Performance Analysis of the Frequency Domain LMS Adaptive
Filter Using the Sliding DFT

GEORGE-OTHON GLENTIS and KRISTINA GEORGOULAKIS

Technological Education Institute of Crete
Branch at Chania, Department of Electronics

C GREECE.

Abstract:-
vestigated, for the case when the Sliding Discrete Fourier Transform is utilized for the frequency

In this paper the performance of the Frequency Domain LMS adaptive filter is in-

domain data transformation. A statistical performance analysis in terms of the mean, and the
mean squared error of the filter parameters is presented. The convergence speed of the algorith-
m is analyzed in terms of the eigenvalue spread of the input signal autocorrelation matrix. The

theoretical analysis results are verified by computer simulations.
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1 Introduction

The design of adaptive filters and system i-
dentification algorithms with optimum learn-
ing, in the sense of minimizing the accumulated
squared error between the output signal and a
desired response, has been the subject of ma-
jor research for a long time. Typical examples
include the design of decision feedback equal-
izers in digital communications, the design of
acoustical echo cancelers in hands-free telepho-
ny and in teleconferencing, the design of filters
that will recover and enhance a signal transmit-
ted through a communication channel, [1],[2].

One of the most common algorithm for adap-
tive filtering is Widrow’s Least Mean Squared
error (LMS) algorithm, [1]. LMS like algorithms
are popular due to the low computational com-
plexity and the simplicity in the hardware real-
ization of the underline algorithmic structure.
However, the convergence rate of the algorithm
heavily depends on the eigenvalue spread of the
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correlation matrix of the input data.

In an attempt to improve the performance
of the LMS algorithm, unitary transformations
on the input data vector, have been used, [4]-
[6]. The resulting algorithms may have increased
convergence rate for some classes on input sig-
nals, yet the computational complexity remain-
s similar to that of the original LMS scheme.
When the Discrete Fourier Transform (DFT) is
used as the unitary transform, the input data
are continuously transformed into the Frequen-
¢y Domain, (FD). The Sliding Window DFT
(SDFT), can be utilized to perform this task,
[6], [9]. The SDFT estimates the DFT transfor-
m of a rectangular window of the signal, which
is continuously updated with new samples as
the oldest ones are discarded. The Sampling
Frequency (FS) structure, [3], a method for im-
plementing the SDFT based on a set of fil-
ter banks, is very popular in adaptive filtering,
[6], due to the low computational complexity,
the regularity and modularity, facts that are of



great importance when high speed implemen-
tation on VLSI ASIC, is under consideration,
[7].

The objective of this paper is to provide a
performance analysis of the FD-LMS algorith-
m, for the case when the stabilized SF struc-
ture is utilized for the computation of the S-
DFT of the input data. It is shown that the
algorithm converges in the mean, to a trans-
formed Wiener solution. The minimum mean
squared error attained, equals to that of the
original LMS scheme, provided that the adap-
tation step size has been properly chosen. The
convergence speed of the frequency domain al-
gorithm is proved to be always faster than that
of the conventional LMS time domain adaptive
scheme. The theoretical results are validated
by means of computer experiments.

2 The Sliding DFT

Given a discrete time signal, 2(n), the SDFT
is defined as the DFT of a running rectangular
window of the signal, of size M, that moves at
a rate of one sample point each time. Consid-
er the data vector x(n) = [z(n) z(n — 1) ...
z(n — M + 1)]". The corresponding SDFT is
the vector U(n) = [ug(n) ui(n) ... uy—1(n)]"
where each element ug(n), & = 0,1...M — 1,
is estimated by the form ug(n) = Mt a(n -
O M. wy = eI is the so called twid-
dle factor. Thus, U(n) = Wx(n), where W is
the DFT matrix, i.e., Wy; = w?/v/M. Sev-
eral techniques have been developed so far for
the estimation of the SDFT of real or complex
signals. All these methods are based on the re-
cursive estimation of the SDFT algorithm, re-
lating the transform of the current time instant
to the transform already estimated the previous
time instant, [3],[8], [9]. The main advantage
of these algorithms is the reduced computa-
tional complexity, which is proportional to the
window’s length. The FS-SDFT, [3], and the
steady-flow LMS-DFT algorithm, [8], can be
applied to estimate sliding DFT’s of arbitrar-

ily selected window sizes. On the other hand,
when efficient algorithms based on FFT-like re-
cursive schemes are applied, [9], the window’s
size is restricted to be a power of two.

