
Relating Static and Dynamic Measurements
for the Java Virtual Machine Instruction Set

TOM DOWLING�, JAMES POWER� and JOHN WALDRON�
� Dept. of Computer Science, � Dept. of Computer Science,
National University of Ireland, Trinity College Dublin,

Maynooth, Co. Kildare, Dublin 2,
IRELAND. IRELAND.

� �

Abstract: - It has previously been noted that, for conventional machine code, there is a strong relationship be-
tween static and dynamic code measurements. One of the goals of this paper is to examine whether this same
relationship is true of Java programs at the bytecode level. To this end, the hypothesis of a linear correlation
between static and dynamic frequencies was investigated using Pearson’s correlation coefficient. Programs from
the Java Grande and SPEC benchmarks suites were used in the analysis.

Key-Words: - Java Virtual Machine, bytecode frequency analysis, instruction set design

1 Introduction

The Java programming language [12], and its re-
lated technology, the Java Virtual Machine (JVM)
[16], have become increasingly popular as the lan-
guage and technology of choice for object-oriented
software construction. The JVM, as a stack-based
virtual machine, is an example of a paradigm of
compiler implementation stretching back to (at least)
UCSD Pascal [4]. This is a two stage process, where
Java programs are first compiled to an intermedi-
ate language consisting of Javabytecodes. These
platform-independent bytecode instructions are then
interpreted or compiled by a platform-specific JVM.

This mode of compilation and execution provides
interesting opportunities for the study of Java pro-
grams, since there are now at least three levels at
which such study can occur: at the Java source-
code level, at the bytecode level, or ultimately, at
the platform-specific machine-code level. As yet,
Java compilers perform minimal optimisations to pro-
grams when translating from Java source code to
bytecode [14]. The theme of this paper is to ex-
plore the relationship between the static bytecodes

produced by a Java compiler, and the dynamic byte-
code usage as executed by a JVM.

It has previously been noted that, for conventional
machine code, there is a strong linear relationship be-
tween static and dynamic code measurements [10].
That research posited that it was thus possible to use
easily-obtained static measurements to predict their
dynamic counterparts. One of the goals of this paper
is to examine whether this same relationship is true of
Java programs at the bytecode level; that is:

� Can the dynamic performance and operation of
Java programs be accurately predicted by static
studies of Java bytecode?

The remainder of this paper is organised as follows.
Section 2 discusses the background to this work, de-
scribes the test suite used, and summarises related
work. Section 3 describes the context of the exper-
iments and measurements carried out, while Section
4 presents the results of these measurements. Section
5 concludes the paper.



The Java Grande Forum Benchmark Suite Section 2: Kernels
k-crypt IDEA encryption
k-fft Fast Fourier Transform
k-heapsort Integer sorting
k-lufact LU Factorisation
k-series Fourier coefficient analysis
k-sor Successive over-relaxation
k-sparse Sparse Matrix multiplication

The Java Grande Forum Benchmark Suite Section 3: Large Scale Applications
g-eul Computational Fluid Dynamics
g-mol Molecular Dynamics simulation
g-mon Monte Carlo simulation
g-ray 3D Ray Tracer
g-sea Alpha-beta pruned search

Standard Performance Evaluation Corporation JVM98 Benchmarks
s-compress Modified Lempel-Ziv method (LZW)
s-db Performs multiple database functions on memory resident database
s-jack A Java parser generator that is based on PCCTS
s-javac This is the Java compiler from the JDK 1.0.2.
s-jess Java Expert Shell System is based on NASA’s CLIPS expert shell system
s-mpeg Decompresses ISO MPEG Layer-3 audio files
s-mtrt A raytracer with two threads each rendering a scene

Figure 1:The programs used in this analysis. There were 19 programs in total, taken from two separate suites of
the Java Grande Forum sequential benchmarks, and from the SPEC JVM98 benchmarks.

2 Background and Related Work

In this section we present an overview of the
benchmark programs used in the experiment, as well
as the method of data collection.

