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Abstract:- Aeroacoustic is defined as the acoustic propagation of sound generated by fluid flow. Different 
aeroacoustic problems are used to test the computational schemes performance. A new high-accuracy 
numerical scheme was modified from Runge-Kutta method with more operators and improved factors. The 
scheme is tested and modified in the present work for benchmark computational aeroacoustic problems. Test of 
the numerical dissipation and dispersion properties of the computational scheme is developed to obtain the 
scheme accuracy with the running time. It is found that the new scheme is more stable under different initial 
conditions and with long time computation. The calculated speed of sound is in close agreement with the exact 
solution. Also, the nonlinear wave propagation of the scheme is considered for the initial value and shock tube 
cases with very accepted results comparing with the exact ones. The third category is a convergent-divergent 
nozzle with incident a small amplitude sound wave. This problem is used to test the suitability of the numerical 
scheme for direct numerical simulation of very small amplitude acoustic waves superimposed on a non-uniform 
mean flow in a semi-infinite duct. It can be concluded that the numerical scheme is robust and accurate for the 
tests considered. 
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1. Introduction 
 
Computation of steady-state solutions to fluid flow 
problems is now well established. A problem with 
these CFD-type algorithms is dispersive errors that 
distort propagating waves. Dispersion caused by 
numerical artifacts that selectively alter phase shifts 
among the component wavelengths at each time 
step.  In complex problems, it is not possible to 
separate algorithmic dispersion from true physical 
dispersion. These effects are subtler than amplitude 
related artifacts (dissipation) that cause either 
catastrophic failure or excessive smoothing. 
A new numerical approach to dissipation-less finite 
difference schemes was reported by Jurgen and 
Zingg (1) which is considered as a modification of 
explicit fourth order Runge-Kutta method, it is fifth 
order solution. In general, this scheme is quite 
dispersive near discontinuities. In the recent studies 
it has appeared that high-order schemes would be 
more suitable for computational acoustics than the 
lower-order schemes since the former are usually 
less dispersive and less dissipative.  In addition, the 
artificial dissipation, while having good shock 
resolving capabilities, can significantly 
contaminate the acoustic solution. 
  
The use of computational methods in the analysis 
of unsteady flow and the resultant far field acoustic 
radiation requires care in the application of any 
numerical scheme. In particular, the dissipation and 
dispersion characteristics of the numerical scheme 
are critical to the accuracy of the solution.  
Dissipative schemes tend to natural unsteady or 
oscillatory disturbances while dispersive schemes 
generate non-physical oscillations. Either can 
degrade or contaminate the numerical solution of 
acoustic propagation to the point that it is 
unreliable. 
 
In general, there are three types of waves present in 
unsteady flows. These include acoustic waves, 
which are isotropic, non-dispersive, non-
dissipative, and propagate at the speed of sound, as 
well as entropy and vorticity waves, which are non-
dispersive, non-dissipative and highly directional 
and propagate at the mean convection speed of the 
flow. The acoustic phenomenon is generally 
considered to be governed by the Linearized Euler 
equations.  
 

Regarding the work that well reported in the state 
of art, Atkins (2) used a finite-difference essentially 
non-oscillatory (ENO) method to model adequately 
dissipation and dispersion problems and the shock 
tube as well using 8 points per wavelength. Also, 
Davis (3) derived a compact high order three-
spatial point, two-time level dissipationless scheme 
to solve the planar and spherical acoustic waves. 
Accordingly Lee et al. (4) compared between 
different schemes to solve the problems considered 
with relatively adequate results. Fung et al. (5), Hu 
et al. (6) and Huynh (7) introduced the same results 
with using different schemes. Koprivea and Kolias 
(8) performed close agreement between the exact 
and computed solutions of the convergent-
divergent nozzle. Many authors in the 
ICASE/LaRC workshop on benchmark problems in 
computational aeroacoustics (9) developed 
different schemes for the same purpose, the reader 
can find different models of the art. In these 

studies, some of the schemes give adequate 
solution and a percentage of error in others. 
Therefore a new finite-difference scheme is used in 
the present study to test and modify its accuracy 
and performance under different conditions of 
dissipation, dispersion and wave propagation. 
 
2. METHODOLOGY 
 
High accuracy finite-difference method was 
modified from Runge-Kutta method. It consists of 
five operators in five steps. The method details can 
be found in ref. (1). The time-marching method, 
when applied to the ordinary differential equation 
and can be written as    
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Where α1=1/6, α2=1/5, α3=1/4, α4=1/3, α5=1/2 
and h is the time step and n is the iteration number. 
This method is applied into the following Euler 
equation. 

                     
Where 

The antisymmetic or central-difference operator is 

and a symmetic operator is 
 

Where  

And X is the matrix of right eigenvectors of A, and 
Λ is the matrix of eigenvalues of A. The factor 
a1=3/4, a2=-3/20, a3=1/60, d0=1/10, d1=(-3/4)d0, 
d2=(3/10)d0,      d3=(-1/20)d0. 
This numerical method is tested and modified for 
the following computational aeroacoustics 
categories: 
 

2.1  problems to test the numerical 
dispersion and dissipation properties of 
the computation scheme (linear waves) 
This case includes two problems: 

2.1.1 initial value problem 
The non-dimensional form considered of the 
convection equation is 

Where –20≤ x ≥450 and the initial condition at t=0 
is 

 
 
 

2.1.2  spherical wave problem 
The above convection equation in the spherical 
form is 

With boundary velocity u = sin ωt where ω = π/4, 
π/3 and 5≤ r ≥450. 
 

