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Abstract: - This paper presents the Geometric fuzzy logic controller, properly modified in order to be used in DC 
motor drive systems. The controller with Geometric fuzzy logic technique is a nonlinear robust controller very 
promising for high performance solutions. The required components for the implementation of the Geometric fuzzy 
logic controller are similar with the well-known PI controller. The advantage of the Geometric fuzzy logic controller is 
the better tracking response of the control system with minimum dependency on the motor parameters. In this paper 
the Geometric fuzzy logic controller is compared with a PI controller for controlling the speed of a DC motor and the 
advantages are distinct. 
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1 Introduction 
In this paper a DC Motor drive system is analyzed with a 
constant field excitation. For such a DC Motor, the rotor 
(armature) that is rotating with shaft speed (ω), is 
producing back-EMF voltage E=E(ω). Therefore, in 
order to keep that speed it must feed armature with 
terminal voltage u. The value of u is counteraction to the 
E. That results to the armature current value i as showing 
in Fig.1.    
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Fig.1: Electrical part of the DC Motor   

The relationships between u and i are given by the 
following well known expressions: 

dt
diLiREu +=−   or                                           (1) 

sL)i(RE-u +=                                                          (2) 
where:  R= armature Resistance 
 L= armature Inductance 

The mechanical part of the DC Motor model is showing 
in Fig.2.     
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Fig.2: Mechanical part of a DC Motor 

 

The relationships between i and ω are given by the 
following expressions: 
 

dt
ωdJTT L =−              or                                             (3)       

dt
ωdJTiK LT =−                                                          (4) 

where:  
KT = electromechanical Torque constant 
TL = Load Torque 
J  = Inertia of the motor and load mass 
 

2 Theme Formulation 

The conventional control structure of a DC Motor drive 
system for speed control is showing in Fig.3. 
 

Speed
Controller

Current
Controller

Electrical
Part of

DC Motor

Mechanical
Part of

DC Motor

ω*

ω

+
-

+
-

ι*

ι

u i

ωDC Motor with Load

 
Fig.3: Conventional control structure of a DC Motor 

drive system 
 

In order to control the mechanical part output variable 
(ω), a speed controller is needed. Also, in order to 
control the electrical part output (armature current), a 
current controller is needed. According to eqn(4) 
armature current i changes linearly with the motor speed 

acceleration 
dt
ωd

. 
 

3 Solution 

Instead of using two separated controllers for ω and i, as 
shown in Fig. 3, this paper proposes one controller that 
will control the speed (ω) and change of speed. Let ω*(t) 
be the speed reference, ω(t) the real speed value, so the 
speed error e= ω*-ω indicates the speed tracking error. 
Fig.4 shows the proposed control block diagram. 
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Fig.4: The proposed control block diagram 
 

The DC motor model in state space is given by: 
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The nonlinear model, expressed by eqn(5), has control 
input variable u for minimizing the speed error ( ) 
and the speed error acceleration ( e ). In order to 
control the above nonlinear system, the Geometric 
control technique is used. Geometric control means that 
the control input value u changes discontinuously when 
the trajectories of state eqn(5) cross a switching 
boundary at the phase plane (e, ). Since eqn(5) is a 
second order system, the switching boundary function 
must be of a first-order.  
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Let define the switching line as: 
s=ce+ e                                                                          (6)                                                &
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with c being a positive constant and the voltage source 
for the DC motor as: 
 

u=Msgn(s)                                                                     (7) 
 

According to eqn(6) and eqn(7) the system trajectories 
have reflective behavior. In this case, switching action 
u=Msgn(s), immediately redirects the system motion 
back without allowing the boundary to be crossed. So 
after a trajectory crosses line s=ce+ =0, with control 
action u=Msgn(s), the movement cannot leave the 
switching line. The system motion is now: 

e&

 

s=ce+ e =0                                                                     (8) &
 

and is directed to the equilibrium point O(e=0, e =0), 
sliding on the switching line, with a rate of convergence 
determined by the value of c. The system motion in state 
space is shown in Fig. 5. 
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Fig.5: System motion in state space 

 

With the proposed method it is capable to control e and 
 with stable, fast and robust way. The result of the 

controller using u=Msgn(s), is ideal. In reality eqn(5) 
can be constructed as follows: 

e&
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The above function characteristic is shown in Fig. 6. 
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Fig.6: Characteristic of eqn(9) 
 

The ideal case is the limit of u=Msgn(s) with ε→ 0.  
 

So u=
0ε

)ssgn(Mlim
→
⋅                                                   (10) 

 

The implementation of eqn(10) is difficult in real time 
mode. In order to solve the above problem this paper 
presents a modified control block diagram as shown in 
Fig. 7. 