2.1 The Benchmark Suites
A total of 19 programs have been analysed for this

study, taken from both the SPEC JVM98 benchmark
suite [8] and the Java Grande Forum Benchmark Suite
[5, 6]. The SPEC suite was designed as an industry-
standard benchmark suite for measuring the perfor-
mance of client-side Java applications, and we have
used the seven main programs from this suite. We
have chosen two sets of benchmarks from version 2.0
of the Grande suite’s sequential benchmarks. The first
set of seven programs comprises section 2 of the suite,
“kernels”, designed to measure frequently used oper-
ations. The second set of programs, section 3 of the
Grande suite, contains five large-scale applications,
designed as examples of “real” applications.

The benchmarks included in this work are shown
in Figure 1.

We believe the suites chosen are as close as possi-
ble to “standard” based on published results. Many
other suites of benchmark programs for Java exist,
including micro-benchmarks such as CaffeineMark
[7] Richards and DeltaBlue [20]. As these measure
small, repetitive operations, it was felt that their re-
sults would not be typical of Java applications. For
the same reason larger suites, designed to test Java’s
threads or server-side applications, such as SPEC’s
Java Business Benchmarks (SPECjbb2000), the Java
Grande Forum’s Multi-threaded Benchmarks, IBM’s
Java Server benchmarks [2] or VolanoMark [17] have
not been included at this point.

Studies of the SPEC and Grande suites have typ-
ically concentrated on performance issues for var-
ious JVMs. Studies of the Grande suite include
performance-related measures such as [5, 6], as well
as dynamic byte-code level views [9]. For the SPEC
suite, [11] presents a study of the allocation and heap
behaviour , whereas [15] and [18] discuss low-level
architectural issues. [3] provides a higher-level dy-
namic bytecode view of the SPEC suite, but does not



provide any comparison with static usage frequencies.
Statistical analyses of benchmark suites have been

carried out in [14] and [13], but neither of these di-
rectly address the existence of a linear correlation be-
tween static and dynamic bytecode frequencies.

2.2 Technical Details

The Java Grande Forum Benchmark suite is dis-
tributed in source code format. For this study, the pro-
grams were compiled using the Java compiler from
SUN’s JDK, version 1.3, and the static counts are
based on its output. The SPEC suite is distributed in
bytecode format, and the static counts were compiled
directly from these files. In order to perform the dy-
namic measurements it was necessary to instrument a
JVM to produce the relevant data. Kaffe [19], an in-
dependent implementation of the JVM distributed un-
der the GNU Public License, was used to collect data
on the dynamic operation of all 19 programs. Kaffe
version 1.0.6 was used for this study.

3 Measurement and Analysis Model

Of the 256 possible bytecodes, only 201 bytecode
instructions are defined for use in a class file (a further
three are reserved for “internal use” by a JVM). While
it is clearly possible to collect data for each individual
bytecode (see e.g. [13]), it will suit our purposes to
divide these instructions into categories. A number of
possible sub-divisions could be used. We have chosen
a relatively fine-grained approach, selecting 31 cate-
gories to roughly parallel those used for machine in-
struction sets in [10]. The bytecodes in each of these
categories are listed in Figure 3.

For each of these 31 categories, information was
first compiled on their frequency of static occurrence
in the bytecode files for each of the 19 applications
in the three test suites. The 19 applications were then
run on the instrumented Kaffe Virtual Machine, and
information was collected on the dynamic usage fre-
quency for each of the categories. In all cases, the
results collected excluded bytecodes executed in API
routines, since these are specific to the Kaffe class li-
brary implementation. It should be noted however,
that the percentage of executed bytecodes in the API
varies considerably across applications [9]. While
lack of space prohibits presenting the full frequency

Grande Kernels
Static Dynamic

k-crypt 1416 905,263,342
k-fft 1007 4,221,501,308

k-heapsort 405 1,103,190,209
k-lufact 1511 833,455,892
k-series 508 560,524,605
k-sor 368 3,413,988,850

k-sparse 433 1,063,559,470

Grande Applications
Static Dynamic

g-eul 10580 14,514,096,409
g-mol 2514 7,599,820,106
g-mon 4181 1,632,874,942
g-ray 2518 11,792,255,694
g-sea 3060 7,103,726,472

