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In this paper, Underdetermined Least Squares algorithms are derived, for Two-

Dimensional adaptive linear filtering and prediction. The derivation of the proposed algorithms
is based on the spatial shift invariance properties that the 2D discrete time signals possess. The
proposed algorithms have low computational complexity. The convergence speed and the tracking
ability of the proposed schemes, is comparable to that of that of the higher complexity 2D RLS
algorithms. The performance of the proposed algorithms is illustrated by simulation.
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1 Introduction

Two-Dimensional (2D) Adaptive Least Squares
(LS) filtering and system identification are of
great importance in a wide range of applica-
tions. Typical examples include image restora-
tion, image enhancement, image compression,
2D spectral estimation, stochastic texture mod-
eling, edge detection etc, [1].

Let z(m,n) be the input of a linear 2D FIR
filter. The filter’s output y(m,n) is a linear
combination of past input values z(m—1i,n—j)
weighted by the filter coefficients c; ;, over a
support region or filter mask, Ry, i.e.,

Z ¢ jx(m—1i,n—j) (1)

(i.J)ERF

y(m,n) =

The linear regression 2D model of eq. (1) can
be used to describe general support regions,
such as strongly causal, causal, semicausal, or
noncausal. To keep notation simple, 2D FIR
models with strongly causal support regions,
of a rectangular shape, will be considered. 2D

FIR models with arbitrarily shaped support re-
gions, of general convex shapes, [4], [10], can be
handled in a similar way.

Two different approaches, leading to two
widely used algorithmic families, have been used
for the adaptive estimation of the optimum LS
2D FIR filter, on the basis of the available da-
ta set. The first one, is based on a stochastic
approximation of the steepest descent method
and is known as the 2D LMS family, [2], [8], [9].
The later, is based on a stochastic approxima-
tion of the Gauss-Newton method and is known
as the 2D RLS family, [3],[4],[6], [11]. Although
2D LMS type algorithms have small computa-
tional cost, they suffer from slow convergence
rate, especially when the input signal autocor-
relation matrix has a large eigenvalue spread.
2D RLS type algorithms does not suffer from
such drawback, they have, however, increased
computational complexity.

In this paper, underdetermined LS adaptive
algorithms for 2D FIR filtering and linear pre-



diction will be considered. The proposed al-
gorithms are interpreted as deterministic coun-
terparts of stochastic Quasi-Newton adaptive
algorithms. First, a unified LS criterion will be
introduced, and will subsequently be utilized
for the derivation of underdetermined adaptive
schemes. Underdetermined sliding window, as
well as exponential window, adaptive 2D filter-
ing algorithms are proposed. Fast implementa-
tion schemes are derived, for both cases, taken
into account the spatial shift invariance proper-
ty that the 2D regressor vector possesses. The
proposed algorithms have low computational
complexity, comparable to that of the 2D LMS
algorithm. The convergence properties of the
proposed schemes, is comparable to that of the
higher complexity 2D RLS algorithms. The
performance of the proposed methods is illus-
trated by computer experiments.

2 Two-Dimensional FIR filtering

Let us consider a strongly causal 2D support
region. To make analysis more tractable, we
restrict Ry to be a rectangular mask, of size
p X q. Then, eq. (1) takes the form y(m,m) =
PO Z?;é ¢;ja(m — i,n — 7). This equation
can be written as a linear regression

y(m,n) = X" (m,n)C (2)

X(m,n) is the regressor vector, defined as

X(m,n)=[X"(m,n) X"(m—-1,n)...X"(m-—
q+1,n)]. Entries X(m —1i,n),i=0,1...¢—1,
carry the input data that lay on the ¢ — th row
of the support region Ry, i.e., X(m — ¢,n) =
[x(m—t,n)x(m—1i,n—=1)...2(m—1i,n—p+1)]".
Vector C that carries the filter coefficients has
a similar structure. Thus, we may write C =
[CT C3 ... C ", Ci,i=1,2...q, is defined
as: C; = [co; 1 ... ¢p—14]". Both vectors
X(m,n) and C, have dimensions (pq) X 1.

