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Abstract: - In this paper, we present the results of solution of three-dimensional electromagnetic scattering 
problems by impedance bodies of revolution, using the Pattern Equations Method (PEM).  The good 
convergence this results is shown on the example of a prolate spheroid and a cylinder with spherical rounding. 
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1    Introduction 

The three-dimensional (3D) scattering problem 
by body is the classical problem of the diffraction 
theory [1]. It is known that the solving of this 
problem has some difficulties in resonance domain 
when the size of the body is about wavelength [2]. 
The body’s boundary has some angels, the 
difficulties becomes much more. For example, in this 
case the well known and attractive method of the 
discrete sources [3] could not be applied as due to the 
theorem was proved in [4] the support of the 
auxiliary currents have to enclose all singularities of 
the diffracted field. It is evident that in case of 
mention above some of the singularities are located 
at the boundary of the body. It is clear too that 
situation is not corrected by smoothing the angels. 

In addition to this the size of the linear system 
of equation arising by the method of integral 
equations is known to be about 10-20 kd (k – is the 
wave number, d is the characteristic size of the 
body). It is evident that when 3D problem is under 
consideration the order of that system of linear 
equations will be much increased. 

The developed pattern equations method (PEM) 
[5,6] is shown to have a large velocity of 
convergence and its dependence of body’s geometry 
is very weak. By our opinion this effect cold be 
explained as follows. The scattering pattern is the 
solving of the integral equation in the PEM. So we 
do not need in surface field’s harmonics with high 

numbers and it leads to reducing of calculation’s 
volume.  

   In this work we have developed the method 
PEM for a case of impedance boundary problem and 
body with angles. Besides is shown, that the method 
remains high effective and in the case, when the 
scatterer boundary has breaks. 

 
 

2   Formulation of the Pattern 
Equations Method  

Let consider the wave scattering problem for 
incident monochromatic electromagnetic field 
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 on a compact obstacle. Let the scattering 
body has a surface S and we have the boundary 
condition on S as follows  
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 - secondary (diffracted) field, 
which satisfies the system of Maxwell's homogene-
ous equations everywhere outside of S  
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where εµω=k is the wave number, εµς =  
is the medium impedance  and also the radiation 
condition at infinity, for example, of the form 
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In accordance with the standard PEM  
scheme[5,6], let us look for the scattering pattern 
(wave field pattern), i.e. function determining 
diffracted field dependence from angels ( ),θ ϕ  in 

spherical system of coordinates ( ), ,r θ ϕ  in a so-
called far zone (at 1kr >> ), where asymptotic 
relation are implemented of kind:          
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in which EF
r

, HF
r

 - electrical and magnetic fields 
patterns, respectively. 
It is known (see, for example, [7]), that: 
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Operating in accordance with the scheme, 
proposed in [6], one could get the linear system of 
algebraic equations with coefficients nma , nmb  
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In this system  
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where values of the appropriate variables is denoted 
by sign "0" at Z = 0, given in [6], and additional 
terms – by sign "z", due to impedance quantity 
difference from zero. For these terms, we have  
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In case of a body of revolution, the system (1) 
could be written as follows 
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             1, 2,..., | | ,n m n= ≤                                                            
where now matrix elements ,

ij
nm qmG  are expressed by 

single integrals [6]. 
From asymptotic estimation of matrix elements and 
free terms executed by analogy with [6], it leads that 
in system (1) it is necessary to make the  changing of 



unknown coefficients [5,6] and assign:  
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As a result of that changing, for example, system (2) 
take the following form: 
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The system (3) could be solved by a method of  
reduction if it is satisfy the next condition: 
                           σσ >2                                        (4)     
(the definition of the variablesσ , 2σ  see [5,6]). In 
the case, when the incident field is a plane wave the 
condition (4) gives the restrictions on the scatterer's 
geometry only (in this case it have to belong at the 
class of a so-called  weakly non-convex bodies [5]). 
 
 
3   Applications to Solution of Three-
Dimensional Electromagnetic Prob-
lems 
 

Let us consider some examples of applying the 
method given above. The next scattering problems 
by bodies of revolution were considered: the prolate 
spheroid with semi-axis ka = 2, kc = 4 (big axis of 
the spheroid is directed along an axis OZ) and the 
circular cylinder of radius ka = 2 with spherical 
roundings of the same  radius and height of a 
cylindrical part 4kh =  (axis of the cylinder 
coincides with an axis ОZ). The calculations were 
made for impedances: 0=Z and π⋅⋅= 120000iZ . 

All calculations were made on the base of 
solving the system 
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which can be obtained from general system (3) for 
the bodies of revolution. 

 The system (5) was solved by the Gauss 
method of solving the linear algebraic system the of 
equations with a choice of the main element for 
columns. During the solving of system for everyone 
fixed )(-  NmNm ≤≤ the systems of the following 
dimensions are obtained: the minimal system 
dimension was equal 22× , and the maximal system 
dimension was equal NN ⋅×⋅ 22 . So we had 
solved 12 +⋅ N  systems of linear equations that 
reduced the numerical mistakes of a rounding off at 
accounts of coefficients nmx  and nmy . 

