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Abstract:-In this paper, we develop some novel comparison principles that characterize maximal solutions of state-constrain-
ed differential inequalites. Then, we attempt to explicitly characterize the solution to the time-optimal control problem for
a class of state-constrained second-order systems including robotic manipulators with geometric path constraints and single
-degree-of-freedom (DOF') mechanical systems with friction. On the basis of the novel comparison principles, we show that
the time-optimal trajectory is uniquely determined by two curves: the forward velocity limitation curve and the backward

velocity limitation curve. These two curves can be constructed by solving two scalar ordinary differential equations. Final-
ly, the method developed for solving the time-optimal control problem works regardless of the presence of the singular poin-
ts and/or arcs and, moreover, works even when there exist an infinite number of switching points.
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1 Introduction

The problem of transferring the state of a given system from

one state to another in minimum time is known as the time-
optimal control problem, and it is one of the basic concerns

of optimal control theory. During the past forty years, a se-
ries of fundamental results has been obtained by applications
of the Pontryagin’s maximum principle (PMP) [1] to time-
optimal control of finite dimensional linear systems and low-
order nonlinear systems [2]. As far as second-order systems
without state constraints are concerned, extensive results on
the structure and structural stability of time-optimal trajec-
tories are now available in the literature [3]. On the contrary,
in the case of state-constrained second-order systems, it is ex-
tremely difficult except for some special cases even to check
whether the solution of the two-point boundary value problem
(TPBVP) resulting from the PMP is indeed time-optimal.
Until now, differential and integral inequalities have been
central in the study of uniqueness and asymptotic behavior
of differential equation solutions, Lyapunov stability, and so
on; See the vast literature in [10]. The main contribution
of this paper is to show that some comparison principles for
differential inequalities are useful to solve the time-optimal
control problem for a class of state-constrained second-order
systems including robotic manipulators with geometric path
constraints [4], and single-degree-of-freedom (DOF') mechan-
ical systems with friction [5]. To do so, we develop some
novel comparison principles for state-constrained differential

inequalites, which may be of independent interest. On the
basis of the novel comparison principles, we then attempt to
explicitly characterize the solution to the time-optimal control
of state-constrained second-order systems. Specifically speak-
ing, we show that the time-optimal trajectory is uniquely de-
termined by two curves: the forward velocity limitation curve
and the backward velocity limitation curve. These two curves
can be constructed by solving two scalar ordinary differen-
tial equations. Finally, the method developed for solving the
time-optimal control problem works regardless of the pres-
ence of the singular points and/or arcs and, moreover, works
even when there exist an infinite number of switching points.

2 Comparison Principles

Consider the following two ordinary differential equations

h(z,v(x)) € R™, x> o, v(xo) = vo
h(z,v(z)) € R™, x < zy, v(zy) = vf

(1)
(2)

where h : R?> — R. Here and elsewhere, a. e. stands
for “almost everywhere” and the derivative of a function
g : R™ — R with respect to 2 will be denoted by ¢'. In our de-
velopment, if the ordinary differential equation in (1) has the
unique solution or trajectory in the classical sense [8], then it
is denoted by vr(+; zo, vo, h) in order to recall its dependence



on the function h and the initial condition v(zg) = vg. On
the other hand, if the ordinary differential equation in (2) has
the unique solution or trajectory in the classical sense, then
it is denoted by vg(-;zy, vy, h).

We now clarify the concept of maximal solutions of dif-
ferential inequalities. Consider the following differential in-
equality, defined on a subinterval (29, 2] of R.

0, a. e.on [zg, zf] CR  (3)
0, Vz € [zo, /] (4)

0 (5)

<
<

Q

(
H(v(zo), v(zy))

where F', G, and H are functions defined appropriately. A
function v : [x9, x¢] = R is said to be a solution of the
above differential inequality, if it is absolutely continuous and
satisfies (3)-(5). Let S denote the set of solutions of the differ-
ential inequalities in (3)-(5). Then, the differential inequality
in (3)-(5) is said to have a mazimal solution, if there exists a
function v* € S such that

veS = wv(z) < v(x),

(6)

V& € [zo, ]

If the maximal solution exists, then it must be unique.
Consider the following two state-constrained differential
inequalities.

