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Abstract: - The characterization and quantitative description of Internet traffic is becoming 
increasingly important in light of the rapid growth being observed in the size and usage of the 
network. Modeling of modern teletraffic and large telecommunications networks with fractal 
stochastic processes has been investigated by analyzing traffic measurements collected on the 
“Federico II” university WAN link to the National Research Network backbone, and using them to test 
the existence of fractal behavior and specific properties. A fractal character with approximate self-
similarity and statistical long-range dependence has been observed in the Internet access traffic 
measurements. This approach leads to some interesting insights about whether and how regularities in 
Internet user behavior can be noticed and exploited. The derived characterization could be seen as a 
first step to a generalized parametric Internet traffic model.  
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1 Introduction 
 
Internet engineering and management depend on 
an understanding of the characteristics of 
network traffic patterns. Increased traffic 
volumes has resulted in congested routes, often 
leading to delays on the order of hundreds of 
seconds. As a result, much work is being done to 
understand the end-to-end performance related 
issues for the Internet to identify appropriate 
traffic descriptors and properties and design 
traffic engineering rules. Statistical models are 
needed that can generate traffic that mimics 
closely the observed behavior on live Internet 
wires. Models can be used on their own or 
combined with network simulators for a wide 
variety of tasks such as traffic forecasting and 
future network capacity planning. The challenge 
of model development is immense.  
Fractal geometry, frequently portrayed as the 
opposite to mathematically elegant and tractable 
Euclid geometry, has revealed the whole new 
horizon on the way our minds observe and 
interpret the various shapes of nature we see 
everyday. This is attributed to its simplicity to 
explain the extreme variability of natural shapes 
which would be otherwise difficult, if not 
impossible, to be described by its Euclidean 
counterpart. Fractal analysis is now, the most 

promising technique for network traffic 
characterization. The high variability and 
burstiness characteristics of the Internet traffic 
make the fractal techniques the most attractive 
modeling tool to describe such a complex 
phenomenon.  
In this paper we show the results of the statistical 
analysis on the traffic samples recorded for a 
year on the IP over ATM link that connects the 
“Federico II” university WAN link to the 
National Research Network backbone (GARR).  
Our results demonstrate that the WAN traffic 
exhibits fractal scaling, indicating that the traffic 
could be well approximated by a weakly 
stationary, self-similar process.  
 
2 Internet traffic characterization 
 
Traffic in the Internet results from the 
uncoordinated actions of a very large population 
of users. There are also a far greater number of 
protocols and applications, each with its own 
traffic characteristics, and new applications can 
arise at any time. There are a great variety of 
network connectivity types, architectures and 
equipment, and, accordingly, different kind of 
traffic flows. There are no standard network 
topologies around which all design efforts can be 
based, and the topologies that exist are subject to 



constant change. Perhaps the most serious and 
most surprising characteristic that the network 
traffic exhibits is burstiness. 
 
2.1 The fractal nature of Internet traffic 
 
It has been suggested that Internet traffic is far 
too complicated to be modeled using the 
techniques developed for the telephone network 
or for computer systems [1]. Traditionally, 
networks have been described by generalized 
Markovian processes. Markov and Poisson 
models, typically used in queuing analysis, are 
characterized by limited memory of the past in 
which they assume variations only in limited 
time scales. They do not allow for long-range 
dependence; rather, they explicitly show only 
short-range dependence. Furthermore, in a 
Markovian model, smoothing of bursty data is 
possible. In fact traffic bursts who have a 
characteristic length and averaging over a long 
period of time results in a smooth data stream. 
  
Recently it has been demonstrated [2] that real 
packet traces do not obey to the above models in 
most cases and instead, the notion of self-
similarity, that is the typical fractal behavior in 
terms of resemblance or correspondence between 
the parts of an object obtained by scaling and the 
object as a whole, can be used to explain the 
extreme burstiness of the Internet traffic with a 
surprisingly small number of parameters. 
Burstiness is a qualitative concept, but it can be 
described analytically as self-similarity over 
multiple time scales. In fact burstiness is the 
result of phenomena at several levels or protocol 
layers, which interact to produce it.  Roughly 
speaking, the distribution of file sizes (an 
application layer statistic) affects transmission 
time statistics, which, in turn, shows up as self-
similarity at the transport and network layers, 
and gives rise to long-range dependence, finally 
leading to burstiness seen at the link layer.   
 
From a statistical point of view, network traffic 
exhibits other fractal characteristics in its 
second-order statistics such as slowly decaying 
variance and long-range dependency over a wide 
range of time and frequency scales. This means 
that the variance of the sample mean decreases 
much more slowly than the reciprocal of the 
sample size, or in other terms that the 
distribution of the traffic process decay more 

slowly than exponential (i.e. a Poisson 
distribution), and autocorrelation exhibit an 
hyperbolic (“long range”) rather than 
exponential (“short range”) decay.  
Such properties observed over a wide range of 
time scales suggested that fractals are the most 
appropriate mathematical tool to describe certain 
aspects of network behavior. 
 
