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Abstract: - In this paper, we solve numerically a semiconductor device energy balance equation

using monotone iterative method. With the proposed solution technique, we prove the solution

of ¯nite volume discretized semiconductor device energy balance equation converges monotoni-

cally. The method presented here provides an e± cient approach for the numerical solution of e-

nergy balance equation in submicron semiconductor device simulation.
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I. Introduction

For large scale or long channel semiconductor de-
vices, the VLSI device design could be done with

an empirical design rule or using a trial and error

experimental approach, in past years. The de-
vice scale has been shrunk into deep submicron

or nano meter region recently [1], and has be-
come more di± cult to design or improve semicon-

ductor device characteristics with such straight-
forwardly strategies. Consequently, the develop-

ment of numerical device modeling and simula-

tion provides an e± cient way not only for device
optimal design but also insight into device physics

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

Semiconductor device simulation including en-
ergy balance equation has recently received great

interests for modeling nonlocal and hot car-

rier e®ects in submicron semiconductor devices
[2, 12, 13, 14, 15]. The energy balance equa-

tion is a nonlinear partial di®erential equation

(PDE), so its numerical di± culties, such as con-
vergence and stability have been discussed in

semiconductor device simulation [2, 13, 14, 15].
For example, to solve the energy balance equa-

tion, the rapid variation of electron tempera-

ture between mesh points leads to a signi¯-
cant di± culty in semiconductor device simula-

tion. Based on an assumption that the elec-
tron temperature Tn varies linearly between mesh

points, a Scharfetter-Gummel liked discretization
scheme for the energy balance equation, so-called

Scharfetter-Gummel-Tang scheme was developed

in semiconductor hydrodynamic device simula-
tion. However, due to the electron temperature

model problem is a singular nonlinear boundary
value problem, the assumption of the Scharfetter-

Gummel-Tang scheme holds only for ¯ne mesh

arti¯cially. This leads to numerical stability and
convergence problem when solving the system
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of nonlinear algebraic equations arising from the

discretization of energy balance equation.

In this paper, we propose a computational
e± cient method for the numerical solution of

semiconductor device energy balance equation

using monotone iterative method [16, 17, 18].
This method for semiconductor device simula-

tions with nonlinear Poisson equation, drift dif-
fusion, and hydrodynamic models has been re-

ported in our earlier work [4, 5, 6, 7, 8, 9, 10, 11].

First of all, applying a physical based new state
variable ® , the energy balance equation can be

transformed into a self-adjoint form and then dis-
cretized using ¯nite volume method [19, 20] with

a very ¯ne nonuniform mesh. The discretized en-
ergy balance equation leads to a system of non-

linear algebraic equations with a diagonal dom-

inate property [19]. We solve the nonlinear sys-
tem by applying a monotone iterative method di-

rectly instead of Newton's iterative method. We
prove the solution sequence constructed from the

monotone iterative algorithm converges to the

unique solution of the system of nonlinear al-
gebraic equations monotonically. This solution

method converges monotonically and is highly
parallel.

We divide this study into two parts, Part I con-
cerns theoretical work. Practical implementation

algorithm and simulation results are described in
Part II. This paper is organized as follows. Sec. 2

states semiconductor device energy balance equa-

tion. Sec. 3 shows the solution algorithm with
monotone iterative method. We prove the solu-

tion sequence converges to the unique solution
of the system of nonlinear algebraic equations

monotonically. Sec. 4 draws the conclusions and
suggests future works.

II. A Numerical Energy Balance Model

In steady state, we consider here a two-

dimensional (2D) energy balance equation for

electrons as follows [1, 2, 12, 13, 14, 15]

~r ¢(vdn! + vdnkBTn + Qn)

+qnvd ¢E = (@Wn
@t )

coll:
;

(1)

where ~r = ( @@x ; @
@y ) is the spatial gradient vector,

vd is the electron drift velocity, ! is the average
electron energy, q is the elementary charge, n is

the electron concentration, and E = ¡ rÁ (Á is
the electrostatic potential) is the electric ¯eld. In

addition, kB is the Boltzmann's constant, and the
electron temperature Tn is assumed to be a scalar

quantity here , Qn is the heat °ux, and ( @Wn
@t )

coll:
is the energy collision rate. For the hole, we have
a similar energy balance equation.
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Fig. 1. A 2D domain for a submicron
N-MOSFET device.