Following the FS-DFT scheme, ug(n) is ef-
ficiently be updated by the set of first order re-
cursions uy(n) = w¥up(n — 1) 4+ (z(n) —z(n —
M))V/M, which can be implemented by the fol-
lowing filter-bank scheme, [6]
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The marginal instability of the original FS fil-

ters, due to the fact that the poles of the FS
filters lies exactly on the unit circle, may cause

amplification of round-off errors. This problem
is alleviated by moving the corresponding poles
and zeros slightly inside the unit circle, by re-
placing 2~ by p2~1. pis a stabilization factor,
p € (0,1], [6]. Thus, the following stabilized F'S
filters are utilized
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Following [10], it is possible to associate the re-
cursive structure (2) to the DFT of the an expo-
nential weighted window of the incoming data
z(n) as, vp(n) = Mot pla(n — Owkl [/ M. In

a matrix notation the above formula reads

V(n) = WLx(n) (3)

where, V(n) = [vo(n) vi(n) ...vy_1(n)]T, and
L = diag[l p...pM"!]. The power of the er-
ror between the stabilized and the original FS-
SDFT transform, over all frequency bins, has
be used as a metric of performance. It can ex-
plicitly be estimated, in terms of p and M, and
can be kept arbitrarily small, by proper choice
of p, [10].

3 Frequency Domain Adaptive
Filtering

The Frequency Domain LMS algorithm, [4], can
be interpreted as a preconditioned version of



the original LMS scheme, [7]. The DFT is ef-
ficiently utilized to speed up the convergence
of the LMS algorithm. This preprocessing im-
proves the eigenvalue distribution of the input
signal autocorrelation matrix, and thus, affects
the convergence speed of the LMS algorithm.
The performance of the FD-LMS adaptive fil-
ter is analyzed, for the case when the stabilized
FS-SDFT is utilized for the computation of the
frequency domain data transformation.

3.1 The stabilized FS-SDFT FD-LMS

Let z(n) be an input signal and y(n) be a de-
sired response signal. The FD-LMS algorith-
m based on the modified data transformation,
namely the stabilized FS-SDFT defined by eq.
(3), takes the form
ev(n) = y(n) = Ci(n—1v(n)  (4)
Cy(n) = Co(n— 1)+ TV (n)e*(n) (5)
P, is a diagonal matrix with entries the sig-
nal power associated to each frequency bin. It
has the form P, = diag [0‘2/70, 0‘2/71, . .U?AM_I],
where, o2, is the signal power at the k-th fre-
quency bin, 02, = & [|vx(n)|?]. In practice, Py
is a time varying matrix, whose elements, are
calculated in terms of available data, using for
example, an exponentially weighted power esti-
mator, implemented by the recursive difference
equation o2, (n) = AoZ,(n—1)+(1=A)|op(n)[?,
A € (0,1). However, in order to make the
performace analysis of the FD-LMS algorith-
m, more tracktable, we will consider P, to be
a constant diagonal matrix, [4],[5],[14].

The statistical properties of the FD-LMS
algorithm described by eqgs. (4)-(5), will ana-
lyzed using the standard independence assump-
tions, [1], rephrased in the frequency domain
as, [13],  Independence assumptions: [A.1].
The input vectors V(1), V(2), ... constitute
a sequence of statistically independent vectors.
[A.2] The input vector V(n) is statistically in-
dependent of all previous samples of the de-
sired response, y(1),y(2),...y(n—1). [A.3] The

desired response signal y(n) is dependent on
V(n), but statistically independent of all previ-
ous samples of the desired response signal, i.e.,