2.2 The need for traffic modeling  
 
It is important to be able describe this traffic 
succinctly in a statistical manner which is useful 
for network engineering. The traffic process can 
be described in terms of the characteristics and 
properties of a number of objects, including 
packets, bursts, flows, etc. depending on the time 
scale of relevant statistical variations. The 
preferred choice for modelling purposes depends 
on the object to which traffic controls are 
applied. Conversely, in designing traffic controls 
it is necessary to bear in mind the facility of 
characterizing the implied traffic object. The 
most relevant and interesting characteristics to 
be taken into account in the formulation of a 
fractal model of Internet traffic are: 
 
• Long-range dependence (LRD) 
• Self-similarity 
• Infinite variance 
• Burstiness 
 
3 Essential concepts 
 
To clarify our terminology, we briefly 
summarize the definition and deeper significance 
of some of the basic concepts we introduced in 
the above sections that will be extensively used 
in the analysis of our real word traffic samples. 
 
3.1 Self-similarity 
 
The notion of fractal behavior, in the sense of an 
object that it has similarity on all scales is 
translated into the stochastic analysis by the 
definition of Self-Similar processes with 
Stationary Increments. Let X = {Xk : k> 0} a 
stochastic stationary process in the discrete-time 
domain, representing the amount of data 
transmitted in consecutive short time periods, 
and let X(m) = {Xk

(m) : k≥ 1} its aggregate form 
obtained by averaging the Xk  over adjacent, non 



overlapping blocks of size m: 

                                       km 

              Xk
(m) = m-1   ∑         Xn 

                                   n=(k-1)m+1 

The stochastic process X satisfies exactly the 
self-similarity property, if Xk and m1-H Xk

(m) have 
identical finite-dimensional distributions for all 
m ≥ 1 that is: 

Xk  ₫  m1-H Xk
(m) 

Where ₫ means the equality of the finite 
dimensional distributions. The parameter H is 
referred to as Hurst parameter or Hurst exponent 
and represents the degree of self-similarity in the 
observed sample. When the value of the Hurst 
parameter is between 0.5 and 1 the sample is 
said to be self similar (values of H closer to 1 
indicate a high degree of self-similarity).  
Furthermore, second order self-similarity is 
satisfied when X  and m1-H X(m)  have the same 
variance and autocorrelation.  Second order self-
similarity manifests itself in several equivalent 
ways, one of them is that the spectral density of 
the process decays as f 1-2H at the origin as f →0. 
 
3.2 Long-range dependency 
 
This refers to the degree of dependence of 
samples taken at one time on those of an earlier 
time.  It is gauged quantitatively by the 
autocorrelation function.  Autocorrelation of a 
stationary process measures the degree of 
correlation of nearby and far-off events, i.e., the 
ability to predict (in a statistical sense) process 
values removed in time from any given time t.  
For short-range dependent traffic, which is non-
bursty, the autocorrelation function falls off 
quickly with time, usually exponentially.  For 
long range dependent traffic, it falls off much 
more slowly, usually obeying some type of 
power law. In detail, let X = {Xk : k> 0} a 
stationary process in the discrete-time domain 
with mean µ≡E[Xk], variance σ2 ≡ E[(Xk – µ)2] 
and normalized autocorrelation function: 

r(k; t) ≡ E[(Xn – µ) (Xn+k – µ)]/σ2 

The process X is said to be a long-range 
dependent (LRD) process if for fixed t its 
autocorrelation function r(k; t) is non-summable 
[8], i.e. 

                             ∞ 
                       ∑ r(k;t) = ∞  
                           k=0 

Because the behavior of the tail of  r(k; t) 
completely determines its summability the 
details of how r(k; t) decays with k engender 
much interest. This originates another widely 
employed definition of long-range dependency 
[9] which employs also the Hurst parameter:  
 

r(k; t) ~ f(t)k-(2-2H) , as   k →  ∞ 
 
where f(t) is a positive function independent of  
k which emphasize the dependence of the 
autocorrelation function on the time scale t in 
addition to the lag k. The Hurst parameter, that 
in this case must be in the range 0.5 < H < 1, 
implying self similarity, completely 
characterizes the above relation.  
 
The same concept may be more evident in the 
frequency domain when examining the Fourier 
transform of the autocorrelation: 
 
                                           ∞ 
               S(ω;t) = 2π-1  ∑ e-jkω r(k;t)  
                                        k=-∞ 
 
The value of the coefficients r(k;t) falls off either 
exponentially or slower, with increasing k.  If the 
rate is slower than exponential, the traffic 
exhibits long-range dependence. 
 
3.3 Slowly decaying variance 
 
Considering the aggregate form of the above 
stationary process in the discrete-time domain, 
defined by X(m) = {Xk

(m) : k≥ 1}, the process 
exhibits slowly decaying variance when the 
variance of the sample mean decreases much 
more slowly than the reciprocal of the sample 
size, that can be represented as: 

Var[X(m)] ~ m-β 

for  0 < β < 1 and sufficiently large m. This can 
be easily detected by plotting Var[X(m)] against 
m on a log-log plot which in the literature [9]is 
referred to as the variance-time plot. If this plot 
forms a straight line with an absolute slope less 
than unity over a wide range of m. then we say 



the process X exhibits the slowly decaying 
variance property. 
 
