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Abstract: - In this paper, we solve numerically a ssmiconductor device energy balance equation
using monotone iterative method. With the proposed solution technique, we prove the solution
of nite volume discretized semiconductor device energy balance equation converges monotoni-
cally. The method presented here provides an ez cient approach for the numerical solution of e-
nergy balance equation in submicron semiconductor device simulation.
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I. Introduction

For large scale or long channel semiconductor de-
vices, the VLSI device design could be done with
an empirical design rule or using a trial and error
experimental approach, in past years. The de-
vice scale has been shrunk into deep submicron
or nano meter region recently [1], and has be-
come more diz cult to design or improve semicon-
ductor device characteristics with such straight-
forwardly strategies. Consequently, the develop-
ment of numerical device modeling and simula-
tion provides an ez cient way not only for device
optimal design but also insight into device physics
[2,3,4,5,6,7,8,09, 10, 11].

Semiconductor device simulation including en-
ergy balance equation has recently received great
interests for modeling nonlocal and hot car-
rier e®ects in submicron semiconductor devices
[2, 12, 13, 14, 15]. The energy balance equa-

tion is a nonlinear partial di®erential equation
(PDE), so its numerical dit culties, such as con-
vergence and stability have been discussed in
semiconductor device simulation [2, 13, 14, 15].
For example, to solve the energy balance equa-
tion, the rapid variation of electron tempera-
ture between mesh points leads to a signi -
cant dit culty in semiconductor device simula-
tion. Based on an assumption that the elec-
tron temperature Ty, varies linearly between mesh
points, a Scharfetter-Gummel liked discretization
scheme for the energy balance equation, so-called
Scharfetter-Gummel-Tang scheme was developed
in semiconductor hydrodynamic device simula-
tion. However, due to the electron temperature
model problem is a singular nonlinear boundary
value problem, the assumption of the Scharfetter-
Gummel-Tang scheme holds only for "ne mesh
arti cially. This leads to numerical stability and
convergence problem when solving the system



of nonlinear algebraic equations arising from the
discretization of energy balance equation.

In this paper, we propose a computational
e+ cient method for the numerical solution of
semiconductor device energy balance equation
using monotone iterative method [16, 17, 18].
This method for semiconductor device simula-
tions with nonlinear Poisson equation, drift dif-
fusion, and hydrodynamic models has been re-
ported in our earlier work [4, 5, 6, 7, 8, 9, 10, 11].
First of all, applying a physical based new state
variable ®, the energy balance equation can be
transformed into a self-adjoint form and then dis-
cretized using nite volume method [19, 20] with
avery ne nonuniform mesh. The discretized en-
ergy balance equation leads to a system of non-
linear algebraic equations with a diagonal dom-
inate property [19]. We solve the nonlinear sys-
tem by applying a monotone iterative method di-
rectly instead of Newton's iterative method. We
prove the solution sequence constructed from the
monotone iterative algorithm converges to the
unique solution of the system of nonlinear al-
gebraic equations monotonically. This solution
method converges monotonically and is highly
parallel.

We divide this study into two parts, Part | con-
cerns theoretical work. Practical implementation
algorithm and simulation results are described in
Part Il. This paper is organized as follows. Sec. 2
states semiconductor device energy balance equa-
tion. Sec. 3 shows the solution algorithm with
monotone iterative method. We prove the solu-
tion sequence converges to the unique solution
of the system of nonlinear algebraic equations
monotonically. Sec. 4 draws the conclusions and
suggests future works.

Il. A Numerical Energy Balance Model

In steady state, we consider here a two-
dimensional (2D) energy balance equation for
electrons as follows [1, 2, 12, 13, 14, 15]
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where - = (¢&; &) is the spatial gradient vector,
vy is the electron drift velocity, ! is the average
electron energy, q is the elementary charge, n is
the electron concentration, and E = j rA (A is
the electrostatic potential) is the electric “eld. In
addition, kg is the Boltzmann's constant, and the
electron temperature Ty is assumed to be a scalar
quantity here , Qp, is the heat °ux, and (%ﬂ)co”:
is the energy collision rate. For the hole, we have
a similar energy balance equation.

Gate
Source T Dran
| = |
n* n*
y z
X D
l
Subgtrate

Fig. 1. A 2D domain for a submicron
N-MOSFET device.

