
Application-Aware Resource Allocation in General Purpose Operating
System

SHRUTI MEHTA

School of Electrical Engineering and Computer Science
Center for Innovation in Technology for Learning

BHAVIN MEHTA
Department of Mechanical Engineering

Ohio University, Athens, Ohio 45701, USA

Abstract
The Real-Time (RT) class on the Solaris operating system was evaluated to study the feasibility and effects of
change in priority and time quantum within an RT class for competing processes. Several experiments were
conducted and the results will be compared and discussed in the paper. The application of real-time process
control will be discussed in context of a virtual manufacturing environment and e-Commerce infrastructure.

Key-Words: Resource Allocation, Virtual Manufacturing, Real-time Priority, eCommerce, Real-time
Class, Time Quantum

1 Introduction
To meet the service demands created by the
Internet's exponential growth, operators are
scrambling to deploy application-level services,
including Web caches, commerce servers, and
intelligent transformation proxies for mobile thin
clients and other Web Services. On one hand, the
Internet's growth rate places unprecedented
scalability and robustness demands on these
services; on the other hand, that same growth rate
demands that new services be developed, deployed,
and evolved. Coping with this uncertainty requires
the ability to retrieve and present data at varying
degrees of fidelity without compromising the
quality of service. In this paper we present
application-aware adaptation using real-time
priorities and process control as a solution to this
problem. The real-time class on a general-purpose
operating system, like Solaris, will be evaluated by
running experiments with different priorities and
time-quanta for competing processes and comparing
their results. The results will be beneficial in
understanding the performance of the real-time
priorities and time-quanta for several competing
applications running on a server. For example, to

design and develop a new product in a Virtual
Manufacturing environment there are several
material processes like Extrusion, Rolling, Forging,
Casting, Machining etc., which have to be analyzed.
The simulation time varies by process and product
complexity. Depending on the product, some
processes might be connected and the
simulation/analysis has to be performed in a
particular order. Resource allocation on the server is
very important to obtain optimum performance and
attain new product development in a timely and cost
effective fashion. The essence of our solution is first
step in a collaborative partnership between
applications and the operating system. This can be
achieved by monitoring the level and quality of
resources and by informing applications about any
relevant changes in their environment and
scheduling them according to their priority and
process time requirements. Environmental changes
include memory allocation, CPU usage, priority,
time-quanta and even the server it-self in a
distributed environment. Applications must be
agile, that is able to receive events in an
asynchronous manner and react appropriately.
There is a need for a central point for managing

mailto:mehtas@ohio.edu
http://www.ent.ohiou.edu/~smehta
mailto:mehta@ohiou.edu
http://www.ent.ohiou.edu/~mehta

resources and authorizing any application initiated
request for their use.

2 Motivation
An International Data Corporation (IDC) survey on
application availability showed that the application
downtime is caused by four main reasons:

Table 1: Survey Results
% Of Downtime Reason
44.6% Systems Failure
28.5% Application Failure
18.2% Network Outage
8.7% Administration

Addressing a single component of the environment
is not going to help ensure ones application service
level. One needs to address all of the Network,
Application and System components. As seen from
the table 1, system level failure is the major
contributing factor in the application downtime and
thus becomes a critical variable, which is being
considered in this research.

One needs to ensure optimum uptime, availability,
and performance of the entire virtual manufacturing
or e-business application environment: network,
systems, and applications for any integrated system.
We need to provide solutions that actively monitor,
control, and assure service levels of applications
with timeliness and cost effective solution. By
combining service level monitoring with service
level control, one can take real-time, automated
control of the various components of the
simulations in the Virtual Manufacturing
environment or e-business infrastructure. Multi-tier
intelligence and control are essential at the
application and system layers because they monitor
the availability and performance of mission-critical
components.