y(1),...y(n - 1)
3.2 Mean tap-weight behavior

Let us consider the average tap-weight behav-
ior, £[Cy(n)]. Taking the expected value of
both sides of eq. (5) we get £[Cy(n)] =
ECy(n — V1P € [V(0) VI (n)Cln — 1)] +
pPLE [V(n)y*(n)]. Using the independence
assumptions,A.1-A.3, we are allowed to write
EV)VA(n)Cy(n —1)] = £[V(n)V7(n)]
E[Cy(n —1)]. Define the correlation parame-
ters Ry = £ [V(n)VH ()|, Dy = £[V(n)y™(n)]
Thus, £ [Cy(n)] = (I— uP7'Ry) E[Cy(n — 1)]
+uP7 Dy, Using standard arguments, [1], it
can be shown that the steady state solution,
E[Cy(o0)] = CY, of the above equation is giv-
en by the solution of the system of linear equa-
tions Ry C?, = Dy, provided that 0 < uy <
2/tr(P7'Ry) = 2/M. The relationship be-
tween C? and the optimum Wiener solution,
can be established. Using eq. (3), we get

R, = WLRIWY, D, =WLD (6)
where, R = & (x(n)xH(n)) ,d =& (x(n)y*(n)),
are the autocorrelation matrix of the input sig-
nal, and the cross correlation vector between
the input signal and the desired response sig-
nal. Finally, we have

LWHC? = ¢° (7)
where ¢° is the optimum Wiener filter given by
the solution of the normal equations Re® = d.

3.3 Mean Squared Error Analysis

The instantaneous error ey (n), defined by eq.
(4), can be expressed in terms of the optimum
transformed filter parameter as

ev(n) = ) (n) = A%(n)V(n) (8)



A(n) is the parameter’s error vector, A(n) =
Cy(n)—CS. €Y (n) is the optimum filtering er-
ror attained, when the input signal is filtered by
the optimum filter parameters, e,(n) = y(n) —
C%"V(n). The MSE, Fy, is estimated as

Ey =€ lev(mP| = B2+ e (9)
E? is the optimum MSE given by
By =€ [les(m)] = £ [ly(m)2] -DECs (10)

Using eqs. (6) and (7) it can be easily shown
that the optimum MSE, I7, equals to the MSE
attained by the Wiener solution, i.e., 'Y, = I°.
FE.;, the excess MSE error, which is estimated
to be F., = tr[R,K]. Matrix K, appeared
above, is the covariance of the parameters error
vector, K = E[A(n)A"(n)].

In order the get an explicit expression for
FE.;, the covariance matrix K should first be
estimated. To this end, A(n) is expressed as

A(n) = (T— P V() V(1)) A(n — 1)+
WPV (n)es (n)

Using results from averaging analysis, [12], the
solution of the above stochastic difference equa-
tion is, for sufficient small p, close to the solu-
tion of another stochastic difference, obtained
by replacing (I — pP71V(n)VZ(n)) by its av-
erage (I — uP7'R,). Using the above results,
the covariance matrix K(n) is estimated as

K(n)=(I-pPy'Ry)K(n - 1) (I- uR/PY)
+*PU IRy P EY

The steady state solution K = K(c0) is then es-

timated from the above equation. A first order

approximation with respect to u of K can be

obtained by dropping the term p?P;!R, P71,

resulting to the more tractable expression

P,'R,K + KR, P;! = uP;'R, P, E? (12)
or,

R, K + P, KR, P! = uR, P ' F?

Thus, tr (RyK) = 1/2utr (P7'R,) E°, since
tr(AB) = tr(BA). Finally, we get

B = (1/2)uM B (13)

3.4 Convergence analysis

The convergence performance of the stabilized
FS-SDFT FD-LMS of subsection 3.1, depends
on the eigenvalue spread of matrix P;!R,. On
the other hand, the performance of the conven-
tional LMS algorithm depends on the eigenval-
ue spread of the input autocorrelation matrix
R. Therefore, in comparing the performance
between these two algorithms, it is sufficient
to compare the eigenvalue spread of the corre-
sponding matrices P;'R, and R. Following
[14], we adopt a useful index that measure the
eigenvalue spread of a positive semidefinite ma-
trix, i.e., a function of the ratio of the arith-
metic mean over the geometric mean of the
eigenvalues, defined as

a (P7R) = (/2" (14)

where, A\, and A, are the arithmetic and the
geometric averages of the eigenvalues of matrix
PRy, respectively. Large spread of eigenval-
ues result in large values for a (P;'Ry). For
equal eigenvalues a (P 'R, ) is equal to one.