To proceed our derivation subsequently, we
brie°y state the used physical models and as-
sumptions [1, 2, 12, 13, 14, 15]: (a) the aver-
age electron energy ! is the sum of thermal en-
ergy $kgTn and kinetic (drift) £mpjvgj® energy
and m;, is the electron e®ective mass; (b) en-
ergy collision rate (%ﬂ)co”: can be represented
as i n(vi Yo)=¢1(Tn) physically, average electron
equilibrium thermal energy 1o is given by %kBTL,
where T is the lattice temperature. An en-
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ergy relaxation time model ¢y = ﬁ% +

ST is used in this work, where vgat: is the
electron saturation velocity, 1o is the electron
mobility at low electric “eld, and the 2nd term
on the right hand side of ¢1 is so-called the mo-

mentum relaxation time; (c) consider here the
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Weidmann-Franz physical model for semiconduc-
tor, we have heat °ow Qn = j -crTnh, Where
- ¢ = 2T k& n1,=q is the thermal conductivity for
electrons and 1, is the electron temperature de-
pendent mobility model; (d) we further assume
here the T,1, can be expressed a product of T_
and 15D where 1EP is an electric "eld E and
ionized carrier concentration D dependent mo-
bility model; and (e) the electron current density
can be written as J, = j gnvy directly.

With these physical models and assumptions
(a)-(e) above, it is evident we can write Eq. (1)
into this expression
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where T can be directly calculated and it is a non-
linear function, and the unknown to be solved is
Th. Eqg. (2) involves " rst order and second order
derivate for T, and the f is at least a nonlinear
function in Ty, so it is a strongly nonlinear PDE.
This leads to some dit culties in numerical solu-
tion, such as stability and convergence problems.

To apply monotone iterative method for the
numerical solution of Eq. (2) et ciently, we now
assume Boltzmann statistics [1] holds for the ap-
proximation of electron concentration and elec-
trostatic potential. With this physical observa-
tion, the Eqg. (2) can be transformed into a self-
adjoint form and hence has many advantanges in
the numerical solution of energy balance equa-
tion. By considering the exponential quasi Fermi
level approximation for electron concentration n
and a similar approximation for electron temper-
ature Tn [1, 15], we can further express Eq. (2)
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where T has new interpretation and it is a
monotone function with respect to ®, n and T,
are implicitly de ned by
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The u and ® in Eq. (4) can be uniquely de ned
here, and the value c is also followed. Eq. (3) is
an electron energy °ow continuity equation and
the unknown to be solved is ®, where the u and
other physical quanties can be solved from the so-
lution of Poisson equation and electron-hole cur-
rent continuity equations [4, 5, 6, 7, 8, 9, 10, 11].

As shown in Fig. 1, the boundary for electron
temperature T, is the Dirichlet type boundary
conditions at ohmic contact parts: source, drain,
and substrate. At S;j SiO, interface, left and
right hand sides, zero energy °ow is applied and it
leads to a homogeneous Neumann type boundary
condition for T,,. By the de nitionof ® in Eq. (4)
and boundary conditions for Tn, the boundary
conditions for ® are followd.

To solve Eq. (3), we note the required physical
quanties, such as A; n; E; J,; mobility, and re-
combination terms can be obtained from the nu-
merical solution of Poisson equation and electron-
hole current continuity equations.

Our monotone iterative method is applied to
solve the nonlinear algebraic system resulting
from the " nite volume discretization of Eq. (3).
We prove the computed solution with monotone
iterative method converges to the unique solution
of the equation monotonically.

I11. A Monotone lterative Solution
Technique

We state here a monotone iterative method for
“nite volume discretized energy balance equation
“rstly. The f(®; 6 is a monotone function in ®;
and we have following result directly.

Theorem 1 The nonlinear term f(®;9 in Eq.
(3) is a monotone function in ®, i.e., there exists
a positive constant cg; such that Mf@%”l Co; for
all ®:
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Remark 1 We note the applied bias at device
ohmic contact parts is nite, so all of the phys-
ical quanties are bounded functions in the device
simulation domain. Thus based on the physical
de nition above, ® is bounded function.