A real-time resource manager is one in which the
requirements for correct operation and efficient
service include timeliness of simulations or order
processing in the virtual manufacturing or e-
Commerce applications. Typically, the timeliness
requirement is expressed as a constraint or a
deadline on the execution of processing activity.
The processing activity may be static or dynamic. A
static real-time server has a constant or bounded
processing demand, whereas a dynamic real-time
server does not. To meet real-time deadlines, it is

important to insure that sufficient processing
resources are allocated to the application. Two
approaches for resource allocation are possible.
With the static allocation approach, the allocation of
resources never changes after system design. While
this approach has the advantage of being supported
by well-established engineering methods and tools,
it is inflexible and thus it is not ideal for dynamic
real-time systems. Dynamic allocation approaches
adjust the allocation of computing resources as the
processing demands of the real-time application
change.

3 Background
The Time-Share (TS) class on general purpose Unix
operating system is designed to maximize the
system throughput in a multi-user, time-sharing
environment, which meant lowering the priorities of
resource intensive jobs automatically. This can be a
problem with applications like simulations in virtual
manufacturing and eCommerce were timeliness is
important for different application connectivity. The
scheduler for those application designs needs a firm
control of the execution priority of selected
processes. The operating system controls the
scheduling of priorities within the TS class. In
contrast to that, the Real-time (RT) class allows
user controllable scheduling of priorities and time
quanta. This is ideal for systems developing and
deploying real-time applications. The demand for
real-time systems that can effectively operate within
dynamic environments is increasing in many
applications. The RT class on the Solaris system
was evaluated to study the feasibility and effects of
change in priority and time quantum within an RT
class for competing processes. The real-time
capabilities in the Solaris Operating Environment
are derived from the fundamental capabilities of its
innovative architecture, including a fully
preemptable multithreaded kernel, priority-based
scheduler, and precision timers and clocks.
Together, these and other features assure bounded
response time and enable a wealth of real-time
application possibilities.

3.1 Solaris Scheduler
Solaris kernel implements multiple scheduling
classes, where each class has a defined range of
priorities. There are four types of classifications that
can be used when managing the scheduling
priorities of a process or set of processes. These
classes are the real-time (RT), System (SYS),
Interactive (IA) and Time-Share (TS). RT (priority

100-159) class threads provide support for
applications that require minimal dispatch latency.
RT class threads are the highest priority threads on
a Solaris system, with the exception of interrupt
threads, and they implement a fixed-priority
scheme.

The different scheduling classes may implement a
dispatch table for defining time quantum at a given
priority level. From Figure 1, one can see that there
are two ways to view priorities: the global priority,
which is a unique priority across all loaded
scheduling classes, and a per-class range of
priorities (TS/IA priorities range from 0 to 59, SYS
priorities range from 0 to 39, etc.). If the RT class is
loaded, RT priority 0 corresponds to global priority
100. In Solaris, the higher the number, the higher is
the priority. If RT class is configured on the system,
any running real-time process should obtain the
services of the CPU before a process that belongs to
another class. Solaris implements a queue of
queues, in which each CPU has a set of queues, one
queue for every priority. Each priority value that is
configured into the system has a separate
scheduling queue that the system’s process
scheduler manages. Processes with the same
priority value share the same scheduling queue or in
other words, every thread at a given priority is
placed on a linked list in a processor’s queue.

Fig. 1 Scheduling classes

An RT thread runs until it completes, voluntarily
sleeps (issues a blocking system call), or is
preempted due to a higher priority thread. The
priocntl(1) command works with RT class threads
and manages scheduling properties of process. In
the RT class the global priorities ranges are from 0
to 59. priocntl(1) can be used to change the priority
of an RT class thread, or alter the allotted time
quantum. The time quantum value determines the
maximum time that a running process, which has
not entered a resource or event wait state (sleep),

may run. Note that regardless of the time quantum
specified, if another process at a higher priority
makes a request to run, a running process may be
preempted before receiving its full time quantum. A
process that is preempted by a higher priority
process remains first its scheduling queue with the
remainder of its specified time quantum still
available. In order to change the priority or time
quantum setting of a real-time process the process
invoking the priocntl function must have super user
privileges or must itself be a real-time process
whose real or effective user ID matches the real or
effective user ID of the target process. The real-time
priority and time quantum are inherited. The table 2
shows the experimental runs to demonstrate the
effect of change in priority and time quantum for
two competing processes within the RT class.