2.2  Problems to Test the Nonlinear 
Wave Propagation Properties of The 
Computational Scheme 
This case can be expressed by one-dimensional 
Euler equations: 
 
 
Two problems considered in this category; the 
initial value and shock tube problems. The x range 
considered in the two problems are  –50≤ x ≥350 
and –100≤ x ≥100 respectively.  
 

2.3  problems to test the suitability of the 
numerical scheme for direct numerical 
simulation of very small amplitude 
acoustic waves superimposed on a non-
uniform mean flow in a semi-infinite 
duct 
The scheme is applied in this category for a 
convergent-divergent nozzle with the following 
governing equations: 
 
 
 
 
 
 
 
Where                134                                       x≤-
100 
                A(x)= 117-17cos(x/100)       –100≤ x ≥19 
                            97.2+0.3x                     19≤ x ≥80, 
and γ=1.4 
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3. Results and Discussions 
 
The first category is to test the dissipation and 
dispersion properties of the scheme for the linear 
advection and spherical waves. The initial 
condition for the first problem is a Gaussian 
distribution. As shown in Fig. 1 the wave is 
predicted exactly according to the exact wave. 
There are no dispersive and no dissipative errors in 
the wave. The grid spacing of 6 per wavelength is 
used with a courant number of 1 and 0.1 time step. 
Different time periods of computation are 
considered to explain the time effect on the scheme 
performance. 
 
The second problem in the first category as 

presented in Fig.2 and Fig. 3 computed a long 
sinusoidal wavetrain. Excellent agreement between 

the exact and computed solutions is obtained for 
both wave numbers, with no evidence to graphical 
precision of phase and dissipation errors. The errors 
are from the discontinuity in the first derivative at 
the front of the wave. It is possible to filter the 
oscillations at the front of the wave not in the back. 
Although the conclusions are applied for the two 
cases         ω=π/4 and π/3 it is more clear for the 
second case and after long time calculation. It is 
found that one point per wavelength is enough to 
obtain a fine solution with courant number of 0.1 
and 0.1 time step.  

 
For the second category, the first problem (initial 
value problem) starts with a Gaussian pressure 
distribution and velocity and density distributions 

Fig. 1: Dispersion and Dissipation properties of the scheme (Initial value problem)
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Fig. 2: Numerical dispersion and dissipation properties of the computation schem 
at t=400 (spherical wave problem, ω=π/4)
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that are appropriate for a right-traveling acoustic 
wave. The wave quickly steepens into a shock 
wave that propagates to the right and weakens. Five 
points per wavelength are used in this problem and 
0.5-courant number. The properties are calculated 
at different time periods of 0, 50, 100, 200, 300 and 
400. Fig. 3 shows that the calculated and exact 
solutions are completely the same.  

 
The shock tube problem is the second problem in 
the category, the shock wave is exited the domain 
by the final time. To avoid the oscillation around 
the shock five points per wavelength are used 

through the calculation. The factor α5 is modified 
from 0.5 into 1.6 to eliminate the oscillations 
around the shock occurring. The time step used is 
0.1 where the courant number is 0.5. It is obtained 
that there is a good agreement between the exact 
and computed results along the tube with different 
times as presented in Fig. 5. Also it is seen that the 
shock is propagated with the time to the end of the 

tube. 
 
 
 

 

Fig. 4: Nonlinear wave propagation  properties of the computation scheme
(Initial value problem)
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Fig. 3: Numerical dispersion and dissipation properties of the computation schem 
at t=400 (spherical wave problem, ω=π/3)
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The last category that considered in this study is the 
third one that studies the flow in the semi-infinite 
duct to test the scheme for the small amplitude of 

acoustic non-uniform flow. The velocity (u), 
pressure (p) and density (ρ) of the flow are 
obtained for the convergent-divergent nozzle as 
presented in Fig. 6 after reaching steady state. In 
this problem there is an incoming acoustic wave at 
x=-200 and this wave is propagating to the right. 
This incoming wave is expressed as: 
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Fig. 5: Nonlinear wave propagation  properties of the computation schem at t=50
(Shock tube problem)
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Fig. 6: Density, velocity and pressure of the convergent-divergent nozzle (steady state 
condition)
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Where M (Mach number) = 0.5, ε = 10-6, ω = 0.1π, 
γ=1.4 and t is the running time. 

 
 
In comparison these results with the results 
reported by Lee et al. (4) it is obtained that there is 
an agreement between them and the scheme is 
stable and robust in these cases of modeling. Also 
Hu et al. (6) explained the same results that can be 
obtained in this category. Fig. 7 shows the 
convergence history of the calculation. Although 
the convergence history is in the fourth order only 
but the resulted values are expected. It can be 
concluded that the scheme needs a fourth-order 
dissipation treatment to fast the convergence 
history and to eliminate the oscillations at the inlet 
flow. 

 
 

4. Conclusions 
 
A new high-accuracy finite-difference scheme is 
presented in this study and different categories 
were carried out to test the scheme under different 
conditions. The dispersion and dissipation 
properties as well as the nonlinear wave 
propagation are simulated by the scheme. It is 
obtained that the scheme is non-dispersive and non-
dissipative and there are no oscillations around the 
shock applications. The scheme was modified to 
avoid the oscillations around the shock. Also it is 
found that the scheme is suitable for the direct 
numerical simulation of very small amplitude 
acoustic waves superimposed on a non-uniform 
mean flows. Therefore, it can be concluded that 

although the scheme is robust and accurate for 
different numerical simulations it is costly in 
calculations. 
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