Proof. With Remark 1 and calculation for the
function, we have the results directly. &

We discertized nonlinear Eq. (3) with nite
volume method and approximate the integrations
with quadrature rule [19, 20]. The system of non-
linear algebraic equations for the equation is then
solved by the monotone iterative method. The
discretized system can be written as

i 2iji1Zigi 1 ®i 1jZii 1§ + »iZij (5)
i Yie1jZivng i 2ij+Zi+ = i F (i)

for all nodes (xj;y;j) in the device domain, where
zi:;j = z(Xi;yj) represents the approximated value
®j; of the function ® at (x;;y;) in Egs. (3).
The discretization coezx cients »i:j; »i+1:j; i 1;j;
»i;ji 1, and »;.j+1 are associated with the opera-
tors as well as its boundary conditions. Similarly,
F is associated with the nonlinear function ¥ and
boundary conditions. The coezx cients satisfy the
conditions:

»ij . O»ierj, O»ij15. 0
il 0; P+l . 0; (6)
Pij s s T i T

for all discretization index (i;j) in the device do-
main. We write now Eg. (5) as a compact system
of nonlinear algebraic equations,

AZ =i F(2): @)

Theorem 2 The system of nonlinear algebraic
equations (7) derived from energy balance equa-
tion (3) has at most a solution.

Remark 2 The matrix A in Eqg. (7) is an M-
matrix and smce f(z.J) > 0, F is uniformly

bounded and @%F(Zu) .

Proof. It is a direct result with the monotone
property of F(Z). For a given vector 2 =
(El;""m) the diagonal matrix D(Z) is de-
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Let Z! and Z2 be two solutiops of the system
(MandsetZ=2'j Z? Then A+D(®) Z =

0, for some vector 2. Since A is an M-matrix and
diagonal matrix D(Z) is nonnegative, A + D(®)
is an M -matrix [19]. Thus A+ D(2) is invertible
andZz=2%'i z2=0,ie,2' =21
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Fig. 2. An illustration of mesh pointsin xj y
plane for ~nite volume discretization.

The proposed monotone iterative scheme for
the nonlinear system are now written explicitly
in terms of nodal points (Xx;;y;) in the device
domain and the monotone iteration index m,

m = 0;1;:::. The abstract iterative scheme is
(m+1) _ U@ eI+ [T Mo
®|J N— O_(m) :
™ _ 5 @™ g ®)
>0 @®§m)-f(®|’J ,(D,

for all nodes (xj; y;j) in the device domain, where
A=Dj Lj U, D constructed from the o=
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and inentidy matrix is the diagonal matrix of A,
L and U are lower and upper matrices of A. The

value ®i(;T+l) is an approximation of the potential

function ® at the node (x;;y;) and LU(®(m)) is
the sum of the corresponding coezt cients (see Fig.
2) at m iteration. We further express above Eq.
as the following computational algorithm

(m+1)  _ 1 (m) (m)
Ziij - om i D+ 1iZier i 152 1
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for all nodes (Xx;;y;) in the device domain and for
all m.

Theorem 3 Let z( ) be an arbitrary solution se-
quence and z; be the solution of Eq. (5). Let

(m L
be a solution sequence of Eq. (9).

i m=1
Then z,(T) i zi";j asm ¥ A, forall (Xi;y;)

in the device domain.

Z;

Proof. The nodal values xed on boundary part
are uniquely determined by their associated val-
ues. We prove now the result for all interior nodes
of the device domain. De ne

~(m) _ _(m) . _o
i = Zij 1 Zijj
for all (xi;y;j) in the device domain. Since zj; is
the solution of Eq. (5), we have
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From Eqgs. (9) and (10) we derive
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Since f is increasing function, there exists a pos-
itive constant ¢y such that

( ) i f(Z|J)

- (m)
ij

. Co>0;

where the constant ¢y can be calculated in The-
orem 1. We calculate the estimation from Eq.
(11) and note the Eqg. (6), the following expres-
sion can be derived directly
o- (M+1)3 o o- (M3
i 1 ) i 1’
where the positive parameter © is given by
(m)

R +»i;ji Co
max( iJ J

(m) + i

)<1;

for all nodes (x;;y;) in the device domain. There-
fore,

o o o o
’(m+l)o . o o’(m)o
I_] 1 I_] 1o
o2 o'(ml l)o
IJ 1
¢e o o
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1) 1
(0

for all z;:;’ and nodes (X;;y;) in the whole device
domain, and the result follows. W

IVV. Conclusions

Based on monotone iterative technique, we have
presented a novel numerical solution method for
semiconductor device energy balance equation.
We further proved the solution sequences con-
verge to the solution of the nonlinear system
monotonically. This approach provided an al-
ternative in the numerical solution of electrons
and holes energy balance equations. Practical
implementation algorithm for the carrier tem-
perature calculation and simulation results are
given in Part Il. This method is inherently par-
allel and can be systematically extended to sim-
ulate, such as advanced semiconductor hydrody-
namic model and spherical harmonic expanded
Boltzmann transport equation.

