorithmic 
complexity of a specific benchmark problem when 
being solved by backpropagation. 
 
There are essentially two distinct types of neural 
metric functions, one for continuous and the other for 
periodic weight update.  Depending on the type of 
optimisation techniques being used during the training 
process, the definition of a metric function may vary 
further.  By generalising the results obtained in 
[1,3,4,6,7], a set of the generic neural metric functions 
for continuous weight update can be defined as 
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and for periodic weight update as 
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Constant Standard BPA BPA + Momentum BPSA 

k 0  1 1 2 
k1  2 3 2 
k2  1 1 2 
k3  2 3 1 
k 4  1 1 3 
k5  3 4 3 
k 6  2 2 5 
k 7  1 2 1 
k8  3 2 3 
k 9  2 1 4 
k10  1 1 5 
k11  2 2 1 
k12  5 7 1 
k13  2 2 1 
k14  5 7 5 
k15  4 4 7 
k16  1 1 2 
k17  1 2 1 
k18  0 0 -1 
k19  1 2 1 
k20  2 1 2 
k21  0 0 1 
k22  1 1 3 
k23  3 4 3 
k24  2 2 5 
k25  1 2 1 
k26  3 2 3 
k27  1 1 4 
k28  2 2 5 
k29  4 6 4 
k30  3 3 5 
k31  4 6 4 
k32  5 5 7 
k33  0 0 1 

 
Table 1  Constant Values in Generic Neural Metric Functions 

 
where kn  (n = 0, 1, 2, ..., 33) are constants whose 
values depend on the type of optimisation being used 
in the training process, n[s] is the number of units in 
layer s, M is the number of training cycles and P is 

the number of input patterns.  Table 1 shows the 
values of constants kn  for the cases of standard BPA 
(where no optimisation techniques are used), BPA 
with the momentum term (where the momentum term 



is used to optimise the training process), and BPSA 
(where optimisation is made through the gradient 
descent of the sigmoidal steepness variable [2,5]). 
 
 
3. Predicting the Numbers of Hidden 

Units and Training Cycles 
It has been suggested and shown in [1,3,7] that most 
problems being solved by a backpropagation based 
algorithm have the average algorithmic complexity 
function O(Nk) where N is the number of connection 
weights in the network and k is an integer constant ∈ 
(3,5).  This means each such problem has a 
polynomial-bound solution and thus belongs to the 
class of feasible problems.  The average algorithmic 
complexity for each type of problem addressed in 
this study is generalised and shown in Table 2.  It can 
be seen that each type of problem has the same order 
of algorithmic complexity.  For example, the 
Encoding problem is O(N3) whether it is 4-bit, 8-bit 
or 10-bit.  Suggested values of N obtained through 
this study for each problem are also shown in Table 
2.   The value of N is dependent on the number of 
units on each layer of the network, i.e. 
 

N = n[2]*(n[1] + n[3])   (9) 
 

where n[1], n[2] and n[3] are the number of units on 
the input, hidden and output layers respectively.  The 
values for n[1] and n[3] are normally given from the 
problem but that for n[2] needs to be determined 
empirically.  The results obtained in [4,6] show that 
 

n[2] ⊆ P    (10) 
 

for P input patterns used in training the network 
(Table 2).  Since P is a known value, the order of 
magnitude of n[2] can be predicted by formula (10). 
 
Once n[2] is determined, the value of N can be 
obtained from formula (9).  As defined in [1], the 
algorithmic complexity of a problem is the product of 
P, M and N, i.e. 
 
 PMN ⊆ O(Nk)    (11) 
 
where the number of training cycles M required to 
train the network is another quantity that needs to be 

determined experimentally.  However since P is 
given, N can be obtained from formula (9), and k is 
constant for the same type of problem, the value of 
M can be predicted by formula (11). 
 
For example, to predict the upper bounds of the 
numbers of hidden units and training cycles required 
in the training of the 6-bit Encoding problem (which 
was not covered in the Table 2), the following 
calculations are taken 
 
1. the values of P, n[1] and n[3] are all given as 6. 
 
2. using formula (10), the upper bound value of n[2] 

is therefore 6. 
 
3. the upper bound value of N = 6*(6 + 6) = 72 as 

from formula (9). 
 
4. the upper bound value of M = Nk / PN = Nk-1 / P 

= 72 3-1 / 6 = 722 / 6 = 864 as from formula (11) 
where k = 3 for Encoding type of problem (Table 
2). 