2.1 The 2D Adaptive Filtering

Least Squares 2D filtering aims to shape an in-
put signal xz(m,n) so that the corresponding
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Figure 1: 2D adaptive filtering

output y(m, n) matches a desired signal z(m, n).
In the LS formulation we assume that data rec-
ords of input and the desired response x(m,n)
and z(m,n), over the range (m,n) € [0,0] x
[M, N], provide our knowledge basis, and that
we select the filter which minimizes a cost func-
tion over the available data record. The min-
imization procedure is carried out recursively,
i.e., the optimum LS filter is re-estimated (or
adapted) each time a new pair of measurements
is collected, (see Figure 1).

Let us consider the filter output y(m,n),
over a subset of the filter mask R, C Ry. R4
is called the projection support region, and it
is defined as: (m —k,n—10),0 < k <1-1,
0 <! < k-1, (see Figure 2). Thus y(m,n) =
X*"(m,n)C(m,n). The data matrix X(m,n),
of dimensions (pg) x (kl), carries the regressor
vectors for all points that belong to the projec-
tion support region, R 4, It is organized as

X(m,n)=[X(m,n) X(m—1,n)
L X(m =14 1,0)] (3)

Each entry, X(m —i,n), ¢ =0,1...l — 1, car-
ries the regressor vector associated with sam-
ples z(m—1,n), that lay on the ¢ —th row of R ,,
ie, X(m—i,n)=[X(m—1t,n) X(m—1i,n—1)

. X(m—1i,n—k+1)]. Let €(m,n) be the a
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Figure 2: Support region of the 2D filter

posteriori filtering error, defined as
c(m,m) = 2(mn) — y(m,n)  (4)

z(m, n),is a vector of dimensions (k) x 1, which
carries the samples of the desired response sig-
nal, that lay on the projection area, i.e., z(m, n)
[z"(m,n)z"(m—1,n) ...2"(m—14+1,n)]" En-
tries z(m — ¢,n), ¢ = 0,1...k — 1, are defined
as: z(m —i,n) = [z(m —i,n) z(m —i,n — 1)
cooz(m =i, —k+ 1)

Following [5], let us consider adaptive filter-
ing schemes that minimize the error function

V(C) = [le(m, m)[§ -1 oy HI A )| [T (1.0
where €(m, n) is defined by eq. (4), and
A(m,n) = C(m,n) — C(m,n—1)

The norm is defined as: [|v||3 = " Av. Matri-
ces S7H(m,n), T™'(m,n) are Hermitian posi-
tive definite matrices.

Minimizing V(C), with respect to the filter
coefficients vector at space (m, n),i.e., C(m,n),
we get the recursive equation

A(m,n)C(m,n) = T~ (m,n)C(m,n — 1)
+X(m,n)S™(m,n)zT(m,n)

where: A(m,n) = X" (m,n)S~ (m,n)X(m,n)
+T~Y(m,n). Applying the matrix inversion

e(m,n) = z(m,n) — X" (m,n)C(m,n— 1)

R(m,n)=X"(m,n)X(m,n) + I
R(m,n)G(m,n) = e(m,n)
C(m,n) = C(m,n—1)+a(m,n)X(m,n)G(m,n)

Table 1: The 2D USW LS adaptive algorithm

lemma, we get

C(m,n) = C(m,n — 1)+
T(m’n)X(m7n)B_1(m,n)e(m,n) (5)

where:  B(m,n) = X" (m,n)T(m,n)X(m,n)
+S(m,n), and

e(m,n) = z(m,n)— X" (m,n)C(m,n— 1)

Eq. (5) defines a family of 2D adaptive al-
gorithms, where individual algorithms are re-
vealed by proper choice of the weighting matri-
ces S~ (m,n), and T~1(m, n). Using the above
updating scheme at our disposal, two 2D under-
determined LS adaptive algorithms are derived,
namely, the '2D Underdetermined Sliding Win-
dow LS adaptive algorithm, (2D USW LS), and
the 2D Underdetermined Ezponential Window
LS, (2D UEW LS) adaptive algorithm.