Ul(x) < f(ar,v(a:)),a. €. on [1:0, l‘f]
X with v(zg) = vy < g(mo) (7)
o(z) < g(z), ¥ € [wo, ]

Ul(x) > f(ar,v(a:)),a. €. on [1:0, l‘f]

(8)

Q- with v(zyr) = vy < g(zy)

| v(@) < g(@), Va € [wo, 2/]
where f : R> - Rand g : R - RU{oo}. Note that the above
two differential inequalities can take the form in (3)-(5) with
functions F', G, and H defined approriately.

The well-known comparison principle [6] characterizes
the maximal solution of the differential inequality in ¥ when
g(z) = co. In what follows, we attempt to extend the com-
parison principle to the case of g(z) < co. Henceforth, we
assume that g is a function from R into R. For given two
functions f : R> -+ Rand g : R — R, we define two functions
Ytg:RxR—= Rand Qf,: Rx R — R as follows.

T,v), z,v) €A

S 1.0(@,0) A f(. ) (z,v) € ©)
min{f(z,v), ¢'(z)}, (z,v) ¢ A
T,v), z,v) €A

0,0 & 4T o€ 40
max{f(z,v), ¢'(v)}, (z,v) €A

A 2 {(zv) : z€R, v<g(e)} (11)

As will be shown below, the maximal solutions of the differ-
ential inequalities in ¥ and 2 are given, respectively, by the
solutions of the scalar ordinary differential equations

v'(z) = Zp4(z,0(z)), a. e onz >z (12)
with v(zg) = vo,
v'(x) = Qf 4(z,v(z)), a. e onz<uzy (13)

with v(zy) = vy.

The following theorem states that, under quite natural
assumptions on the functions f and g, each of the differential
equations in (12) and (13) has the unique solution in classi-
cal sense, even though the functions X¢, and Q¢ , are not

necessarily continuous at all point (z,v) € R

Theorem 1 Suppose that the function f is piecewise contin-
wous with respect to the first argument and locally Lipschitz
with respect to the second argument and that the function g
is piecewise continuously differentiable. Then, the differential
equation in (12) (respectively, (13)) has the unique solution
in the classical sense, that is vr(-;2o,v0,Xy,4) (respectively,
va(;xyp,vp, Q) is well defined. ]

The proof is given in Appendix A.

The following theorem can be viewed as a natural exten-
sion of the well-known comparison principle [6] for the dif-
ferential inequalities without state constraints to those with
state constraints in ¥ and €.

Theorem 2 Suppose that the hypotheses of Theorem 1 are sat-
isfied. Suppose further that there is no finite escape phe-
nomenon over the interval [xo, xy] in each of the the dif-
ferential equations in (12) and (13). Then, the mazimal
solutions of the state-constrained differential inequalities in
Y and Q are given, respectively, by vp(-;xo,v0,X¢14) and
vB(5 2,05, Q1) u

The proof is given in Appendix B.

3 An Application to Time-Optimal
Control

Consider the second-order system

I=u (14)
subject to the control input constraint:
um(z,2) < u < upy(z, ). (15)

Here and elsewhere, the function f denotes the time derivative
of f.

We denote by X the set of all trajectories (Z,%)
[0, 00) = R satisfying the constraint

U (2(t), 2(t)) < 2(t) < unr(Z(t),%(t)),a. e. ont > 0. (16)



along with the initial condition

(£(0), (0)) = (20,0)- (17)

For each trajectory (#,%) € X, we denote t;(#,4) by the
traversal time of (i, ) from the initial state (xg,0) to the

final state (zy,0), that is,
tp(#, &) =inf{t >0 :

(&(8),2(t) = (z7,0)}.

Here, we set tf(i“,aL:) = oo, if the trajectory (i,i) does not
arrive at (zf,0) within a finite time. Then, we define the
subset Xy of X' as the set of the trajectories reaching (z¢,0)

within a finite time. In what follows, we only consider the
case of

(18)

zo < Ty (19)

since the other case of g > z¢ can be transformed into —z¢ <
—xy via the transform s : * -+ —z. Then, we impose the
following state constraint on the system in (14).