SPEC JVM98
Static Dynamic

s-compress 2403 12,472,779,077
s-db 1924 1,116,130,852

s-jack 26317 264,885,522
s-javac 58301 1,014,147,162
s-jess 24193 1,554,389,306

s-mpeg 44788 11,488,951,023
s-mtrt 8647 2,121,501,462

Figure 2:Summary of the experimental environment.
This table summarises the test environment by giving
the number of (static) bytecode instructions in each
application program, along with the total number of
dynamically-executed bytecode instructions.

counts here, the overall size of the measurement is
summarised in Figure 2.

In order to test for a linear relationship between
the static and dynamic instruction frequencies, we use
Pearson’s coefficient. Pearson’s sample correlation
coefficient� is given by:

� �
���� ����� � ���

��� ������

Here, the two sets of data of size� are represented
by the variables� and �, with means�� and �� and
standard deviations�� and��

Since the value of� does not depend on the unit of
measurement, the static and dynamic figures for each
bytecode category were expressed aspercentages of
the total. This facilitated comparison across differ-
ent applications, since the total number of bytecode



Category Instruction No.
acnst 1
aload 25, 42, 43, 44, 45
array 188, 189, 190, 197
astor 58, 75, 76, 77, 78

cjump 153-166, 170, 171, 198, 199
compr 148, 149, 150, 151, 152
f add 98, 99
fcall 182, 183, 184, 185
fcnst 11, 12, 13, 14, 15
f div 110, 111, 114, 115
field 178, 179, 180, 181
fload 20, 23, 24, 34-41
f mul 106, 107
fstor 56, 57, 67-74
f sub 102, 103, 118, 119
i add 96, 97
icnst 2, 3, 4, 5, 6, 7, 8, 9, 10
i div 108, 109, 112, 113
iload 16-19, 21, 22, 26-33
i mul 104, 105
istor 54, 55, 59-66
i sub 100, 101, 116, 117
logic 126-132
miscl 0, 186, 191, 194, 195, 202-255
objct 187, 192, 193
retrn 169, 172, 173, 174, 175, 176, 177
shift 120, 121, 122, 123, 124, 125
stack 87-95, 133-147, 196
ujump 167, 168, 200, 201
yload 46-53
ystor 79-86

Figure 3:The bytecode categories used in this paper.
This table lists the 31 bytecode categories used in this
paper, along with the set of bytecode instructions as-
signed to each category.

instructions varied considerably from one application
to another.

The values for this coefficient range between��
and�, where��� � ��� denotes a strong linear cor-
relation,��	 � ��� � ��� denotes a moderate linear
correlation, and values of��� � ��	 denote a weak
linear correlation.

4 Results and Observations

A summary of the results obtained from calculating
Pearson’s correlation coefficient is presented in Fig-
ure 4.

As explained in the previous section, the bivariate

instruction �� �� �� �� �

i mul 0.247 0.422 0.367 0.969 0.880
logic 1.816 2.006 3.372 3.982 0.873
iload 14.511 6.332 18.063 9.185 0.847
shift 0.269 0.550 0.465 1.196 0.844

fload 3.461 3.392 6.328 10.089 0.798
i add 0.981 0.837 2.535 2.899 0.788
i div 0.223 0.326 0.186 0.640 0.781
astor 1.293 1.271 0.936 1.524 0.750
fstor 0.870 0.985 1.486 2.333 0.743
f mul 1.095 1.362 2.714 2.595 0.723
f add 0.755 0.849 3.042 3.532 0.697
fcall 10.233 5.845 3.627 4.580 0.694
istor 2.763 2.045 2.505 3.111 0.691
objct 1.461 1.254 0.554 1.267 0.665
fcnst 0.667 0.841 0.332 0.848 0.665
yload 3.717 3.343 7.525 6.502 0.651
f sub 0.523 0.611 1.145 2.212 0.628
icnst 7.126 3.382 3.206 3.037 0.588
aload 17.030 6.243 16.233 8.433 0.554
cjump 3.082 1.356 5.665 3.092 0.546
field 11.777 6.632 11.122 8.813 0.503

