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Abstract: We present an algorithm for computer games, which generates partial game trees in accordance 
with the theme, that when comparing the values of several alternative moves, the criterion should depend 
not only on their apparent scores, but also on the amount of time already expended in their examination, 
and remaining game time. We show that such algorithm admits an interpretation as a generalized minmax 
search. 
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1  Introduction 
Computer game playing programs typically 
choose their next move by searching a tree to 
some arbitrary depth, assigning estimates of the 
utility values to the nodes at that depth, then 
minmaxing these values to assign estimated utility 
values of all ancestor nodes [3], [5], and [6]. 
   
What distinguishes these algorithms is their 
choice of rules or heuristics used in guiding the 
search together with the heuristics encoded in 
their evaluation function. For some examples, see 
[1], [2], [4], and [7]. 
 
What is often not addressed by these algorithms is 
that a good move can be discovered only after a 

few positions have been evaluated, allowing for a 
player to use his remaining decision (game) time 
in evaluating future moves. 
 
Furthermore, we suggest that often, whether the 
largest score among a set of children thus far 
evaluated corresponds to a good position or not, is 
a function of its value, and the amount of time that 
player has expanded examining those children. 
 
Suppose, for instance, that a player, emulating a 
node P after having evaluated 4 of sP'  children, 
has obtained a best score of 0.6 from Q , the 
second child examined.  Such a score might 
appear appealing to that player had he examined 9 
or 10 of P s'  children with no improvement over 



 

the score provided by Q . In the latter case that 
player might be more inclined to abandon his 
search among the remaining children of P , and 
instead concentrate his efforts elsewhere 
 
In this paper we introduce a new algorithm whose 
distinguishing feature is that the search is guided 
by both the amount of a time a player has spend 
examining the descendants of a given position and 
their apparent score, and his remaining decision 
time. 
 
 
2  Theory Development  
To incorporate the above ideas algorithmically we 
introduce a number of preliminaries starting with 
the introduction of an escape function defined as a 
monotone non decreasing function on the closed 
unit interval with ( ) 10 =f  and ( ) 11 −=f .  
 
The use of escape functions as the next example 
illustrates permits for a natural interpretation of 
what it means to examine a fraction of a position’s 
children as a function of time and be consistent 
with the theme. Before proceeding with our 
example, a number of preliminaries are in order. 
 
 Henceforth, when discussing game instances we 
will assume the apriority existence of a game tree 
together with assigned values at each node 
corresponding to utility estimates. The assigned 
scores will be from the player’s perspective whose 
turn is to move from there. Furthermore, we will 
speak of a node as have been visited to mean that 
its assigned value has been accessed. 
Definition: Let nqq ,,1 K , nss ,,1 K  denote a set 
of nodes with common parent, and their 
respectively assigned scores. Furthermore, if jq  

is such that ( )nj sss ,,max 1 K−= , then jq  is 

called the minmax node, and js  is called the 
minmax score. 
 
Definition: The complexity assigned value of a 
node is the amount of time that elapsed for  that 

node to acquire its present score. For example the 
complexity assigned to a non expanded visited 
node is merely that node’s lookup time that has 
been assigned a priori, while the complexity 
assigned to a node Q with visited children is the 
sum of the complexities of all its visited children 
plus the time associated with the expansion of 
node Q . In light of these definitions, we will 
refer to time dependent algorithm as Complexity 
Driven Algorithm 
 
Example:  Let us assume that a player has just 
expanded a node Q  corresponding to his current 
position, and this action results in the creation of 
children 521 ,, qqq K , Fig. 1. 
Let us also suppose that the player has adopted the 
strategy of visiting one child at a time until he 
finds one that corresponds to a good position, but 
is not willing to visit more than 4

3  of these 

children, although his remaining decision time 
permits otherwise. Let us also suppose that the 
total number of time units in the game is 120. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can capture this decision process a bit more 
algorithmically as follows: 
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Begin visiting sQ'  children from left to right 
starting at 1q . After each visit compare the best 
score (i.e. minmax score) of the visited children 
against the value of the local escape function 
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δ δc . The quantity δc  shall 

denote the number of time units utilized in 
expanding a node, while ic  corresponds to the 
number of time units associated with evaluating a 
node iq , and k the number of visited nodes. Once 
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score m−  is the next candidate for expansion. 
We shall refer to such a node as an escape 
candidate. 
 
Furthermore, let kC  where 1≤ ≤k n  be the sum 
of the assigned complexities of the children of 
Q already visited plus δcn , and let Cn  denote 
the sum of the assigned complexities of all the 
children of Q  plus δcn , then the node qi  where 

ki ≤≤1  is said to be a local escape candidate if 
the following is true: 
 
1:  It has been visited   
2:  Its assigned score 

iqs  is the minmax value of 

all the visited children, that is 

( )
ki qqq sss −−= ,,max

1
L  

3:  it escapes (i.e. s e C
Cq
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If at any point the algorithm’s remaining decision 
time is not sufficient to visit any more nodes, the 
algorithm will choose, as the next escape 
candidate, the minmax child of the already visited 

children of Q  regardless of whether condition 3 
is satisfied. 
 
