

COMPLEXITY DRIVEN ALGORITHM FOR
COMPUTER GAMES

HASAN KRAD

Computer Science Department
Dillard University

2601 Gentilly Blvd.
New Orleans, LA 70122

UNITED STATES OF AMERICA

KOSTAS PETRAKOS

Mathematics and Computer Science Department
Adelphi University

Garden City, N.Y. 11530
UNITED STATES OF AMERICA

Abstract: We present an algorithm for computer games, which generates partial game trees in accordance
with the theme, that when comparing the values of several alternative moves, the criterion should depend
not only on their apparent scores, but also on the amount of time already expended in their examination,
and remaining game time. We show that such algorithm admits an interpretation as a generalized minmax
search.

Key Words: Search Algorithms, Minmax Algorithm, Escape Function, Time bounded Algorithm.

1 Introduction
Computer game playing programs typically
choose their next move by searching a tree to
some arbitrary depth, assigning estimates of the
utility values to the nodes at that depth, then
minmaxing these values to assign estimated utility
values of all ancestor nodes [3], [5], and [6].

What distinguishes these algorithms is their
choice of rules or heuristics used in guiding the
search together with the heuristics encoded in
their evaluation function. For some examples, see
[1], [2], [4], and [7].

What is often not addressed by these algorithms is
that a good move can be discovered only after a

few positions have been evaluated, allowing for a
player to use his remaining decision (game) time
in evaluating future moves.

Furthermore, we suggest that often, whether the
largest score among a set of children thus far
evaluated corresponds to a good position or not, is
a function of its value, and the amount of time that
player has expanded examining those children.

Suppose, for instance, that a player, emulating a
node P after having evaluated 4 of sP' children,
has obtained a best score of 0.6 from Q , the
second child examined. Such a score might
appear appealing to that player had he examined 9
or 10 of P s' children with no improvement over

the score provided by Q . In the latter case that
player might be more inclined to abandon his
search among the remaining children of P , and
instead concentrate his efforts elsewhere

In this paper we introduce a new algorithm whose
distinguishing feature is that the search is guided
by both the amount of a time a player has spend
examining the descendants of a given position and
their apparent score, and his remaining decision
time.

2 Theory Development
To incorporate the above ideas algorithmically we
introduce a number of preliminaries starting with
the introduction of an escape function defined as a
monotone non decreasing function on the closed
unit interval with () 10 =f and () 11 −=f .

The use of escape functions as the next example
illustrates permits for a natural interpretation of
what it means to examine a fraction of a position’s
children as a function of time and be consistent
with the theme. Before proceeding with our
example, a number of preliminaries are in order.

 Henceforth, when discussing game instances we
will assume the apriority existence of a game tree
together with assigned values at each node
corresponding to utility estimates. The assigned
scores will be from the player’s perspective whose
turn is to move from there. Furthermore, we will
speak of a node as have been visited to mean that
its assigned value has been accessed.
Definition: Let nqq ,,1 K , nss ,,1 K denote a set
of nodes with common parent, and their
respectively assigned scores. Furthermore, if jq

is such that ()nj sss ,,max 1 K−= , then jq is

called the minmax node, and js is called the
minmax score.

Definition: The complexity assigned value of a
node is the amount of time that elapsed for that

node to acquire its present score. For example the
complexity assigned to a non expanded visited
node is merely that node’s lookup time that has
been assigned a priori, while the complexity
assigned to a node Q with visited children is the
sum of the complexities of all its visited children
plus the time associated with the expansion of
node Q . In light of these definitions, we will
refer to time dependent algorithm as Complexity
Driven Algorithm

Example: Let us assume that a player has just
expanded a node Q corresponding to his current
position, and this action results in the creation of
children 521 ,, qqq K , Fig. 1.
Let us also suppose that the player has adopted the
strategy of visiting one child at a time until he
finds one that corresponds to a good position, but
is not willing to visit more than 4

3 of these

children, although his remaining decision time
permits otherwise. Let us also suppose that the
total number of time units in the game is 120.