3 2D USW LS adaptive filtering

A 2D USW LS adaptive algorithm can readily
be derived from eqs. (5), setting T(m,n) =1
and S(m,n) = u(m,n)X"(m,n)X(m,n). The
resulting algorithm is tabulated in Table 1. The
trimming factor, a(m,n) = 1/(1 + p(m,n)),
controls the speed of convergence of the algo-
rithm. When a(m, n) is set equal to a constant
value, then, the 2D USW LS adaptive algorith-
m reduces to the 2D Affine Projection Algorith-
m, proposed in [7]. Matrix 6I that appears in
Table 1, serves as a regularization factor, that
prevents the covariance matrix R(m,n) of be-
ing singular. ¢ is usually given a small positive
value.



Direct implementation of the 2D USW L-
S adaptive scheme, of Table 1, requires a) the
computation of the covariance matrix R(m,n)
and b) alinear system solver, like the Clolesky’s
scheme, for the solution of the linear system in-
volved into the computation of the gain vector
G(m,n). Thus, the computational complexity
of the original 2D USW LS scheme is Cysw =
2pqkl + k?1?pq + k313 /6. This figure can be re-
duced by taken into account spatial shift in-
variance properties that the 2D regressor vector
possess.

3.1 Fast inverse covariance estimation

Let us consider the data vector x(m,n) that
carries the space samples that correspond to
the projection support region R,, x(m,n) =
xT(m,n) xT(m — 1,n) ... xT(m — | + 1,n)],
where, x.(m—1i,n) = [a¢(m—1i,n) z(m—i,n—1)
cox(m—in—Fk+ 1), i =01...k -1
Then, the data matrix X'(m,n), described by
eq. (3), can alternatively be organized in terms
of x(m,n),as X(m,n) = [x*(m,n) xT(m-1,n)
o XT(mo— g + 1,n)]". Entries X_(m - i,n),
i=0,1...q— 1, are defined as X(_m —i,n) =
[x"(m—i,n) x"(m—i,n—1)...x"(m—i,n—p+
1) ]*. Using the above, R(m, n), is equivalently
expressed as R(m,n) = 61+ Z?;é S0 x(m —
i,n—j)x"(m—1i,n—j). It can be readily shown
that R(m, n) is recursively estimated according
to the following scheme
R(m,n)=R(m,n—1)—
S0z x(m —i,n — p)xT(m —i,n — p)
F S x(m — i, mxT(m — i, m)
Using the above recursions, an efficient algo-
rithm for the computation of R™!(m,n), can
be developed, [11]. Indeed, let us consider the
sequence of matrices R;(m,n),71=1,2...¢q, de-
fined in a recursive way, as
Ri(m,n) =

R,_i(m,n)—x(m —t,n—p)x"(m—1i,n—p)

R;(m,n) = Ri(m,n)+x(m —i,n)x"(m —1i,n)
The initial conditions of the above recursive

LET R;'(m,n) =R (m,n—1)
FORi=1TO ¢, DO
vi(m,n) = R;Y (m,n)x(m —i,n — p)
al(m,n)=1—-x"(m—1i,n—p)v,(m,n)

7 r 7
B () = B () 4 YT VE ()

a¥(m,n)
wi(m,n) = R (m, n)x(m — i,n)
a(m,n) =14+ x"(m —1,n)w;(m,n)

w;(m,n)wl(m,n)

R! — R _
m ) = B ) - T
END DO

LET R™'(m,n)=R;'(m,n)

Table 2: Fast covariance inverse estimation

scheme, are given by : Ro(m,n) = R(m,n—1),
and R,(m,n) = R(m,n). Then, successive ap-
plication of the matrix inversion lemma lead-
s to a recursive estimation of inverse autocor-
relation matrix R™!(m, n). The resulting al-
gorithm is summarized on Table 2. Variables
w;(m,n) and v;(m, n) that appears in Table 2,
are defined as follows

R;(m,n)w;(m,n) =x(m —1i,n)
Ri—l(mv n)vi(mv n) = X(m i p)

When the recursive algorithm of Table 2 is u-
tilized for the computation of the inverse ma-
trix R™!(m, n), the computational complexity
of the 2D USW LS adaptive algorithm is re-
duced to Cysw_r = 2pgkl + (q + 1)k*1*. This
figure is an improvement over the original cost,
Cysw. The memory requirements of the method

is O((p+ k) x (¢ +1)).