The results of calculation for the scattering 
pattern when incident wave is a plane wave with 
incident angels 0 0θ = , 00 =ϕ , vector 0E

r
of the 

incident wave have direction along the ОХ axis are 
shown at Fig. 1, Fig. 2, Fig. 3, and Fig. 4. The 
moduli of a ϕ-th components of the scattering pattern 
for cylinder (dashed line) and spheroid (continuos 
line) are shown at Fig. 1, and the moduli of its a θ-th 
components are shown at Fig. 2 (dashed line for 
cylinder and continuos line for spheroid).  
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Fig.1: 0 and 00 == Zθ  
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Fig.2: 0 and 00 == Zθ  

The impedance here is taken equal to zero. The 
ϕ-th component of the scattering pattern was 
calculated in a half-plane 2

πϕ =  whereas its θ-th 

component in a half-plane 0=ϕ . It is visible that 
the appropriate components of the scattering pattern 
are enough close to each other as it also should be by 
virtue of geometrical affinity of the scattering bodies. 
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Fig.3: πθ ⋅⋅== 120000 and 00 iZ  

Similar picture is observed at impedance 
120000Z i π=  Om. The moduli of a ϕ-th 

components (the half-plane 2
πϕ = ) of the 

scattering pattern for cylinder and spheroid is shown 
at Fig. 3, and the moduli of its a θ-th components 
(the half-plane 0=ϕ ) is shown at Fig. 4. 
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Fig.4: πθ ⋅⋅== 120000 and 00 iZ  

The perpendicular incidence of the unit plane 
wave with angels of incidence 900 =θ and 

00 =ϕ also was considered. Thus the vector 0E
r

was 
directed along the axis OZ. The moduli of a ϕ-th and 
θ-th components of the scattering pattern for cylinder 
(dashed line) and spheroid (continuos line) are 
shown at Fig. 5 and Fig. 6 respectively at impedance 

0=Z . All ϕ-th components were considered in the 

plane 2
πϕ = , 2

3πϕ =  All θ-th components were 

considered in the plane 0=ϕ  and 
πϕ = ( 180...0=θ ) corresponding to range 

360...180=θ at Fig. 6. The moduli of the same 
components of the scattering pattern for cylinder 
(dashed line) and spheroid (continuous line) and in 
the same planes are shown at Fig. 7 and Fig. 8 but 
already at impedance π⋅⋅= 120000iZ  Om. 

All given figures of the scattering patterns for 
spheroid and cylinder with spherical rounding were 
calculated at a value N = 17 (see equation (5)) that is 

kdN ⋅≈ 2 . 
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Fig. 5: 0 и 900 == Zθ  
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Fig. 6: 0 и 900 == Zθ  

 
In Table the date are given that illustrate the 

velocity of convergence of computational algorithm 
for spheroid and cylinder discussed above. It is 
visible that in a case of scatterer with analytical 
boundary (spheroid) the five correct signs after a 
separatrix are established in the scattering pattern 
already at N = 11 (where N - upper limit of 
summation in system (5)), that is at 1,5N kd≈ , 
where d is greatest body size. In the case of the body 

with non-analytical boundary (cylinder with 
spherical rounding) the two correct signs after a 
separatrix are established at kdN ⋅≈ 2 only. 
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Fig.7: πθ ⋅⋅== 120000 and 900 iZ  
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Fig.8: πθ ⋅⋅== 120000 and 900 iZ  

 

The proposed approach can be easily general-
ized on the wave scattering problems by a group of 
dielectric bodies. 
 



Table: Check of the convergence of pattern value modulus ),( ϕθθ
EF  at θ  =180 and ϕ =0. 

N 11 13 15 
axis incidence 

Z=0 0,854868822498156 0,85486414208137 0,854864228215656 
spheroid Z=i120000π 0,856924333229293 0,856863730513405 0,85685273260578 

Z=0 1,65621143098733 1,6868449964265 1,69019882112764 
cylinder Z=i120000π 1,70859547869609 1,68945906039784 1,678856238035 

N 17 19 21 
axis incidence 

Z=0 0,854864229507943 0,854864226174644 0,854864219279615 
spheroid Z=i120000π 0,856849417403774 0,856848453777103 0,856848171390379 

Z=0 1,68377344549195 1,68188432930541 1,68298761989378 
cylinder Z=i120000π 1,6810970676356 1,68893225887373 1,690169349337 

     
N 11 13 15 

perpendicular incidence 
Z=0 0,182612146761232 0,182614203051027 0,182614158434439 

spheroid Z=i120000π 0,000219664894677348 0,000219778329397654 0,000219811348324129 
Z=0 0,717823417686801 0,695218125678592 0,697992743074454 

cylinder Z=i120000π 0,000819809217106535 0,000833177342415702 0,000846700713742607 
N 17 19 21 

perpendicular incidence 
Z=0 0,182614148988725 0,182614139523385 0,182614130667818 

spheroid Z=i120000π 0,000219821297770531 0,000219824355709049 0,000219825313774006
Z=0 0,705599779834765 0,706118765687515 0,703785361782326 

cylinder Z=i120000π 0,000841787328038978 0,000836647322054094 0,000838459518518361 
 

4   Conlusion 
For reason of obtained scattering patterns for 

impedance bodies we can lead to a conclusion that 
the suggested PEM allows to solve such problems 
with rather high efficiency. The computational 
algorithm constructed on the base of PEM appears 
extremely fast-acting and do not require additional 
actions for elimination of boundary singularities of 
scatterer. 
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