Fig.7: Proposed modified DC motor control block 
diagram 

 

This method provides a linear transfer characteristic with 
lower and upper bounds (Fig. 6). In this paper, a new 
method introduced, in which the transfer characteristic is 
not necessarily a strait line between these bounds, but a 
curve that can be adjusted to reflect given performance 
requirements. This transfer characteristic is shown in 
Fig. 8. 
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Fig.8: Characteristic of eqn(11) 
 

The expression of u is now given by: 
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where: (|Sp|,d) is not a constant gain but a 
variable gain selected from a fuzzy rule-based controller. 

fuzzyM

Assuming that our system is in point  the values 
|Sp| and d are defining as follows: 

)e,e(P ′′ &

 |Sp|=
2c1

|s|

+
e&

 is the distance between the switching 

line s=ce+ =0 and point P while d is the distance 
(parallel to switching line) from point P to the point O. 
(Fig. 9). 
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Fig.9: Schematic presentation of the new variables Sp 

and d.  
 

An important parameter of the system is the constant c.  
If  the  controlled system (eqn.5) is a second-order 
system then c determines the slop of the switching line 
s=0. The parameter c plays the role of a break frequency. 
Parameter c has to be designed in such a way that 
unmodeled frequencies νun are filtered out. Let νunmin be a 
lower bound of νun. Then c has to be designed such that 
c<<νunmin. Assuming that unmodeled frequencies occur 
above the eigenfrequency ω of the system (eqn.5) it is 
easy to choose c ω. The eigenfrequency of (eqn.5), 
obtaining from the homogeneous equation: 

≤

0eαeαe 12 =++ &&&                                                       (12) 
Which can be rewritten as: 

0eωeζω2e 2 =++ &&&                                                   (13) 
Hence, eigenfrequency obtaining from: 
 

1αω =                                                                     (14) 
 

4 Fuzzy Controller 
 

4.1 Structure of fuzzy rule-based controller  

The computational structure of the fuzzy rule-based 
controller is shown in Fig. 10. 
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Fig.10: Block diagram of a rule-based fuzzy controller 
 

There are five such computational steps constituting the 
fuzzy rule-based controller. These are the following: 
 

1. Input scaling (normalization). 
2. Fuzzification of controller-input variables. 
3. Inference (rule firing). 
4. Defuzzification of controller-output variables. 
5. Output scaling (denormalization). 
 

4.2 The membership function distribution  

The values |Sp| and d are used as inputs to the fuzzy 
controller. The value of gain Mfuzzy is the output of the 
controller. The two input variables are divided into their 
fuzzy segments. The numbers of fuzzy segments are 
chosen to have maximum control with minimum number 
of rules. The grade of member distribution of input 
variables into their fuzzy segments is shown in Fig. 11. 
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Fig.11: Memberchip functions distribution  
(a) input |Sp| 
(b) input d 
(c) output u 

 

4.3 Input/output variables range  

Working with variations of input variables an adaptation 
of real variables to fuzzy kernel has to be done to code 
the whole range within a constant range. The variation 
of input variable |Sp| is coded within the range  [0, 1000] 
by multiplying by 2 and the variation of input variable d 
is coded within the range  [0, 1000] by dividing by 5. 
For the variation of the output variable Mfuzzy defined the 
range [-10, 10] as shown in Fig. 11(c). 
 

4.4 Definition of linguistic variables and fuzzy 
rules 

Each control rule, can be described using the state 
variables |Sp| and d and the control variable Mfuzzy. The 
ith rule Ri can be written as: 

 
Ri: if |Sp| is Ai and d is Bi then Mfuzzy is Ni                            (15)  
 
where:  Ai ,Bi and Ni presents the linguistic variables as 

follows: 
 

Ai:  ZS: (zero |Sp|) 
 SS:  (small |Sp|) 
 MS:  (medium |Sp|) 
 BS:  (big |Sp|) 

 

Bi: Zd (zero d) 
Sd (small d) 
Md (medium d) 
Bd (big d) 
 
 
 
 



Ni: NBM  (negative big Mfuzzy) 
NMM (negative medium Mfuzzy) 
NSM (negative small Mfuzzy) 
NΖM (negative zero Mfuzzy) 
PZM (positive zero Mfuzzy) 
PSM (positive small Mfuzzy) 
PMM (positive medium Mfuzzy) 
PBM (positive big Mfuzzy) 

 

The control rules are formulated using the diagram of 
the transformation of the values e and  to |Sp| and d 
(Fig. 9). There are sixteen rules, which are given in 
table1. 