 
This means a maximum of 6 hidden units and 864 
training cycles are sufficient to solve the 6-bit 
Encoding problem. 
 
Table 2 can serve as a general reference for the 
average algorithmic complexity involved in solving a 
particular type of problem.  It also provides a 
categorisation of the average algorithmic 
complexities for all types of problems addressed in 
this study.  For instance, both the Parity and Binary 
Addition problems belong to the same category since 
they have the same order of magnitude of algorithmic 
complexity.  The same is true for the Symmetry and 
Diabetes problems.  In addition, the value of N in the 
table also indicates the size of the network required 
for each problem.  For example, the size of the 
network required for the 2-Spirals problem (which 
has N ≥ 270 weights) is much larger than that 
required for the Symmetry problem (which has N = 
20 weights) even though they have the same order of 
magnitude of algorithmic complexity. 
 
 
4. Empirical Results on Application 

Problems 



In addition to evaluating the values of neural metrics 
for each application problem, this study also 
evaluated the operational requirement in terms of 
CPU time taken for each problem.  Since the amount 

of CPU time required to solve a specific problem is 
machine dependent (e.g. a Pentium II PC with 120 
MHz and 16 MB RAM was used in this research), it 
was not included in [1,3] as one of the neural metrics.

 
Type of Problem Average 

Algorithmic 
Complexity 

Number of Weights N Number of 
Input 
Patterns P 

Number of 
Hidden 
Units n[2] 

    
Encoding O(N3) 24 for 4-bit Encoding 

80 for 8-bit Encoding 
120 for 10-bit Encoding 

4 
8 

10 

3 
5 
6

    
Parity O(N4) 15 for 2-bit Parity 

28 for 3-bit Parity 
50 for 4-bit Parity 

4 
8 

16 

5 
7 

10
    
Binary Addition O(N4) 42 for 2-bit Binary 

Addition 
16 6

    
Symmetry O(N5) 20 for 4-bit Symmetry 16 4
    
2-Spirals O(N5) greater than 270 194 90
    
Proben1 - Glass O(N4) 150 107 10
    
Proben1 - Cancer O(N4) 55 350 5
    
Proben1 - Diabetes O(N5) 90 384 9

 
Table 2  Average Algorithmic Complexities of Problems 

 
Table 3 shows the CPU requirement for each type of 
problems.  It can be seen that the value is directly 
proportional to the number of training cycles required 
to train the network for each type of problems.  Table 
3 also shows the values of total squared errors where 
convergence takes place.  For problems (such as 
those collected in Proben1) with large training data 
sets, three types of squared errors were measured to 
evaluate the generalisation performance of the 
network.  These are Training, Validation and Test 
errors.  In general, the Test error is higher than the 
Training error as the training process takes place.  
The Validation error provides the actual error 
measurement for the network. 
 
5. Conclusion 
The objective of this study, which attempts to predict 
the upper bound values of the numbers of hidden 

units and training cycles required to solve a variety 
types of application problems, has been achieved.  
By obtaining such upper bound values, users do not 
have to spend considerable time and effort to 
determined empirically the numbers of hidden units 
and training cycles for the same type of problem.  It 
is also believed that the summarised and generalised 
results presented in this study may provide users with 
enhanced knowledge in the average algorithmic 
complexity and run time requirement (e.g. CPU time) 
for each type of application problem addressed. 
 
References: 
[1] LEUNG W.K. and WINFIELD M., 2000, A 

Complexity Analysis of the Backpropagation 
Algorithm, Proceedings of the WSES 2000 
International Conference on Applied and Theoretical 
Mathematics, pp. 2441-6, Athens, Greece, December. 



[2] LEUNG W.K. and WINFIELD M., 2000, 
Implementing Backpropagation with Momentum, 
Periodic Weight Update and Gradient Descent on 
Steepness, Proceedings of the WSES 2000 
International Conference on Applied and Theoretical 
Mathematics, pp. 2431-6, Athens, Greece, December. 

[3] LEUNG W.K. and SIMPSON R., 2000, Neural 
Metrics - Software Metrics in Artificial Neural 
Networks, Proceedings of the KES 2000 International 
Conference of the Knowledge Base Engineering 
Systems, Vol 1, pp. 209-12, Brighton, UK, August. 