ujump 1.697 0.815 0.508 0.683 0.468
compr 0.375 0.441 0.745 2.229 0.443
f div 0.315 0.395 0.093 0.203 0.419
i sub 0.768 0.787 0.687 0.968 0.360
array 1.034 0.896 0.224 0.380 -0.355
acnst 0.291 0.346 0.067 0.205 0.289
retrn 3.182 1.539 2.074 3.336 0.258
ystor 3.303 3.841 1.790 1.747 0.183
stack 5.001 3.526 2.400 2.583 0.109
miscl 0.134 0.304 0.005 0.021 0.087

Figure 4: Summary of results obtained. Here, vari-
ables� and� range over the static and dynamic data
respectively and� is the linear correlation coefficient.

data was calculated as:

� The frequencies of static occurrence of instruc-
tions from each of the 30 categories, expressed
as a percentage of the static instruction total

� The frequency of dynamic usage of instructions
from each of the 30 categories, expressed as a
percentage of the dynamic instruction total

In Figure 4 we show the summary data for each in-
struction category, consisting of the averages�� and��,
the standard deviations�� and�� for both sets of data,



and the linear correlation coefficient�. The results are
sorted in decreasing order of linear correlation.

It is immediately apparent that there is overall no
strong linear correlation between the static and dy-
namic figures. As can be seen in Figure 4, only 4
of the categories have a linear correlation coefficient
greater than���, and none greater than��
. The
remaining 27 categories exhibit only a moderate or
weak linear correlation. Indeed, even among the 4
categories exhibiting a strong linear correlation, three
of these,i mul, shift and logic have a very small av-
erage percentage use. It is easily verified that the
main reason for the strong linear correlation for these
three categories is the large number of applications
that make little or no use, statically or dynamically, of
these instructions.

The one reasonably frequently-used instruction
category that does exhibit a strong linear correlation is
iload, which loads an integer from the local variable
array onto the stack. Indeed, the coefficient for the
floating-point equivalentfload is ���
�, suggesting a
reasonably strong linear correlation here too. This
contrasts with the weaker linear correlation ofaload
instructions at just��		�. One explanation for this is
that theaload category is made up chiefly ofaload 0
instructions -aload 0 instructions count for 11.4/17.0
of the static total and 9.2/16.2 of the dynamic total of
aload instructions. This instruction typically denotes
the load of thethis-pointer before a method invoca-
tion or field reference, and its usage varies consider-
ably across applications. It is particularly unusual for
the g-mol application, a translation of a FORTRAN
program into Java.

5 Conclusion

In this paper we have presented a methodology and
results for determining the presence of a linear corre-
lation between static and dynamic bytecode-level data
for Java programs. We have discussed the background
and merits to such an approach, and have presented
some results for programs taken from the SPEC and
Java Grande benchmarks suites. Despite the sugges-
tion of [10] that static frequency analysis may be used
to predict dynamic performance for some assembly
languages, our figures show that this result is not di-
rectly transferable to Java bytecodes.

In future work we propose to extend this study fur-
ther, in particular addressing the following issues:

� Current JVM optimisation techniques concen-
trate on the determination of programhotspots
[1], where dynamic execution is concentrated.
We propose to investigate if there is a relation-
ship between the importance of hotspots in a pro-
gram’s execution, and the lack of linear correla-
tion between the static and dynamic frequency
data.

� The 31 categories chosen in this study were se-
lected to parallel those in [10]; other choices are
possible, and we propose to investigate if any
other choices produce better linear correlation.

� While the test suites involved are reasonably
standard, we foresee incorporating more of the
benchmarks suites discussed in Section 2 into
our research. Ultimately, we would like to use
this technique as an aid to determine the suitabil-
ity of individual programs within a benchmark
suite in terms of their overall bytecode profile.

We believe that the work presented here provide a
solid basis for this further research.

References:1

[1] E. Armstrong. Hotspot: A new breed of virtual
machine.Java World, March 1998.