Getting back to our example after visiting 1q , the 
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expression is false and there is ample remaining 
decision time, he next visits 2q  and evaluates 
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escape candidate constraint  (and having time to 
visit more nodes), he visits 3q  and evaluates 
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having settled on an escape candidate he visits 4q  
and after evaluating 
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as the next escape candidate.  
 
The fact that a node has been elected as an escape 
candidate does not guarantee that it will be the 
next one to be expanded.  
 
Before stating what the criterion is, we need to 
define few terms. 
 
 A node is said to be terminal or leaf, if it has no 
descendants. A node is said to be solved, if it is 
assigned score is the minmax value of all its 
descendants, hence any visited leaf node is solved. 
A node p  is said to be a confirmation node or to 
have been confirmed if the following is true: 
 
(a) mp the minmax value of the scores of p ’s 

visited non-solved children is greater than or 
equal to the second best visited child of the 
root. 

(b) Let p pk1, ,K  denote the visited non-solved 
siblings of p , and let s j , 1≤ ≤j k  denote 

the minmax value of the scores of p j ’s 



 

visited non-solved children, then 

( )max , , ,− − − =s s s mp k p1 K . Note that 

initial root node is always confirmed. 
 
In order to continue the search along the subtree 
rooted at the most recent escape candidate q , we 
require that q be non-solved and its parent p  be 
confirmed. The requirement that q  be non-solved 
stems from the fact that no further information can 
be obtained by searching along the descendants of 
a solved node. If condition (a) is not satisfied, it 
signifies the existence of a node whose score is 
better than that of the current escape candidate, in 
which case we require the algorithm to seek a next 
escape candidate elsewhere. Condition (b) is 
required to insure that p  is being confirmed 
based on the score of the most recent escape 
candidate. 
 
Next the score and complexity values of the 
parent of 2q  are updated as described above, 
followed by either its confirmation or refutation. 
Since Q , the parent of 2q , is the initial root node, 
it is confirmed by default. There are three 
instances where root can be refuted. Two of those 
instances include the case where time has run out, 
or when all of sQ'  descendants have been visited, 
in which case the algorithm halts returning the 
minmax child of Q . The remaining instance 
occurs when a player after having updated a node, 
contrasts the minmax score of initial root against 
his global escape function so as to determine 
whether he should continue searching along the 
current subtree or simply make his move. Hence, 

in our example 
3
2
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current subtree. 
 

Next, 3q  is expanded creating the game tree 
depicted in Fig. 2. Let δc  and ( )xl  be as 
described above, and assume that nodes are 
visited from left to right. 
 
Although we omit the details, one can see that 
nodes 3531 ,, qq L , will be visited before 

appointing 32q  as the next escape candidate. The 
information obtained from visiting children of 

3q is now used to update the complexity and score 
of 3q , resulting in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Once  3q  is updated, it no longer possesses the 
best score among the visited children of Q , hence 
refuted.  
 

Fig. 2 
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Once again, since the updated minmax value of 
the root does not exceed ( )xg , we continue our 
search with the current subtree. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At this stage, the next escape candidate can be 
selected among either the unvisited children of Q  
or the visited siblings of 3q . We have opted for 
the algorithm to first seek an escape candidate 
among the visited children before searching 
among the non-visited children as follows: 
 
Let π 1 1= q qk, ,K  denotes a set of visited nodes 
with common parent and let π 2 1= + +q qk k j,K  
denotes their non-visited siblings. Furthermore let 
s sk j1, ,K +  denotes the assigned scores to nodes 

q qk j1, ,K + , respectively. If at least one of the 

nodes in π 1  is non-solved, we let s j  equal to the 

minmax value of the set consisting of all the 
scores of all visited non-solved nodes in π 1 , if 
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1≤ ≤i j . We shall refer to the above procedure 
as sibnext _ . 
 
The sibnext _  procedure is invoked after a node 
has been revoked, and the algorithm first seeks a 
next escape candidate among its siblings. There 
will however arise instances where the algorithm 
will seek an escape candidate along a previously 
expanded and visited node, which in turn has 
visited children. In such case the algorithm will 
invoke the routine trace p( ) that behaves as 
follows: 
 
trace p( )  : Returns a value of 0, if p has yet to be 

expanded else it seeks a non visited 
node among sp'  children, visits it 
and return that node’s id, otherwise it 
returns the minmax child of p  
among the sp' visited children. 