We can capture this decision process a bit more
algorithmically as follows:

()1,, 4
3

5
−q ()1,, 3

1
1q

 Q

()1,, 5
1

4
−q

()1,, 3
2

3
−q

()1,, 5
3

2
−q

Fig. 1

Begin visiting sQ' children from left to right
starting at 1q . After each visit compare the best
score (i.e. minmax score) of the visited children
against the value of the local escape function

()



−

≤≤
=

otherwise
xxl

1
75.001

 at
n

k

C
C

, where

∑
=

≤≤+=
k

i
ik nkccnC

1
1,δ ,

∑
=

+=
n

i
in ccnC

1
δ δc . The quantity δc shall

denote the number of time units utilized in
expanding a node, while ic corresponds to the
number of time units associated with evaluating a
node iq , and k the number of visited nodes. Once









≥

n

k

C
Cem then the child of Q with assigned

score m− is the next candidate for expansion.
We shall refer to such a node as an escape
candidate.

Furthermore, let kC where 1≤ ≤k n be the sum
of the assigned complexities of the children of
Q already visited plus δcn , and let Cn denote
the sum of the assigned complexities of all the
children of Q plus δcn , then the node qi where

ki ≤≤1 is said to be a local escape candidate if
the following is true:

1: It has been visited
2: Its assigned score

iqs is the minmax value of

all the visited children, that is

()
ki qqq sss −−= ,,max

1
L

3: it escapes (i.e. s e C
Cq

k

ni
≥ 



).

If at any point the algorithm’s remaining decision
time is not sufficient to visit any more nodes, the
algorithm will choose, as the next escape
candidate, the minmax child of the already visited

children of Q regardless of whether condition 3
is satisfied.

Getting back to our example after visiting 1q , the

player evaluates 1
5
1

3
1

=





≥

− e given that the

expression is false and there is ample remaining
decision time, he next visits 2q and evaluates







≥






 −

5
2

5
3,

3
1max e . Not having satisfied the

escape candidate constraint (and having time to
visit more nodes), he visits 3q and evaluates

1
5
3

3
2,

5
3,

3
1max =






≥






 − e . Once again not

having settled on an escape candidate he visits 4q
and after evaluating

1
5
4

5
1,

3
2,

5
3,

3
1max −=






≥






 − e , he selects 2q

as the next escape candidate.

The fact that a node has been elected as an escape
candidate does not guarantee that it will be the
next one to be expanded.

Before stating what the criterion is, we need to
define few terms.

 A node is said to be terminal or leaf, if it has no
descendants. A node is said to be solved, if it is
assigned score is the minmax value of all its
descendants, hence any visited leaf node is solved.
A node p is said to be a confirmation node or to
have been confirmed if the following is true:

(a) mp the minmax value of the scores of p ’s

visited non-solved children is greater than or
equal to the second best visited child of the
root.

(b) Let p pk1, ,K denote the visited non-solved
siblings of p , and let s j , 1≤ ≤j k denote

the minmax value of the scores of p j ’s

visited non-solved children, then

()max , , ,− − − =s s s mp k p1 K . Note that

initial root node is always confirmed.

In order to continue the search along the subtree
rooted at the most recent escape candidate q , we
require that q be non-solved and its parent p be
confirmed. The requirement that q be non-solved
stems from the fact that no further information can
be obtained by searching along the descendants of
a solved node. If condition (a) is not satisfied, it
signifies the existence of a node whose score is
better than that of the current escape candidate, in
which case we require the algorithm to seek a next
escape candidate elsewhere. Condition (b) is
required to insure that p is being confirmed
based on the score of the most recent escape
candidate.

Next the score and complexity values of the
parent of 2q are updated as described above,
followed by either its confirmation or refutation.
Since Q , the parent of 2q , is the initial root node,
it is confirmed by default. There are three
instances where root can be refuted. Two of those
instances include the case where time has run out,
or when all of sQ' descendants have been visited,
in which case the algorithm halts returning the
minmax child of Q . The remaining instance
occurs when a player after having updated a node,
contrasts the minmax score of initial root against
his global escape function so as to determine
whether he should continue searching along the
current subtree or simply make his move. Hence,

in our example
3
2

 is contrasted against

()




≥−
≤≤

=
301
3001

x
xxg at 4== kCx .