0 < #(t) < a(i(1)),

Vi >0 (20)

Here, we assume that the function a : R — R is piecewise
continuously differentiable and satisfies that

a(z) >0, Vz€R. (21)

In view of (19), it is natural to assume that the admissible
velocity is always non-negative. Besides, the constraints in
(20) requires that the admissible velocity is bounded above.

In our development, we make the following assumption.
(A.1) The functions u,, and uy; are locally Lipschitz and
satisfy that

um(z, %) <upm(z,z), if 0<z<a(x)

U (2,0) < 0 < unp(z,0), Vz€ [z, zy]

The inequality in (22) is quite natural. On the other hand,
in the case of single-DOF mechanical systems, the inequality
in (23) simply means that the mass can stand still at any
position between r = z9 and z = z;.

The time-opimal control problem we attempt to solve
can be stated as follows:

(P): (z*,i*) =

min

arg 1
(z,2)€P

te (&, %) (24)

where the subset P consists of the trajectories (#,2) in X
satisfying the state constraint in (20). In what follows, the
trajectory (x*,2*) is called the time-optimal trajectory or

solution.
We begin by establishing an important property of the

time-optimal trajectory.

Lemma 1 Let & € P and suppose that a trajectory (ﬁ:,:ﬁ) has
an intermediate zero-velocity point before arriving at the final
state (x7,0). Then, the trajectory (i‘,i‘) is not time-optimal.

|

The proof is omitted because of limited space.

As the direct consequence of Lemma, 1, the time-optimal
control problem (P) is reduced to the following;:
(25)

(P): (z*,4*) = arg min t;(%,1)

(#,%)€Pn

where P,, denotes the set of time functions (&, #) € P with no
intermediate zero-velocity points before arriving at the final
state (z¢,0).

To present the time-optimal solution, we need to develop
a comparison principle for the following differential inequality.

am(z,v(z)) <v'(z) < apy(z,v(x)),
a. e. on [zg, xf]

0<v(z) <alz), Ve € (x, zy)
v(zg) =v(xy) =0

where the functions a,, : Rx R — Rand ayy : RXxR— R
are defined as

Gm(ZL‘,’U) é M, CLM(:U,U) é M

” ” (27)

The following theorem states the comparison principle
for the differential inequality in A.

Theorem 8 The differential inequality in A has the maximal
solution v* given by

. A
v (CU) :mln{’UF(m;xO:Oa EaM7C¥)v ’UB(QZ;Q?f,O,Qa"“a)},
Vi € [zo, zf]. (28)
|

We now clarify the relationship between the time-optimal
solution (z*,4*) and the maximal solution v* of the differen-
tial inequality in A.

Theorem 4 The time-optimal trajectory (z*,&*) traverses in

the © — % phase plane along the mazimal solution v* of the
differential inequality in A with the minimum traversal time

t; given by
. /I’ 1
ty = —dz.
f o v*(w)

The proofs of Theorem 3 and Theorem 4 are omitted
because of limited space.

(29)

4 Conclusion

In this paper, we have developed some variants of the conven-
tional comparison principle for state-constrained differential
inequalites. Then, on the basis of the novel comparison prin-
ciples, we have characterized completely the solution to the
time-optimal control problem for a class of state-constrained
second-order systems.



References

[1] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze
and E. F. Mishchenko, The mathematical theory of op-
timal processes , Wiley, New York, 1962.

[2] E. B. Lee and L. Markus, Foundations of optimal control
theory , John Wiley, New York, 1967.

[3] H.J. Sussmann, “Regular synthesis for time-optimal con-

trol of single-input real analytic systems in the plane”’,
SIAM J. Control Optim., 25 (1987), pp. 1145-1162.

[4] K. G. Shin and N. D. Mckay, “Minimum-time control of
robotic manipulators with geometric path constraints,”
IEEE Trans. Automatic Control, vol. 30, no. 6, pp. 531-
541, June 1985.