 
 

3  Complexity Bounded Algorithm 
Next we present our algorithm in pseudo code 
form followed by a description and function of its 
main routines: 
Integer  next_move(integer p)    
{ 
    Global Variable: boolean g_status; 
    boolean status ; 
    integer q; 
    q trace(p) 
    if(q=0) 
      { 
          expand(p) 
          q local_esc_child(p) 
          update(p) 

Fig. 3 
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         update g_status (p) 
          status refuted(p) 
       } 
    else  
          status true 
    while(not status) 
       { 
          n next_move(q) 
          q next_sib(q) 
          update(p) 
          update g_status(p) 
          status refute(p) 
        } 
     next_move minmax_node(q) 
} 
 
trace p( ) : Returns a value of 0, if p  has 

yet to be expanded else it seeks a 
non visited node among sp'  
children, visits it and return that 
node’s id, otherwise it returns 
the minmax child of p  among 

sp' visited non solved children. 
( )expand p : Generates all the children of p  

if not previously generated, 
otherwise exit.                                                   

( )esc child p_ : Returns an escape candidate 
from the children of p . 

( )pupdate : Updates p s'  score, complexity 
value and solved status as 
follows:  

 
* p  is assigned the updated 

score of the minmax child of 
p . 

 
*  Complexity becomes the sum 

of its initially assigned values 
and the updated complexities 
of all its visited descendants 

       
* Solved status of p  is 

assigned the conjunction of 

the solved status of all its 
children.  

next sib q_ ( ) : Returns a zero if g_status is true 
else returns a node from the set 
consisting of q  and its siblings, 
using the above described 
selection process. 

 
update g_status(p): Returns a value of true if 

minmax of current root exceeds 
( )xg  at 

Gametimemaining
C

Re
, where 

C  corresponds to roots acquired 
complexity else returns False. 
   

 
refuted(p): Rreturns false if p is not 

confirmed or g_status(p) is true , 
otherwise returns True. 

 
Theorem:  Let G  be a finite game graph where 
each node has an initial score and complexity 
value, let t  correspond to the amount of time a 
player has in deciding his next move on G  using 
the Complexity Control Algorithm. Furthermore, 
let q  denote the next move id returned by the 
Complexity Control Algorithm sq  its associated 
score, and let 
( ) 1=xg . For sufficiently large t  (i.e. more than 

or equal to expand and visit all of G ) 
then− =s Mq , where M  is the minmax value of 
G . 
 
Proof: Since the Complexity Control Algorithm 
updates the score of a node by assigning it the 
minmax value of its visited descendants. It 
suffices to show that the Complexity Control 
Algorithm, for sufficiently large t , will visit all 
the nodes of G . Given that the algorithm is at 
some arbitrary non-terminal state, we can show 
that it will subsequently visit a new node. Without 
loss of generality, we assume that 



 

( )next move p_  has just been invoked with some 
arbitrary node p . When our algorithm invokes 

( )ptrace , it will branch out with one of the 
following states: 
 
State A: ( )ptrace  returns a value of 0. 
State B: ( )ptrace  returns 1q , the id of a 
previously non-visited node. 
State C: ( )ptrace  returns 2q , the id of a 
previously visited non-solved node. 
 
If state A is realized, the algorithm subsequently 
expands p  and visits at least one of sp'  
children. If the algorithm branches out to state B, 
then 1q  is visited. If the algorithm branches out to 
State C, the algorithm will recursively invoke 

( )ptrace , and eventually landing on state A or 
state B. The claim that either State A or State B 
will eventually be realized is assured by the fact 
that ( )ptrace  always returns either 0 or the id of 
a non solved node, guarantying that at least one of 

sp'  descendants has yet to be visited. After a 
previously non-visited node q becomes visited, 
the algorithm will update its parent pand 
determine whether p  is confirmed or refuted. If 
confirmed, the algorithm will subsequently invoke 

( )ptrace , thus assuring that eventually State A or 
State B is realized. The only way for the algorithm 
to fail branching out to either State A or State B is 
when p and its parents are constantly refuted. 
This, however, cannot go on indefinitely, for 

rootp =  cannot be refuted unless it has been 
solved (i.e. all of its descendants have been solved 
in which case the algorithm rightfully terminates). 
Thus the algorithm will invoke ( )ptrace , where 
p is a non-solved node, and subsequently either 
State A or State B will be realized. This completes 
the proof.  
 
 

4  Conclusion 
We have presented a domain independent game 
tree search algorithm for choosing next moves in a 
two person zero sum game. Its distinguishing 
features over other such algorithms is that it is 
driven by both the best position examined and the 
amount of time expanded in attaining such a 
position, and allows savings of time on a given 
move to be used for future moves. Furthermore 
for finite game trees, it allows the interpretation of 
being a generalized minmax algorithm in the 
asymptotic sense as a function of time. 
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