To proceed our derivation subsequently, we

brie°y state the used physical models and as-

sumptions [1, 2, 12, 13, 14, 15]: (a) the aver-
age electron energy ! is the sum of thermal en-

ergy 3
2kBTn and kinetic (drift) 1

2m
¤
n jvdj2 energy

and m¤
n is the electron e®ective mass; (b) en-

ergy collision rate (@Wn
@t )

coll:
can be represented

as ¡ n(!¡ !0)=¿!(Tn) physically, average electron
equilibrium thermal energy !0 is given by 3

2kBTL,

where TL is the lattice temperature. An en-
ergy relaxation time model ¿! = 3¹ n0kBTnTL

2qv2sat:(Tn+TL)
+

m¤
n¹n0TL
2qTn

is used in this work, where vsat: is the
electron saturation velocity, ¹n0 is the electron

mobility at low electric ¯eld, and the 2nd term

on the right hand side of ¿! is so-called the mo-
mentum relaxation time; (c) consider here the
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Weidmann-Franz physical model for semiconduc-

tor, we have heat °ow Qn = ¡ ·crTn, where
· c = 2Tnk2Bn¹n=q is the thermal conductivity for

electrons and ¹n is the electron temperature de-
pendent mobility model; (d) we further assume

here the Tn¹n can be expressed a product of TL
and ¹E;Dn , where ¹E;Dn is an electric ¯eld E and

ionized carrier concentration D dependent mo-

bility model; and (e) the electron current density
can be written as Jn = ¡ qnvd directly.

With these physical models and assumptions
(a)-(e) above, it is evident we can write Eq. (1)

into this expression

~r ¢(5kBTnJn2q +
m¤
njvdj2Jn
2q +

2TLk
2
Bn¹

E;D
n

q rTn) =

f (Tn; TL; n; Á ;vd; vsat:; q; ¹n0; kB ; m¤
n)

(2)
where f can be directly calculated and it is a non-

linear function, and the unknown to be solved is
Tn. Eq. (2) involves ¯rst order and second order

derivate for Tn and the f is at least a nonlinear
function in Tn, so it is a strongly nonlinear PDE.

This leads to some di± culties in numerical solu-

tion, such as stability and convergence problems.
To apply monotone iterative method for the

numerical solution of Eq. (2) e± ciently, we now
assume Boltzmann statistics [1] holds for the ap-

proximation of electron concentration and elec-

trostatic potential. With this physical observa-
tion, the Eq. (2) can be transformed into a self-

adjoint form and hence has many advantanges in
the numerical solution of energy balance equa-

tion. By considering the exponential quasi Fermi
level approximation for electron concentration n

and a similar approximation for electron temper-

ature Tn [1, 15], we can further express Eq. (2)

r ¢((
2niT 2Lk2B¹E;Dn e

q(Á ¡ 'n)
kBTL

q
)ec'nr®) = f(® ; ¢);

(3)

where f has new interpretation and it is a
monotone function with respect to ® , n and Tn
are implicitly de¯ned by

n = niue
q

kBTL
Á
; and Tn = TL® ec'n: (4)

The u and ® in Eq. (4) can be uniquely de¯ned

here, and the value c is also followed. Eq. (3) is
an electron energy °ow continuity equation and

the unknown to be solved is ® , where the u and
other physical quanties can be solved from the so-

lution of Poisson equation and electron-hole cur-
rent continuity equations [4, 5, 6, 7, 8, 9, 10, 11].

As shown in Fig. 1, the boundary for electron
temperature Tn is the Dirichlet type boundary

conditions at ohmic contact parts: source, drain,
and substrate. At Si ¡ SiO2 interface, left and

right hand sides, zero energy °ow is applied and it
leads to a homogeneous Neumann type boundary

condition for Tn . By the de¯nition of ® in Eq. (4)

and boundary conditions for Tn, the boundary
conditions for ® are followd.

To solve Eq. (3), we note the required physical

quanties, such as Á; n; E; Jn; mobility, and re-
combination terms can be obtained from the nu-

merical solution of Poisson equation and electron-

hole current continuity equations.

Our monotone iterative method is applied to
solve the nonlinear algebraic system resulting

from the ¯nite volume discretization of Eq. (3).
We prove the computed solution with monotone

iterative method converges to the unique solution

of the equation monotonically.