e&

NBM NBM NBM NBM Bd 

NMM NBM NBM NBM Md 

NSM NMM NBM NBM Sd 

NZM NSM NMM NBM Zd 
ZS NS MS BS |Sp| \ d 

Table.1 Control rules of the fuzzy controller 
 

4.5 Fuzzy inference 
The inference method used is basic and simple and is 
developed from the minimum operation rule as a fuzzy 
implementation function. The membership function of 
A, B and N are given by µA, µB and µN respectively. 
The firing strength of ith rule αi can be expressed as: 
 

αi=min(µΑi(|Sp|, µΒi(d))                                               (16)  
 

By fuzzy reasoning using Mamdani’s minimum 
operation rule as a fuzzy implication function, the ith rule 
leads to the control decision: 
 

µΝi(Μfuzzy)=min(αi µΝi(Mfuzzy))                                     (17) 
 

Thus the membership function µΝ of the output Mfuzzy is 
pointwise given by: 

µΝ(Μfuzzy)= max (µ
16

1i=
Νi(Mfuzzy))                                      (18) 

Since the output is crisp, the centroid method is used for 
defuzzification. By this method, the crisp value of fuzzy 
output calculated by the following equation: 

∫
∫
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µ⋅
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M                                          (19) 

 
5 Simulation  
 
5.1 Simulation Setup 

Simulation of the Geometrical Fuzzy Logic controller 
was carried out to verify the behavior of the controller. 
The program that was used for the simulation is the 
Simulink of Matlab. Fig. 12 shows the Simulink close 
loop block diagram of a speed controlled DC motor 
drive system. 

 
Fig.12: Simulink close loop block diagram for the DC 

motor speed control 
 

Fig.13 shows the Simulink block diagram of the 
controller that utilizes the Geometric fuzzy logic 
technique.  

 
Fig.13: Controller based on Geometric fuzzy logic 

technique  
 
In order to check the speed tracking error, the speed 
reference value changes at t=0.6sec from 1000RPM to 
500RPM. The characteristics of the DC motor that is 
used for the simulation are the following: 
 
• Induced EMF  Eo=230.3 V 
• Pe=5.0 HP 
• Nominal  torque Te=29.2 N.m 
• Armature resistance Ra=0,6 ohms 
• Armature inductance La=0,012 H 
• Field resistance Rf=240 ohms 
• Field inductance Lf=120 H 
• Field-armature inductance Laf 1,8 H 
• Total inertia J=1Kg.m2  
• Viscous friction coefficient Bm=0 N.m.s 
• Coulomb friction torque Tf=0 N.m 
• Initial speed=0 rad/s. 
 
5.2 Simulation Results 
Fig. 14-17 show the operation of the DC motor with a 
controller based on the Geometric fuzzy logic technique. 
Moreover, Fig. 18-20 show the operation of the DC 
motor with a conventional controller (PI controller). 



Simulation results with controller with Geometric fuzzy 
logic technique  (c=1, ε=10). 

 
Fig.14: (a) Voltage of the Armature, (b) Motor speed 

 
Fig.15: (a) input error e, (b) change of error ,  e&
 (c) output u 

 
Fig.16:  Tracking 

 
Fig.17: Variables (a) Sp, (b) d, (c) sat 

Simulation results with conventional PI controller. 
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Fig.18: (a) Voltage of the Armature, (b) Motor speed 
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Fig.19: (a) input error e, (b) change of error ,  e&
 (c) output u 
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Fig.20: Tracking 
 
As it can be seen from Fig. 16 and Fig. 20 the 
minimization of the error and the derivative of the error 
of the speed is smother with the Geometric fuzzy logic 
controller than with the conventional PI controller. With 
the Geometric fuzzy logic controller it can be achieved 
absolute control of the error and derivative of the error 
leading them to a desired point O. Fig. 21-24 shows the 
operation of the DC motor with a controller based on the 
Geometric fuzzy logic technique with c=1.5, instead of 
c=1 as it is in Fig. 14-17. 
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Simulation results with controller based on the 
Geometric fuzzy logic technique  (c=1.5, ε=10). 

 
Fig.21: (a) Voltage of the Armature, (b) Motor speed 

 
Fig.22:  (a) input error e, (b) change of error ,  e&
 (c) output u 

 
Fig.23: Tracking 

 
Fig.24: Variables (a) Sp, (b) d, (c)sat 

 

6 Conclusion 
 
In this paper a Nonlinear Geometric Fuzzy Logic 
Controller for DC machines was presented. From the 
simulation results can be concluded that the proposed 
controller has better performance when is compared to 
the conventional PI controller. Although the input of the 
Geometrical Fuzzy logic controller is only the error of 
the speed, the response is better because it takes the 
advantage of the derivative of the speed error 
(acceleration). 
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