[4] LEUNG W.K., 2001, An Empirical Study of Software 
Metrics in Artificial Neural Networks, Proceedings of 
the 5th IEEE/WSES 2001 International Conference on 
Circuits, Systems, Communications and Computers, 
pp. 4541-6, Crete, Greece, July. 

[5] LEUNG W.K., 2001, The Performance of 
Backpropagation Networks which use Gradient 
Descent on Sigmoidal Steepness, Proceedings of the 
5th IEEE/WSES 2001 International Conference on 
Circuits, Systems, Communications and Computers, 
pp. 4561-6, Crete, Greece, July. 

[6] LEUNG W.K., 2001, Solving Application Problems 
involving Large Real Type Data Sets by Single 
Layered Backpropagation Networks, Proceedings of 
the 5th IEEE/WSES 2001 International Conference on 
Circuits, Systems, Communications and Computers, 
pp. 4551-6, Crete, Greece, July. 

[7] LEUNG W.K., 2001, On the Complexity of 
Backpropagation with Momentum and Gradient 
Descent on Steepness, Proceedings of the WSES 2001 
International Conference on Neural Network and 
Applications, pp. 4811-6, Tenerife, Spain, February. 

[8] MEHRA P., and WAH B.W. 1992, Artificial Neural 
Networks: Concepts and Theory, IEEE Computer 
Society Press. 

[9] LAWRENCES J. 1996, Correctness, Efficiency, 
Extendibility and Maintainability in Neural Network 
Simulation, Available From 
:www.neci.nj.nec.com/homepages/lawrence. 

[10] RUMELHART D.E., HINTON G.E., and 
WILLIAMS R.J. 1986, Learning Representations by 
BackPropagating Errors, Nature Vol. 323, pp. 533-536, 
October. 

 
Problem Number of Train Cys. Total Sq. Errors CPU Time (Second) 
 Mean Confidence Mean Confidence Mean Confidence 
   
4-bit Encoding 
8-bit Encoding 
10-bit Encoding 

15 ± 3 
70 ± 7 

120 ± 7 

15 ± 2 
70 ± 3 

120 ± 3 

0.10 ± 0.02 
0.04 ± 0.02 
0.05 ± 0.06 

0.10 ± 0.01 
0.04 ± 0.01 
0.05 ± 0.03 

6.39 ± 0.24 
8.81 ± 1.11 

11.74 ± 0.62 

6.39 ± 0.09 
8.81 ± 0.40 

11.74 ± 0.23 
   
2-bit Parity 
3-bit Parity 
4-bit Parity 

60 ± 8 
360 ± 11 

1090 ± 14 

60 ± 3 
360 ± 4 

1090 ± 6 

0.15 ± 0.03 
0.012 ± 0.004 
0.013 ± 0.004 

0.15 ± 0.02 
0.012 ± 0.002 
0.013 ± 0.002 

7.41 ± 0.82 
52.10 ± 4.60 

150.87 ± 7.55 

7.41 ± 0.30 
52.10 ± 1.65 

150.87 ± 2.71 
   
Binary Addition 500 ± 13 500 ± 5 0.015 ± 0.003 0.015 ± 0.002 149.90 ± 16.07 149.90 ± 5.76 
   
Symmetry 170 ± 7 170 ± 3 0.154 ± 0.009 0.154 ± 0.004 77.50 ± 5.90 77.50 ± 2.12 
   
Proben1 - Glass 1000 ± 48 1000 ± 18 171.48 ± 9.10 171.48 ± 3.26 
Training Errors  0.069 ± 0.006 0.069 ± 0.003  
Validation Errors  0.073 ± 0.008 0.073 ± 0.003  
Test Errors  0.087 ± 0.006 0.087 ± 0.003  
   
Proben1 - Cancer 50 ± 5 50 ± 2 60.17 ± 2.36 60.17 ± 0.85 
Training Errors  0.019 ± 0.004 0.069 ± 0.002  
Validation Errors  0.023 ± 0.005 0.023 ± 0.002  
Test Errors  0.031 ± 0.006 0.031 ± 0.003  
   
Proben1 - Diabetes 2000 ± 13 2000 ± 5 249.38 ± 9.28 249.38 ± 3.33 
Training Errors  0.022 ± 0.003 0.022 ± 0.002  
Validation Errors  0.024 ± 0.004 0.024 ± 0.002  
Test Errors  0.031 ± 0.004 0.031 ± 0.002  
   

 
Table 3  Empirical Simulation Results 