III. A Monotone Iterative Solution

Technique

We state here a monotone iterative method for

¯nite volume discretized energy balance equation
¯rstly. The f(® ; ¢) is a monotone function in ® ;

and we have following result directly.

Theorem 1 The nonlinear term f (®; ¢) in Eq.
(3) is a monotone function in ® , i.e., there exists

a positive constant c0; such that @f(® ;¢)
@® ¸ c0; for

all ® :

Remark 1 We note the applied bias at device
ohmic contact parts is ¯nite, so all of the phys-

ical quanties are bounded functions in the device

simulation domain. Thus based on the physical
de¯nition above, ® is bounded function.
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Proof. With Remark 1 and calculation for the

function, we have the results directly.
We discertized nonlinear Eq. (3) with ¯nite

volume method and approximate the integrations
with quadrature rule [19, 20]. The system of non-

linear algebraic equations for the equation is then
solved by the monotone iterative method. The

discretized system can be written as

¡ »i;j¡ 1zi;j¡ 1 ¡ »i¡ 1;jzi¡ 1;j + »i;jzi;j
¡ »i+1;jzi+1;j ¡ »i;j+1zi;j+1 = ¡ F (zi;j);

(5)

for all nodes (xi; yj ) in the device domain, where

zi;j = z(xi; yj) represents the approximated value
® i;j of the function ® at (xi; yj) in Eqs. (3).

The discretization coe± cients »i;j; »i+1;j; »i¡ 1;j;
»i;j¡ 1; and »i;j+1 are associated with the opera-

tors as well as its boundary conditions. Similarly,
F is associated with the nonlinear function f and

boundary conditions. The coe± cients satisfy the

conditions:

»i;j ¸ 0; »i+1;j ¸ 0; »i¡ 1;j ¸ 0;
»i;j¡ 1 ¸ 0; »i;j+1 ¸ 0;

»i;j ¸ »i+1;j + »i¡ 1;j + »i;j¡ 1 + »i;j+1;

(6)

for all discretization index (i; j) in the device do-
main. We write now Eq. (5) as a compact system

of nonlinear algebraic equations,

AZ = ¡ F (Z): (7)

Theorem 2 The system of nonlinear algebraic
equations (7) derived from energy balance equa-

tion (3) has at most a solution.

Remark 2 The matrix A in Eq. (7) is an M -
matrix and since @

@zi;j
f (zi;j ) > 0, F is uniformly

bounded and @
@zi;j

F (zi;j) ¸ 0.

Proof. It is a direct result with the monotone
property of F (Z). For a given vector eZ =

(ez1; : : : ; ezM )T , the diagonal matrix D( eZ) is de-
¯ned by

D( eZ) =

0
BB@

@F1
@z (ez1)

. . .
@FM
@z (ezM )

1
CCA :

Let Z1 and Z2 be two solutions of the system

(7) and set Z = Z1 ¡ Z2. Then
h
A + D( eZ)

i
Z =

0, for some vector eZ . Since A is an M-matrix and

diagonal matrix D( eZ) is nonnegative, A + D( eZ)
is an M -matrix [19]. Thus A+D( eZ) is invertible

and Z = Z1 ¡ Z2 = 0, i.e, Z1 = Z2

( x
i+1

, y
j
)(x

i-1
, y

j
)

( x i , y j+1 )

(x
i
, y

j-1
)

Control volume

( x i ,y j)

Fig. 2. An illustration of mesh points in x ¡ y

plane for ¯nite volume discretization.

The proposed monotone iterative scheme for
the nonlinear system are now written explicitly

in terms of nodal points (xi; yj) in the device

domain and the monotone iteration index m,
m = 0; 1; : : :. The abstract iterative scheme is

® (m+1)i;j =
LU(® (m)i;j )¡ f(®

(m)
i;j )+¸

® (m)

i;j
®
(m)
i;j

»i;j+¸
® (m)

i;j

;

¸
® (m)

i;j
= @

@®
(m)
i;j

f (®
(m)
i;j ; ¢);