4 Analyzing real Internet traffic 
 
The traffic measurements analyzed in this work 
are obtained at the junction where the "Federico 
II" university (Naples, Italy) connects to the 
GARR network (Italian academic and research 
network) through a 34Mbps ATM CBR link. 
The data, collected via SNMP from the border 
router, represent the aggregate traffic flowing 
from the university local area networks towards 
the national backbone. Average and maximum 
input and output rate have been collected during 
a year, on a daily basis (in 5 min. samples) and a 
progressive statistical consolidation by 
averaging the samples on respectively 30 
minutes, 2 hours and 1 day basis has been 
performed to obtain the aggregate weekly, 
monthly and yearly trends. 
 
Daily and weekly traffic observation reveal 
intensity levels (in bits/sec) averaged over 
periods of 5 to15 minutes, which are relatively 
predictable from day to day. Systematic intensity 
variations occur within the day reflecting user 
activity. It is possible to detect a busy period 
during which the traffic intensity is roughly 
constant. Similar considerations can be done by 
scaling on the weekly and monthly statistics. 
 

 
Figure 1: “Federico II” Internet traffic sampling 

 
The above graphics (figure 1) clearly show at a 
glance the fractal behavior of Internet traffic. 
Self-similarity can be readily observed in this 
figure, which shows the similar appearance of 
the various traffic patterns, regardless of the time 

scale. 
 
4.1 Self-similarity analysis 
 
To gauge the self-similarity of packet traffic 
from empirical data, several measures rooted in 
fractal dimensionality have been devised.  These 
measures make use of the scaling factor 
discussed earlier.  The principal methods that 
will be used in our analysis are: 
 
• Variance/Time Plot [1] 
• Whittle Estimator [3] 
• Rescaled Range (R/S) [5] 
• Periodogram [6] 
 
4.1.1 Hurst estimation 
 
The Hurst parameter was estimated by means of 
the variance-time method and the Whittle‘s 
estimator [3]. Almost all samples gave values of 
the Hurst parameter higher than 0.8, that is the 
telltale sign of fractal behavior. 
 

AGGREGATION LEVEL HURST PARAMETER 
5 min 0,9767 

30 min 0,9584 
2 hour 0,9814 
1 day 0,7705 

Table 1: Hurst calculated on the 4 aggregated sets 
 
 
4.1.2 Periodograms 
 
Further confirmation of the above statements 
comes from the periodogram analysis, where, at 
different time scales specific cycles can be 
detected. The log-scaled graphics below, 
referring to the “Average Input” samples, exhibit 
a clear x-b shape, which implies self-similarity. 
Furthermore, a closer look at the periodograms 
shows the presence – not surprisingly – of 
7-days, and 24-hours cycles at the larger time 
scales. However, at finer grain some minor 
cycles can be noticed that we were unable to 
explain, for instance a 3-hour cycle and a 20-
minutes cycle. 
 



0,0 0,1 0,2 0,3 0,4 0,5

5 min

1/f fit

 

0,0 0,1 0,2 0,3 0,4

30 min

1/f fit

0,0 0,1 0,2 0,3 0,4 0,5

2 hour

1/f fit

 

0,0 0,1 0,2 0,3 0,4 0,5

1 day

1/f fit

 
Figure 2: Periodograms at four time scales 

 
Even clearer evidence results from Figure 3, 
where the major peaks in the periodograms are 
plotted. As one can see, the peak distribution 
scales regularly with aggregation level, with the 
partial exception of the 5-minutes time scale, 
where the effects of many different frequencies 
tend to appear. This result, combined with the 
previous strong evidence in time cycles can 
become a very significant matter in traffic trend 
forecasting. 
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Figure 3: Periodogram peaks at four time scales 

 
The log-log R/S graphs are pretty linear, as 
shown in figure 4 below. We can thus rely on the 
inherent self-similarity of traffic to understand 
its trends and oscillations. 
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Figure 4: Log-log R/S graph 

 
 
4.2 Long-range dependence 
 
The Fourier transform of the autocorrelations, 
shown in figure 5, exhibits a rate far from slower 
than exponential. This implies the clear evidence 
of long-range dependency. 
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Figure 5: Autocorrelations in the frequency domain 
 
5 Conclusions 
 
We analyzed a wide collection of samples of 



aggregated WAN traffic collected on the high-
speed link that connects the Federico II 
University to the Internet. Fractal behavior and 
Long-range dependence has been detected 
respectively through the estimation of the Hurst 
parameter and the study of R/S and Fourier 
transform of autocorrelation diagrams. These 
results comfort us in our purpose of applying a 
fractal model for predicting traffic peaks. This 
would greatly improve the capacity planning 
activities and let the network organization 
evolve in accordance with the traffic trends. 
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