Since 1
3
2
< , we continue searching along our

current subtree.

Next, 3q is expanded creating the game tree
depicted in Fig. 2. Let δc and ()xl be as
described above, and assume that nodes are
visited from left to right.

Although we omit the details, one can see that
nodes 3531 ,, qq L , will be visited before

appointing 32q as the next escape candidate. The
information obtained from visiting children of

3q is now used to update the complexity and score
of 3q , resulting in Fig. 3.

Once 3q is updated, it no longer possesses the
best score among the visited children of Q , hence
refuted.

Fig. 2

()1,, 9
2

32
−q

()1,, 11
1

33
−q

()1,, 3
1

36
−q

()1,0,35q

()1,, 12
1

34q

()1,, 9
1

31q

 Q

()1,, 3
1

1q ()1,, 4
3

5
−q

()1,, 5
3

2
−q

()1,, 3
2

3
−q

()1,, 5
1

4
−q

Once again, since the updated minmax value of
the root does not exceed ()xg , we continue our
search with the current subtree.

At this stage, the next escape candidate can be
selected among either the unvisited children of Q
or the visited siblings of 3q . We have opted for
the algorithm to first seek an escape candidate
among the visited children before searching
among the non-visited children as follows:

Let π 1 1= q qk, ,K denotes a set of visited nodes
with common parent and let π 2 1= + +q qk k j,K
denotes their non-visited siblings. Furthermore let
s sk j1, ,K + denotes the assigned scores to nodes

q qk j1, ,K + , respectively. If at least one of the

nodes in π 1 is non-solved, we let s j equal to the

minmax value of the set consisting of all the
scores of all visited non-solved nodes in π 1 , if

s e C
Cj

k

k j

≥










+

 then next sib q j_ ← else

next sib qk i_ ← + where 









≥

+

+
+

jk

ik
ik C

C
es ,

1≤ ≤i j . We shall refer to the above procedure
as sibnext _ .

The sibnext _ procedure is invoked after a node
has been revoked, and the algorithm first seeks a
next escape candidate among its siblings. There
will however arise instances where the algorithm
will seek an escape candidate along a previously
expanded and visited node, which in turn has
visited children. In such case the algorithm will
invoke the routine trace p() that behaves as
follows:

trace p() : Returns a value of 0, if p has yet to be

expanded else it seeks a non visited
node among sp' children, visits it
and return that node’s id, otherwise it
returns the minmax child of p
among the sp' visited children.

3 Complexity Bounded Algorithm
Next we present our algorithm in pseudo code
form followed by a description and function of its
main routines:
Integer next_move(integer p)
{
 Global Variable: boolean g_status;
 boolean status ;
 integer q;
 q trace(p)
 if(q=0)
 {
 expand(p)
 q local_esc_child(p)
 update(p)

Fig. 3

()1,, 9
2

32
−q

()1,, 11
1

33
−q

()1,, 3
1

36
−q

()1,0,35q

()1,, 12
1

34q

()1,, 9
1

31q

()1,, 3
1

1q ()1,, 4
3

5
−q

()1,, 3
2

2
−q

()6,, 9
2

3q

()1,, 5
1

4
−q

 Q

 update g_status (p)
 status refuted(p)
 }
 else
 status true
 while(not status)
 {
 n next_move(q)
 q next_sib(q)
 update(p)
 update g_status(p)
 status refute(p)
 }
 next_move minmax_node(q)
}

trace p() : Returns a value of 0, if p has

yet to be expanded else it seeks a
non visited node among sp'
children, visits it and return that
node’s id, otherwise it returns
the minmax child of p among

sp' visited non solved children.
()expand p : Generates all the children of p

if not previously generated,
otherwise exit.

()esc child p_ : Returns an escape candidate
from the children of p .

()pupdate : Updates p s' score, complexity
value and solved status as
follows:

* p is assigned the updated

score of the minmax child of
p .

* Complexity becomes the sum

of its initially assigned values
and the updated complexities
of all its visited descendants

* Solved status of p is

assigned the conjunction of

the solved status of all its
children.

next sib q_ () : Returns a zero if g_status is true
else returns a node from the set
consisting of q and its siblings,
using the above described
selection process.

update g_status(p): Returns a value of true if

minmax of current root exceeds
()xg at

Gametimemaining
C

Re
, where

C corresponds to roots acquired
complexity else returns False.

refuted(p): Rreturns false if p is not

confirmed or g_status(p) is true ,
otherwise returns True.