(8)

for all nodes (xi; yj ) in the device domain, where

A = D ¡ L ¡ U , D constructed from the ¸
® (m)

i;j

and inentidy matrix is the diagonal matrix of A,
L and U are lower and upper matrices of A. The

value ®
(m+1)
i;j is an approximation of the potential

function ® at the node (xi; yj) and LU(®
(m)
i;j ) is

the sum of the corresponding coe± cients (see Fig.
2) at m iteration. We further express above Eq.

as the following computational algorithm

z
(m+1)
i;j =

1

¸
(m)
i;j + »i;j

f»i+1;jz
(m)
i+1;j + »i¡ 1;jz

(m)
i¡ 1;j
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+ »i;j¡ 1z
(m)
i;j¡ 1 + »i;j+1z

(m)
i;j+1 ¡ f (z

(m)
i;j )

+ ¸
(m)
i;j z

(m)
i;j g; (9)

for all nodes (xi; yj) in the device domain and for

all m.

Theorem 3 Let z
(0)
i;j be an arbitrary solution se-

quence and z¤i;j be the solution of Eq. (5). Letn
z
(m)
i;j

o1
m=1

be a solution sequence of Eq. (9).

Then z
(m)
i;j ¡ ! z¤i;j as m ¡! 1, for all (xi; yj)

in the device domain.

Proof. The nodal values ¯xed on boundary part

are uniquely determined by their associated val-
ues. We prove now the result for all interior nodes

of the device domain. De¯ne

´
(m)
i;j = z

(m)
i;j ¡ z¤i;j

for all (xi; yj) in the device domain. Since z¤i;j is

the solution of Eq. (5), we have

z¤i;j =
1

»i;j
f»i+1;jz

¤
i+1;j + »i¡ 1;jz

¤
i¡ 1;j

+ »i;j¡ 1z
¤
i;j¡ 1 + »i;j+1z

¤
i;j+1

¡ f (z¤i;j)g: (10)

From Eqs. (9) and (10) we derive

´(m+1)i;j =
1

¸
(m)
i;j + »i;j

f»i+1;j´
(m)
i+1;j + »i¡ 1;j´

(m)
i¡ 1;j

+ »i;j¡ 1´
(m)
i;j¡ 1 + »i;j+1´

(m)
i;j+1 ¡ (z

(m)
i;j )

+ f (z¤i;j) + ¸
(m)
i;j ´

(m)
i;j g

=
1

¸ (m)i;j + »i;j
f»i+1;j´

(m)
i+1;j + »i¡ 1;j´

(m)
i¡ 1;j

+ »i;j¡ 1´
(m)
i;j¡ 1 + »i;j+1´

(m)
i;j+1 + (¸ (m)i;j

¡
f (z (m)i;j ) ¡ f (z¤i;j )

´(m)i;j

)´
(m)
i;j g: (11)

Since f is increasing function, there exists a pos-

itive constant c0 such that

f (z
(m)
i;j ) ¡ f (z¤i;j)

´
(m)
i;j

¸ c0 > 0;

where the constant c0 can be calculated in The-

orem 1. We calculate the estimation from Eq.
(11) and note the Eq. (6), the following expres-

sion can be derived directly

°°°´
(m+1)
i;j

°°°
1

· °
°°°´
(m)
i;j

°°°
1

;

where the positive parameter ° is given by

° = max
i;j

(
¸
(m)
i;j + »i;j ¡ c0

¸
(m)
i;j + »i;j

) < 1;

for all nodes (xi; yj) in the device domain. There-
fore,

°°°´
(m+1)
i;j

°°°
1

· °
°°°´
(m)
i;j

°°°
1

· °2
°°°´
(m¡ 1)
i;j

°°°
1

· ¢¢¢
· °m+1

°°°´
(0)
i;j

°°°
1

for all z(0)i;j and nodes (xi; yj) in the whole device

domain, and the result follows.

IV. Conclusions

Based on monotone iterative technique, we have
presented a novel numerical solution method for

semiconductor device energy balance equation.
We further proved the solution sequences con-

verge to the solution of the nonlinear system

monotonically. This approach provided an al-
ternative in the numerical solution of electrons

and holes energy balance equations. Practical
implementation algorithm for the carrier tem-

perature calculation and simulation results are

given in Part II. This method is inherently par-
allel and can be systematically extended to sim-

ulate, such as advanced semiconductor hydrody-
namic model and spherical harmonic expanded

Boltzmann transport equation.
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