Table 2: Experimental setup

3.2 Virtual Manufacturing Environment
The main objective of this research is to create a
virtual manufacturing environment for the Internet
that would allow users around the world to design
dies and molds and analyze the flow of material
inside the dies or forming processes like Extrusion,
Rolling, Forging, Casting, machining and Sheet
Metal Forming.

• Creation of a Web interfaces to bring together
all the die design and analysis modules

• Creation of an AI shell for selecting an
appropriate manufacturing process

• Addition of a drafting tool on the WWW for
product geometry input

• Implementation of the Extrusion Process
(STREAM, & SHEAR) on the WWW and
addition of a feeder plate module in SHEAR

• Implementation of the Drawing die design
package on the web

• Implementation of Rolling (profile and ring) on
the web

• Implementation of Forging Process on the web
• Design of Casting and Sheet Metal forming

Processes on the web (Future)

The research is part of the Virtual Material
Processing (VMP) project underway at Ohio
University (OU). The primary objective of this
project was to develop a methodology and
software that will use Artificial Intelligence (AI),
Simulation and Modeling coupled with VR
(virtual reality concepts) for the automated
design, analysis and visualization of various
material forming processes. The environment is
designed to be platform independent and
accessible over the World Wide Web (WWW).
The objective is to recommend a suitable
manufacturing process for achieving the final
product shape by providing the user the option
of designing the appropriate dies and molds, and
then carrying out the analysis using Slab
method, Upper-Bound or Finite Element method
and visualizing the manufacturing process in an
immersive and interactive environment. The user
can get full control of the process using a haptic
(feedback) control and head mounted display
(HMD), with an option to modify the process as
it proceeds (under development). The researcher
can evaluate competing processes and also learn
about forming processes through the web-based
tutorials and training material. It is an ideal tool
for research, experimentation and training. Tools
like Java, CGM, VRML, and other tool-kits
were used to develop the interfaces and
programs to run under Netscape and Internet
Explorer. The programs/packages for die design,
slab and upper bound solutions for flow analysis
and material selection, developed in-house, are
being used to support the real-time virtual
material processing environment. The
environment is fully distributed and can be
accessed from anywhere in the world using the
Internet. The user accesses the VMP system

using a web browser on their desktop, provides
the necessary data which is send to the web
server, which in-turn sends it to the appropriate
solver on the Silicon Graphics machine, Sun
Server, or the Supercomputer. The graphical and
numerical results are displayed on the user’s
desktop/browser. The user has the choice of
saving the data in the database and/or
downloading it for further analysis, report
generation and confidentiality. Resource
management tools will be very beneficial in
optimally executing the simulation modules
with-in the virtual manufacturing environment
and dynamically updating the priorities, and
time-quanta of the analysis process when
required. Just like express mail, the user could
request a fast analysis at a higher cost; the
resource management module would then
allocate a higher priority and a larger time-
quantum and/or change the priority class to
accommodate the express analysis request.

4 Test-bed Configuration
The experiments were conducted using single
processor Sun Ultra 10 workstation. The
workstation was running Solaris 8 Operating
System

Two identical programs, P1 and P2, were developed
as competing processes. Each program had one
outer loop were the counter was set to max integer.
Within the loop the statements were designed to be
CPU intensive. The timestamp was recorded in an
array within the loop using the gettimeofday()
function. The timestamp array was printed out to a
file at the end of the program, outside the loop; to
eliminate any I/O related premature swapping of the
processes. The timestamp was used to determine the
swapping between the two competing processes, P1
and P2. The controller program that was running at
the higher priority than two applications was
changing the RT priority and time quantum

5 Observations
The above experiments showed that it is possible to
change/control the priority and time quantum of
competing processes in the Real-time class. A
process with higher priority executes before the
process with lower priority, even if the time quanta
for the lower priority process has not expired and
was submitted earlier. Two processes with the same
priority run for their allocated time quantum in the

order of execution. The priority and time quanta
along with memory allocation and CPU time can be
implemented with-in a virtual manufacturing
environment. Depending on the type of analysis, the
complexity of the product design and the
priority/timeliness of the application, the simulation
can be placed in a real-time class and the allocated
time-quanta can be increased or decreased.