4 2D UEW LS adaptive filtering

A 2D UEW LS adaptive algorithm is derived
from eq.(5) setting T(m,n) =TI and S(m,n) =
Q(m,n)—X"(m,n)X(m,n). Q(m,n)is an ex-
ponentially fading memory data matrix that is



defined recursively as Q(m, n) = AQ(m,n—1)+
070 Aix(m — i,n)x"(m — i,n). This recur-
sion can be used to develop an efficient algo-
rithm for the computation of the inverse ma-
trix Q~!(m,n), required by the algorithm. In-
deed, let us consider the sequence of matrices
Q:(m,n), i = 1,2...q, defined in a recursive
way, as

Qi(m,n) = Q;—1(m, n)—l—/\i_lx(m—i, n)x"(m—i,n)

The initial conditions of the above recursive
scheme, are: Qo(m,n) = AQ(m,n — 1). Then,
sucessive application of the matrix inversion lem-
ma leads to a recursive estimation of inverse au-
tocorrelation matrix Q~!(m, n). The resulting
algorithm is summarized on Table 3. Variables
u;(m, n) that appears in Table 3, are defined as

Qi—1(m,n)u(m,n) =x(m —1i,n)

The computational complexity of the proposed
2D UEW LS adaptive algorithm is Cuypw =
2pgkl + (¢ + 1)k?1*/2. This figure is an im-
provement over Cysw—7. Moreover, the mem-
ory requirements is now reduced to O(pgq+ kl).

5 Simulation Results

The performance of the proposed underdeter-
mined 2D adaptive algorithms is investigated
in the context of 2D system identification. We
consider the following 2D FIR system

z(m,m) = ZZcmx(m —1,n—j)+ n(m,n)

1=0 7=0

In this case, p = ¢ = 6. n(m,n) is a white
noise, disturbance signal, which corresponds to
an SN R = 30db. The input data signal, z(m, n),
is generated by the following model

A(z1, z2)x(m,n) = e(m,n)

where A(z1,22) = a(z1)a(zz), and a(z) = 1 +
a127t + ayz"%. The eigenvalue spread of the

2D autocorrelation matrix of the input signal

e(m,n) = z(m,n) — X" (m,n)C(m,n— 1)
F(m,n) = Q' (m,n)e(m,n)
C(m,n) = C(m,n—1)+a(m,n)X(m,n)F(m,n)

LET Qg'(m,n)=Q '(m,n— 1)
FORi=1TO g, DO

u;(m,n) = Qi__ll(m, n)x(m—1i,n)

at(m,n) = A\ 4+ xT(m — i, n)u;(m, n)

u;(m,n)ul(m,n)

Q; ' (m,n) = Q; ' (m,n) -

END DO
LET Q~'(m.n) = Q;'(m.n)

q

al(m,n)

Table 3: The 2D UEW LS adaptive algorithm
and fast covariance inverse update

x(m,n) is controlled by the model parameters
a; and agz, and it is set in the range of O(10°.
The 2D LMS, 2D RLS and the proposed 2D
USW LS and 2D UEW LS (k=1=3) adaptive
algorithms have been tested, over 256 X 256
available data, i.e., M = N = 256. The MSE
plots, which are provided in Figure 3, indicate
that the proposed 2D USW LS (curve 3) and
2D UEW LS (curve 4) behaves closely to the
2D-RLS (curve 1) , and outperforms the 2D
LMS (curve 2), algorithm, which shows a very
slow convergence rate. The tracking ability of
the proposed algorithms is illustrated in Fig-
ure 4, for the case when the model parame-
ters are arbuptly changed at the middle of the
experiment.

5 Conclusions

Two efficient 2D Underdetermined LS adaptive
algorithms have been proposed, for 2D filter-
ing system identification. The first method is
based on the sliding data window estimation
of the projection data covariance matrix. The
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Figure 4: Time-varying model simulation

second method utilize an exponential data win-
dow of the corresponding data covariance ma-
trix. The derivation of the proposed algorithm
is based on the spatial shift invariant properties
the 2D discrete time signals possess. The pro-
posed algorithms have low computational com-
plexity, comparable to that of the 2D LMS al-
gorithm. Simulation results indicate that the
convergence speed of the proposed scheme is
comparable to the higher complexity 2D RLS
algorithms.
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