Theorem: Let G be a finite game graph where
each node has an initial score and complexity
value, let t correspond to the amount of time a
player has in deciding his next move on G using
the Complexity Control Algorithm. Furthermore,
let q denote the next move id returned by the
Complexity Control Algorithm sq its associated
score, and let
() 1=xg . For sufficiently large t (i.e. more than

or equal to expand and visit all of G)
then− =s Mq , where M is the minmax value of
G .

Proof: Since the Complexity Control Algorithm
updates the score of a node by assigning it the
minmax value of its visited descendants. It
suffices to show that the Complexity Control
Algorithm, for sufficiently large t , will visit all
the nodes of G . Given that the algorithm is at
some arbitrary non-terminal state, we can show
that it will subsequently visit a new node. Without
loss of generality, we assume that

()next move p_ has just been invoked with some
arbitrary node p . When our algorithm invokes

()ptrace , it will branch out with one of the
following states:

State A: ()ptrace returns a value of 0.
State B: ()ptrace returns 1q , the id of a
previously non-visited node.
State C: ()ptrace returns 2q , the id of a
previously visited non-solved node.

If state A is realized, the algorithm subsequently
expands p and visits at least one of sp'
children. If the algorithm branches out to state B,
then 1q is visited. If the algorithm branches out to
State C, the algorithm will recursively invoke

()ptrace , and eventually landing on state A or
state B. The claim that either State A or State B
will eventually be realized is assured by the fact
that ()ptrace always returns either 0 or the id of
a non solved node, guarantying that at least one of

sp' descendants has yet to be visited. After a
previously non-visited node q becomes visited,
the algorithm will update its parent pand
determine whether p is confirmed or refuted. If
confirmed, the algorithm will subsequently invoke

()ptrace , thus assuring that eventually State A or
State B is realized. The only way for the algorithm
to fail branching out to either State A or State B is
when p and its parents are constantly refuted.
This, however, cannot go on indefinitely, for

rootp = cannot be refuted unless it has been
solved (i.e. all of its descendants have been solved
in which case the algorithm rightfully terminates).
Thus the algorithm will invoke ()ptrace , where
p is a non-solved node, and subsequently either
State A or State B will be realized. This completes
the proof.

4 Conclusion
We have presented a domain independent game
tree search algorithm for choosing next moves in a
two person zero sum game. Its distinguishing
features over other such algorithms is that it is
driven by both the best position examined and the
amount of time expanded in attaining such a
position, and allows savings of time on a given
move to be used for future moves. Furthermore
for finite game trees, it allows the interpretation of
being a generalized minmax algorithm in the
asymptotic sense as a function of time.

References:
[1] Allis, L. Victor, Maatren van der Meulen and

H. Jaap van den Herik, “Proof number
search”, Artificial Intelligence, Vol. 66,
1994, pp.91-124

[2] Berliner Hans, “The B* Tree Search

Algorithm: A Best-First Proof Procedure”,
Artificial Intelligence, Vol.12, 1979, pp.23-
40

[3] Kunth, Donald E. and Ronald W. Moore,

“An Anallysis of Alpha-Beta Prunning”,
Artificial Intelligence, Vol. 6, 1975, pp.239-
326

[4] McAllester, David Allen, “Conspiracy

Numbers for Min-Max Search”, Artificial
Intelligence, Vol. 35, 1988, pp.287-310.

[5] Nau, Dana S., “Pathology on Game Trees

Revisited, an Alternative to Minimaxing”,
Artificial Intelligence, Vol. 21, 1983, pp.
221-244.

[6] Pearl, Judea, “Asymptotic Properties of

Minmax Trees and Game-Searching
Procedures”, Artificial Intelligence, Vol. 14,
1980, pp. 113-138.

[7] Schaeffer, Jonathan, “Conspiracy Numbers”,
 Artificial Intelligence, Vol. 43, 1990, pp.67-

84.