[5] T. H. Kim and I. J. Ha, “Time optimal control of a
single-DOF mechanical systems with friction,” IEEE
Trans. Automatic Control, vol. 46, no. 5, pp. 751-755,
June 2001.

[6] H. K. Khalil, Nonlinear systems. , Prentice-Hall, New
Jersey, 1996

[7] E. Hewitt and K. Stromberg, Real and abstract analysis.
Springer-Verlag, New York, 1967.

[8] J. K Hale, Ordinary differential equations ,
Interscience, New York, 1969.

Wiley-

[9] J.P. Aubin, Differential inclusions : set-valued maps and
viability theory. Springer-Verlag, New York, 1984.

V. A. Lakshmikantham and S. Leela, “Differential and
integral inequalities”, Vols. 1-2, Acad. Press, 1969.

Appendix A. Proof of Theorem 1

The proof of Theorem 1 will require some notational con-
vention about set-valued maps, which can be found in [9].

Define two set-valued maps Ef, : R*> - R and Fy, :
R? = R as follows:

Ejg(z,0) (30)
f(z,v), if v<g(z)
= min{f(z,9(x)), ¢'(@)}, f(z,9(x)), if v=g(z)
min{ f(z,v), ¢'(z)}, if v>g(z)

(31)

Fyg(z,v) (32)
flz,v), if v<g(z)
= fl@,9(@), max{f(z,g(z)), ¢'(x)}, if v=g(z)
max{f(z,v), ¢'(x)}, if v>g(x)

(33)

Here and elsewhere, a singleton {a} is denoted by a by abuse
of notation. Observe that the functions ¥, and Q4 in (12)
and (13) can be embedded, respectively, into the set-valued
map F¢, and Ff, in the sense that

Yig(z,0) € Epy(z,0), Qpy(z,0) € Fy(z,0), V(z,v) € R
(34)

Then, we consider the following two differential inclusions:

V' (z) € Epg(x,v()),

V' (x) € Fg(z,0(x)),

a. e. on x > xo with v(zg) = vy (35)

a. e. on z < zy with v(zy) = vy (36)
To prove Theorem 1, we need to establish several lemmas.

Lemma 2 Suppose that the function f is continuous and the
function g is continuously differentiable. the set-valued maps
E¢ 4 and Fy 4 are upper semicontinuous. u

The proof is omitted because of limited space.

Lemma 3 Under the hypotheses of Lemma 2, there exists a
function v defined on [xo, x1) (z1 could be 0o), which is ab-
solutely continuous on each compact subset of [xg, x1) and
satisfies (35) a. e. on [xo, T1).

Proof: Note from the definition of Ey 4 in (31) that at each
(z*,v*) € R?, the set E;,(x*,v*) is compact and convex.
This along with Lemma 2 implies that all the hypotheses of
Theorem 2.4 in [9], which states necessary conditions for the
existence of solutions in differential inclusions, are satisfied.
Hence, the assertion in this lemma is true. |

Lemma 4 Under the hypotheses of Lemma 2, there exists a
function v defined on (z2, xs]) (z2 could be —o0), which is
absolutely continuous on each compact subset of (z2, x¢] and
satisfies (36) a. e. on (z2, xy].

Proof: Through some arguments similar to those used to
prove Lemma 4, the proof can be done. |

Lemma 5 Suppose that the hypotheses of Lemma 2 hold. Let
v, defined on [xo, 1), be any solution of the differential in-
clusion in (35) with v(zo) < g(xo). Then,

v(z) < g(x), Va € [z, 71) (37)
On the other hand, let v, defined on (x2, xyf], be any solution
of the differential inclusion in (36) withv(zy) < g(xf). Then,

v(z) < g(), (38)

Vo € (x2, zy].
Proof: We only present the proof for (37), since that for (38)
is similar. Let v be any solution of the differential inclusion
in (35) with 29 < g(zo). Define the set A by

A
A={zg <z <21

s u(z) > g(x)} (39)