Eq.(14) can be evaluated by a more tractable
expression as,

(tr [P;lRV] /M)M
det [P;lRV]

a (PR, =

Notice that tr [P!Ry] = M, det [P7'R,] =

— — det[P
det [P!] det [Ry]. Thus, o (P7'Ry) = dett[[R‘i/)]]'
Eq.(6) results to det [Ry] = det [L]* det [R]. Us-
. . Mol M(M-1)
ing the equation det [L] = [[.Z; " p'=p~ 2,
we get det [Ry] = pM(M-Ddet [R]. Moreover,
tr[P,] = tr[Ry,] = tr [LRL]. From the above
facts, tr [Py ] is estimated as

1— p*Mir[R]

M-1
tI[PV] = Z p2m [ A—
— 1—p2 M




Thus, o (P7'Ry) can be expressed in the form

det [P ]
(tr [Py)/2)Y

(b [Ry ]/ M)
det(Ry)

a(PyR) =

Finally, we get a (P7'R,) = (b(p)aa((TIE/)) where,
1 — pZM M
d(p) = (Mp(M—l)(l—pz)) . Notice that,

when p is close to one, which is the basic as-
sumption that guarantees that the stabilized
transform is close to the SDFT, we have ¢(p) <
1. Thus, we can conclude that

a (Py'R,) <a(R) (15)

since, a(Py) is, by definition, always greater
than, or equal, to one. Thus, the eigenval-
ue spread of the stabilized FS-SDFT FD-LMS
algorithm is expected to be smaller that the
eigenvalued spread of the classic LMS scheme,
which implies that the former algorithm con-
verges faster than the later one.

4 Simulation

The performance of the stabilized FS-SDFT FD
LMS adaptive algorithm is illustrated by a typ-
ical system identification experiment. A sta-
tionary AR process of order 2, driven by a white
noise signal, was used as an input to an FIR
filter. Identification of FIR filters of various or-
ders has been considered, namely, M; = 32,
My = 64,M5 = 128, and My = 256. The fil-
ter coeflicients were randomly selected. At the
output of the FIR system white gaussian noise
was added, resulting to an SNR equal to about
30dB, for all cases.

Five different values for the stabilization fac-
tor, p, has been tested, namely, p1 = 1, py =
199999, ps = .9999, ps = .999, and p5 = .99.
The smoothed MSE, E, for each case has been
estimated. It is depicted on Figure 1. Notice
that for all four filter tested, the stabilized fac-
tor of size p5 = .99 failed to give a considerable
improvement of the convergence speed. Iden-
tification experiments for p; up to p4, perform

almost undistinguishable. The dependence of
the ratio imﬁ of matrix PRy, on the stabi-
lization factor p, is depicted on Figure 2, for
different filter sizes.

5 Conclusions

A performance analysis of the FD-LMS adap-
tive filter has been presented for the case when
the Sliding DFT is utilized for the frequency
domain data transformation. A statistical per-
formance analysis in terms of the mean, and
the mean squared error of the filter parame-
ters has been presented. Although the stabi-
lized FS that is used for the recursive estima-
tion of the SDFT of the input data, results
to a non-orthogonal data transform, the per-
formance of the adaptive filter is superior of
the performance of the original LMS algorith-
m, implemented in the time domain. It has
been shown that the algorithm converges in the
mean, to a transformed Wiener solution. The
minimum Mean Squared Error attained, equal-
s to that of the original LMS scheme, provided
that the adaptation step size has been properly
chosen. The convergence speed of the frequen-
cy domain algorithm is always faster than that
of the conventional LMS time domain adap-
tive scheme. Finally, the theoretical results has
been validated by means of computer experi-
ments.
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Figure 1. Learning curves of the stabilized
FS-SDFT TD-LMS adaptive algorithm for var-
ious filter sizes and values of the stabilization

parameter p.
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Figure 2. Eigenvalue spread of the stabi-
lized FS-SDFT TD-LMS adaptive algorithm for
various filter sizes and values of the stabiliza-

tion parameter p.