References

[1] S. M. Sze, Physics of Semiconductor Devices,
2nd Ed., Wiley-Interscience, New York, 1981.



[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

P. Degond, A. Jungel, and P. Pietra, ""Numerical
Discretization of Energy-Transport Models for
Semiconductors with Nonparabolic Band Struc-
ture,” SIAM J. Sci. Comp., Vol. 22, No. 3,
2000, pp. 986-1007.

R. W. Dutton, A. J. Strojwas, "Perspectives
on Technology and Technology- Driven CAD.,"
IEEE Trans. CAD., Vol. 19, No. 2, 2000, pp.
1544-1560.

Y. Li, et al., "A new parallel adaptive nite
volume method for the numerical simulation of
semiconductor devices," accepted for publication
in Computer Physics Communications.

Y. Li, et al., "A Domain Partition Approach
to Parallel Adaptive Simulation of Dynamic
Threshold Voltage MOSFET," Abst. Book Con-
ference on Computational Physics 2001, Aachen,
2001, p. O38.

Y. Li, et al., "Monotone Iterative Method for
Parallel Numerical Solution of 3D Semiconduc-
tor Poisson Equation,"” in "Advances In Scien-
ti ¢ Computing, Computational Intelligence and
Applications™ Edited by N. Mastorakis, et al.,
World Scienti ¢ and Engineering Society Press
(WSES), July 2001, pp. 54-59.

Y. Li, et al., "Adaptive “nite volume simula-
tion of semiconductor devices on cluster architec-
ture,” in "Recent Advances in Applied and The-
oretical Mathematics" Edited by N. Mastorakis,
WSES Press, Dec. 2000, pp. 107-113.

Y. Li, et al., "An Implementation of Parallel Dy-
namic Load Balancing for Adaptive Computing
in VLSI Device Simulation,” IEEE 15th Proc.
Int. Parallel & Distributed Processing Sympo-
sium, San Francisco, 2001, pp. 702-707.

Y. Li, et al., "Parallel Dynamic Load Balanc-
ing for Semiconductor Device Simulations on a
Linux Cluster,” Tech. Proc. Fourth Inter.Conf.
Modeling and Simulation of Microsystem, South
Carolina, 2001, pp. 562-566.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Y. Li, et al., "Parallel Dynamic Partition and
Adaptive Computation in Semiconductor Device
Simulation,” Proc. 10th SIAM Conf. Paral-
lel Processing for Scienti ¢ Computing, Virginia,
2001, pp. 685-694.

Y. Li, et al, "A novel approach for the two-
dimensional simulation of submicron MOSFET"s
using monotone iterative method,”" IEEE Proc.
Inter. Symp. VLSI-TSA, Taipei, 1999, pp. 27-
30.

K. Blotekjaer, "Transport Equations for Elec-
trons in Two-Valley Semiconductors,” IEEE
Trans. Elec. Dev., Vol. 17, 1970, pp. 38-47.

T.-W. Tang, "Extension of the Scharfetter-
Gummel Algorithm to the Energy Balance Equa-
tion,”" IEEE Trans. Elec. Dev., Vol. 31, No. 12,
1984, pp. 1912-1914.

P. A. Markowich, C. A. Ringhofer, and C.
Schmeiser, Semiconductor Equations, Springer-
Verlag, New York, 1990.

J. W. Jerome, Analysis of Charge Transport: A
Mathematical Study of Semiconductor Devices,
Springer-Verlag, New York, 1996.

S. Heikkila and V. Lakshmikantham, Monotone
iterative techniques for discontinuous nonlinear
di®erential equations, Marcel Dekker, New York,
1994.

C. V. Pao, Nonlinear Parabolic and Elliptic
Equations, Plenum Press, New York, 1992.

C. V. Pao, "Block monotone iterative methods
for numerical solutions of nonlinear elliptic equa-
tions," Numer. Math., 72, 1995, pp. 239-262.

R. S. Varga, Matrix Iterative Analysis, Prentice-
Hall, New Jersey, 2000.

S. Sacco, F. Saleri, "Mixed Finite Volume Meth-
ods for Semiconductor Device Simulation,"” Nu-
mer. Meth. Partial Di®. Eq., Vol. 13, 1997, pp.
215-236.