Suppose that the set A is non-empty. Then, the set A is
open and, hence, consists of countably many disjoint open
subintervals {(a;, b;) : i =1,2,---} of the interval (zo, x1)
[7] such that
v(ai) = g(ai), v(bi) =g(bi), i=12,---. (40)
Fix one of the subintervals, say, (ay, by) and define & 2 (ar +
b)/2. Then, it holds that
v(Z) > g(T). (41)
Here, note from the definition of the set-valued map Ey 4 in
(31) that

v'(z) = min{f(z,v(z)), ¢'(2)} <g'(z), VzeA (42
This along with (40) implies that
v(Z) = v(ag)+ /z v'(s)ds < v(ag) + /z g'(s)ds
= g+ [ 65 = g(o) (43)

However, this is self-contradictory to the (41). Accordingly,
we have shown that (37) holds. [ ]

Let A be a function from a closed subset D of R into R.
Then, we define the set Ly(a) by

Lu(a)2{z € R:h(z) =a}, a€R. (44)

The following two lemmas will be central to the proof of The-
orem 1.

Lemma 6 Suppose that the function h : D — R is absolutely
continuous. Then, the derivative h' is zero a. e. on each set
Lh(a), a € R.

Proof: Let a € R. Then, the set Ly (a) is closed. It suffices to
consider the case where the set Lj(a) is uncountable. Then,
the Cantor-Bendixon theorem [7] states that Lp(a) contains
a perfect subset E,, and a countable subset E. such that

Ly(a) = E,UE., E,NE.=§. (45)
On the other hand, it follows from the absolute continuity of
the function h that there exist two subsets A, B C Ly (a) such
that h always has a derivative on A; B is a measure-zero set;
and

Lp(a)=AUB, ANB=1, (46)
It then follows from (45) and (46) that
Ly(a)=E,UE.=(E,NA)U(E,NB)UE,. (47)
Here, it is clear that
E,N B, and E, are sets of measure zero. (48)

As will be seen soon,

h'(z) =0, Vze€ E,NA. (49)

Accordingly, the assertion in this lemma is true.

Finally, we show that (49) holds. Suppose that z € E, N
A. By the definition of the perfect set, there exists a sequence
of real numbers z,, € E, satisfying z,, # =, Vn € N and
lim, 00 , = x. Hence, h'(z) exists for all z € E, N A and

h(zn) —

Tp — T

h(z) _ i 870
n—0o Ty — T

lim
n—00

b (z) = =0, Vz€ E,NA.

Lemma 7 Suppose that the function f is continuous with re-
spect to the first argument and locally Lipschitz with respect
to the second argument and the function g is continuously dif-
ferentiable. Then, each of the differential equations in (12)

and (13) has the unique solution.

Proof: We first present the proof of the assertion for the
differential equations in (12). Let v : [z, 1) — R be the
solution of the differential inclusion in (35), whose existence
is guaranteed by Lemma 3. It suffices to show that for any z,
ro < T < w1,

V(@) = Ty y(x,0()),

Choose a point Z € (zg, z1) and define the function h :
[.CL'[), .ff‘] - R by

a.e. on [zg, I (50)

h(z) £ o(z) - g(x).

Clearly, the funciton h is absolutely continuous.
Note that the closed interval [z¢, Z] can be partitioned
as follows.

(51)

[CU(), 57] = F, U Ey, (52)

where E,, and Ej are the subsets of the closed interval [zg, Z]

defined by

A
E, =
A

{z € [z,

z] : h(z) # 0},

B {z € [zo, 7]: h(z) =0}

Here, it is easy to see from Lemma 5 that whenever z €
E,, the set Ey ,(z,v(z)) is the singleton {X; ,(z,v(z))} and,
therefore, that

V(@) = Ty (x,v()),

On the other hand, note that the set Ey is closed since v
is continuous. Then, by Lemma 6, we can see that

a. e. on E,. (53)

v'(z) = ¢'(x), a.e. on Ep. (54)
This, then, implies that
g'(x) € Ef 4(z,9(z)), a.e. on Ep. (55)



Note from the definition of the set-valued map Ef, in (31)
that

g'(x) < f(z,9(z)), a. e. on Ep. (56)
and from the definititon of the function ¥, in (9) that
Yt4(z,9(x)) =¢'(z), a.e. on Ey. (57)
This along with (54) implies that
v'(z) = By 4(z,9(z)), a.e. on Ep. (58)

Finally, we can see from (53) and (58) that the solution of any
differential inclusion in (35) always satisfies the differential
equation in (12).