Fig 2 Experiment 1

Fig. 3 Experiment 2

Fig. 4 Experiment 3

Fig. 5 Experiment 4

Fig. 6 Experiment 5

Fig. 7 Experiment 6

Figures 2-7 show the results of the experiments.
Timestamp vs loop counter were plotted to illustrate
the dynamic change in priorities and Time-Quanta
(TQ). The steps in the graphs indicate swapping of
process as time-quanta expires. In experiment 1, the
two processes were started at same priority and
default time quantum of 600ms. One can see from
figure 1 there was process swapping at every 600

ms. In all the cases the 1st process gets double the
time-quantum, which should be taken into account
when developing the scheduler. In experiment 2 the
TQ was reduced to 100ms and one can see from
figure 3 that the swapping is more frequent. In
experiment 3 p2 has a higher priority than p1 so p2
runs till completion and then p1 starts. In
experiment 4, 5 and 6 the priority is same but the
TQ is different. The intersection in figure 6 is
because p1 was started first but p2 has a higher TQ.
In figure 7, p1 has a very small TQ and thus the
swapping is frequent till p2 is complete after which
p1 gets all the process time.

6 Concluding Remarks

This paper presents preliminary experimental
results of variation in priority and time-quantum
with-in real-time scheduling class for two
competing processes in a general purpose Solaris
operating system. As seen from the observations,
the RT class allocates double time-quantum for the
first process in the first instance, which has to be
accounted for. The results also indicate that
changing priority and time-quanta can be
accomplished dynamically and does effect the
swapping of processes. In future work we plan to
study the effectiveness of our approach within the
virtual manufacturing environment and eCommerce
applications and extending this approach to other
operating systems like windows 2000, Linux etc.

References:

[1] D. A. Lawrence, J. Guan, S. Mehta & L.

R.Welch, Adaptive scheduling via feedback
control for dynamic real-time systems, The 20th
IEEE international performance, computing
and communications conference (IPCCC 2001),
Phoenix, April 2001.

[2] Y. Zhou, L. R. Welch, E. Huh, C. Cavanaugh,
C. Alexander, D. A. Lawrence, S. Mehta,
Important Considerations for Execution time
Analysis of Dynamic, Periodic Processes,
International Parallel & Distributed Processing
Symposium, San Francisco, April 2001.

[3] B. V. Mehta, R. Banga, J. Gunasekera, Virtual
Material Processing on the WWW: Cold
Rolling, 18th ASME International Computers in
Engineering Conference, Las Vegas, Nevada,
Sept. 12-16, 1999.

[4] B. V. Mehta, CyberForm: Web-based Material
Processing--Demo, Proceedings of IPMM 2001,
Vancouver, BC, Canada, July 2001.

[5] B. V. Mehta, Web-based and Distributed
Material Processing, Proceedings of the 7th
International Conference on High Performance
Computing, Bangalore, India, Dec. 2000.

[6] B. V. Mehta, J. S. Gunasekera, S. Shivananda,
Virtual Material Processing (VMP) on the
WEB: Extrusion Die Design, Journal of
Manufacturing Systems, Vol. 29, No. 3, 1999.

[7] http://www.sun.com/

	1Introduction
	2Motivation
	3Background
	Table 2: Experimental setup
	3.2Virtual Manufacturing Environment
	
	
	5Observations
	6Concluding Remarks