[2] S. Baylor, M. Devarakonda, S. Fink,
E. Gluzberg, M. Kalantar, P. Muttineni,
E. Barsness, R. Arora, R. Dimpsey, and S. J.
Munroe. Java server benchmarks.IBM Systems
Journal, 39(1):57–81, 2000.

[3] K. R. Bowers and D. Kaeli. Characterising the
SPEC JVM98 benchmarks on the Java virtual
machine. Technical report, Northeastern Uni-
versity Computer Architecture Research Group,
Dept. of Electrical and Computer Engineering,
Boston Massachusetts 02115, USA, 1998.

[4] K. Bowles. UCSD Pascal.Byte, 3:170–173,
May 1978.

1All URLs last checked on November 15, 2001



[5] M. Bull, L. Smith, M. Westhead, D. Henty, and
R. Davey. A methodology for benchmarking
Java Grande applications. InACM 1999 Java
Grande Conference, pages 81–88, Palo Alto,
CA, USA, June 1999.

[6] M. Bull, L. Smith, M. Westhead, D. Henty, and
R. Davey. Benchmarking Java Grande applica-
tions. In Second International Conference and
Exhibition on the Practical Application of Java,
Manchester, UK, April 2000.

[7] P. S. Corporation. CaffeineMark 3.0.
http://www.pendragon-software.com/-
pendragon/cm3/, 13 May 1999.

[8] S. P. E. Corporation. SPEC releases
SPECjvm98, first industry-standard bench-
mark for measuring Java virtual machine
performance. Press Release, 19 August
1998. http://www.specbench.org/osg/jvm98/-
press.html.

[9] C. Daly, J. Horgan, J. Power, and J. Waldron.
Platform independent dynamic Java virtual ma-
chine analysis: the Java Grande Forum Bench-
mark Suite. InJoint ACM Java Grande - IS-
COPE 2001 Conference, pages 106–115, Stan-
ford, CA, USA, June 2001.

[10] J. Davidson, J. Rabung, and D. Whalley. Re-
lating static and dynamic machine code mea-
surements. IEEE Transactions on Computers,
41(4):444–454, April 1992.

[11] S. Dieckmann and U. H¨olzle. A study of the
allocation behaviour of the SPECjvm98 Java
benchmarks. In13th European Conference on
Object Oriented Programming, pages 92–115,
Lisbon, Portugal, June 1999.

[12] J. Gosling, B. Joy, and G. Steele.The Java Lan-
guage Specification. Addison Wesley, 1996.

[13] C. Herder and J. J. Dujmovi´c. Frequency analy-
sis and timing of Java bytecodes. Technical Re-
port SFSU-CS-TR-00.02, San Francisco State
University, Department of Computer Science,
15 January 2000.

[14] J. Horgan, J. Power, and J. Waldron. Mea-
surement and analysis of runtime profiling data
for Java programs. InFirst IEEE International
Workshop on Source Code Analysis and Ma-
nipulation, pages 122–130, Florence, Italy, 10
November 2001.

[15] T. Li, L. K. John, V. Narayanan, A. Sivasubra-
maniam, J. Sabarinathan, and A. Murthy. Us-
ing complete system simulation to characterize
SPECjvm98 benchmarks. InInternational Con-
ference on Supercomputing, pages 22–33, Santa
Fe, NM, USA, May 2000.

[16] T. Lindholm and F. Yellin.The Java Virtual Ma-
chine Specification. Addison Wesley, 1996.

[17] J. Neffenger. The Volano report: Which Java
platform is fastest, most scalable?JavaWorld,
March 1999.

[18] R. Radhakrishnan, N. Vijaykrishnan, L. John,
A. Sivasubramaniam, J. Rubio, and J. Sabari-
nathan. Java runtime systems: Characterization
and architectural implications.IEEE Transac-
tions on Computers, 50(2):131–146, February
2001.

[19] T. Wilkinson.KAFFE, A Virtual Machine to run
Java Code. http://www.kaffe.org, July 2000.

[20] M. Wolczko. Benchmarking Java with Richards
and DeltaBlue. Sun Microsystems Labo-
ratories, http://www.sun.com/research/people/-
mario/javabenchmarking/, 2001.