We now turn to the unqueness of the solution of the
differential equation in (12). Let v; and vs be two solutions
of the differential equation in (12) and let [zg, x;) be the
common interval of existence of v; and vy. Define two subsets
M and N of the interval (zo, z;) by

ME {ro <z <2 : v1(2)=g(2)} (59)
= {ro <z <2 : vi(x) < g(2)}. (60)
Then, it is trivial to see from Lemma 5 that
va(z) < wi(x), Vo e M. (61)
Next, we show that
va(x) <wi(x), Ve N. (62)

Observe that the set N consists of countably many dis-
joint open subintervals {(c;, d;) : i = 1,2,---} of the in-
terval (zo, ). Consequently, there exists a subinterval, say,
(ck, di) such that

S (Ck, dk),

vi(cr) = g(cr)- (63)

Note from the definition of the function X;, in (9) that
vi(z) = f(z,v1(z)), a.e. on (¢, di) with vi(ck) = g(ck).

(64)
Then, it holds that

va(cr) < wvilex) = gler). (65)

On the other hand, it is easy to see from the definition of the
function X, in (9) that
Ssg(2,0) < f(2,v), V(z,v) € R?
and, hence, that the function vy satisfies the differential in-
equality on the interval (cg, di)
vy (2) < f(,02(2)),

a. e. on (cg, dg)- (66)

This along with (65), (64), and the comparison principle [6]
implies that

v2(z) <wvi(z), Vr € lek, di). (67)
So far, we have shown that
v2(x) <wi(x), Vo€ lrg, T1). (68)

Through some arguments similar to those used to show the
above inequality, we can also show that

va(z) > w1 (), (69)

Hence, the two solutions are identical on the common interval
of existence and, hence, the differential equation in (12) has
the unque solution.

Finally, through some arguments similar to those used
to show that the differential equation in (13) has the unique
solution, it can be shown that the differential equation in (13)
also has the unique solution. |

Vx € [l‘o, 1‘1).

We are now ready to prove Theorem 1

Proof of Theorem 1: From the piecewise continuity of
the functions f and g, there exist a finite number of points
ar € [xo, x1], k = 1,2,---,p with a1 = 29 < ay <

- < ap—1 < ap, = x such that f is continuous with re-
spect to the first argument and locally Lipschitz with re-
spect to the second argument on each of these subinter-
vals (ag, agy1), k = 1,2,--- p — 1, while the function g
is continuously differentiable on each of these subintervals
(ag, ag+1), k= 1,2,---,p— 1. Then, it can be easily seen
from Lemma 7 that the assertion of this theorem holds. M

Appendix B. Proof of Theorem 2

We present, only the proof for the differential inequality
in ¥, since that for the differential inequality in € is similar.
For notational brevity, we temporarily write

W(w) = vp (320,00, Zpg). (70)
Note that
(71)

This along with Lemma 5 implies that the differential inequal-
ity in ¥ is satisfied with v = .
Define two subsets B and C of the interval (zo, zs) by

2 o(z) = g(x)}
2 o(z) < g(o)}-

Let a function ¥ : [0, zy] = R satisfy the differential in-
equality in ¥. Here, it is trivial to see that

o(z) <v(xz), Vzé€B.

v<g(x) = Xf4z,0) < f(z,v).

Bé{$0<$<$f (72)

Cé{w0<m<xf (73)

(74)

Through some arguments similar to those used to show that
the solution of the differential equation in (12) has the unique
solution, we can show that

o(z) <v(z), Vzel. (75)
Finally, it follows from (74) and (75) that v is the maximal
solution of the differential inequality in X. |



