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Abstract�� In this paper the performance of the Frequency Domain LMS adaptive �lter is in�
vestigated� for the case when the Sliding Discrete Fourier Transform is utilized for the frequency
domain data transformation� A statistical performance analysis in terms of the mean� and the
mean squared error of the �lter parameters is presented� The convergence speed of the algorith�
m is analyzed in terms of the eigenvalue spread of the input signal autocorrelation matrix� The
theoretical analysis results are veri�ed by computer simulations�
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� Introduction

The design of adaptive �lters and system i�
denti�cation algorithms with optimum learn�
ing� in the sense of minimizing the accumulated
squared error between the output signal and a
desired response� has been the subject of ma�
jor research for a long time� Typical examples
include the design of decision feedback equal�
izers in digital communications� the design of
acoustical echo cancelers in hands�free telepho�
ny and in teleconferencing� the design of �lters
that will recover and enhance a signal transmit�
ted through a communication channel� ��������

One of the most common algorithm for adap�
tive �ltering is Widrow	s Least Mean Squared
error 
LMS� algorithm� ���� LMS like algorithms
are popular due to the low computational com�
plexity and the simplicity in the hardware real�
ization of the underline algorithmic structure�
However� the convergence rate of the algorithm
heavily depends on the eigenvalue spread of the

correlation matrix of the input data�

In an attempt to improve the performance
of the LMS algorithm� unitary transformations
on the input data vector� have been used� ����
��� The resulting algorithmsmay have increased
convergence rate for some classes on input sig�
nals� yet the computational complexity remain�
s similar to that of the original LMS scheme�
When the Discrete Fourier Transform 
DFT� is
used as the unitary transform� the input data
are continuously transformed into the Frequen�
cy Domain� 
FD�� The Sliding Window DFT

SDFT�� can be utilized to perform this task�
��� ���� The SDFT estimates the DFT transfor�
m of a rectangular window of the signal� which
is continuously updated with new samples as
the oldest ones are discarded� The Sampling
Frequency 
FS� structure� ���� a method for im�
plementing the SDFT based on a set of �l�
ter banks� is very popular in adaptive �ltering�
��� due to the low computational complexity�
the regularity and modularity� facts that are of



great importance when high speed implemen�
tation on VLSI ASIC� is under consideration�
����

The objective of this paper is to provide a
performance analysis of the FD�LMS algorith�
m� for the case when the stabilized SF struc�
ture is utilized for the computation of the S�
DFT of the input data� It is shown that the
algorithm converges in the mean� to a trans�
formed Wiener solution� The minimum mean
squared error attained� equals to that of the
original LMS scheme� provided that the adap�
tation step size has been properly chosen� The
convergence speed of the frequency domain al�
gorithm is proved to be always faster than that
of the conventional LMS time domain adaptive
scheme� The theoretical results are validated
by means of computer experiments�

� The Sliding DFT

Given a discrete time signal� x
n�� the SDFT
is de�ned as the DFT of a running rectangular
window of the signal� of size M � that moves at
a rate of one sample point each time� Consid�
er the data vector x
n� � �x
n� x
n � �� � � �
x
n �M � ���T � The corresponding SDFT is
the vector U
n� � �u�
n� u�
n� � � � uM��
n��T

where each element uk
n�� k � �� � � � �M � ��
is estimated by the form uk
n� �

PM��
��� x
n�

��wk�
M �
p
M � wM � e�j

��
M is the so called twid�

dle factor� Thus� U
n� � Wx
n�� where W is
the DFT matrix� i�e�� Wk�l � wkl

M�
p
M � Sev�

eral techniques have been developed so far for
the estimation of the SDFT of real or complex
signals� All these methods are based on the re�
cursive estimation of the SDFT algorithm� re�
lating the transform of the current time instant
to the transform already estimated the previous
time instant� �������� ���� The main advantage
of these algorithms is the reduced computa�
tional complexity� which is proportional to the
window	s length� The FS�SDFT� ���� and the
steady��ow LMS�DFT algorithm� ���� can be
applied to estimate sliding DFT	s of arbitrar�

ily selected window sizes� On the other hand�
when e�cient algorithms based on FFT�like re�
cursive schemes are applied� ���� the window	s
size is restricted to be a power of two�

Following the FS�DFT scheme� uk
n� is ef�
�ciently be updated by the set of �rst order re�
cursions uk
n� � wk

M
uk
n� �� � 
x
n� �x
n�

M��
p
M � which can be implemented by the fol�

lowing �lter�bank scheme� ��

uk
n� �
�p
M

�� z�M


�� wk
M
z���

x
n� 
��

The marginal instability of the original FS �l�
ters� due to the fact that the poles of the FS
�lters lies exactly on the unit circle� may cause
ampli�cation of round�o� errors� This problem
is alleviated by moving the corresponding poles
and zeros slightly inside the unit circle� by re�
placing z�� by �z��� � is a stabilization factor�
� � 
�� ��� ��� Thus� the following stabilized FS
�lters are utilized

vk
n� �
�p
M

�� �Mz�M


�� �wk
Mz

���
x
n� 
��

Following ����� it is possible to associate the re�
cursive structure 
�� to the DFT of the an expo�
nential weighted window of the incoming data
x
n� as� vk
n� �

PM��
��� ��x
n� ��wk�

M �
p
M � In

a matrix notation the above formula reads

V
n� �WLx
n� 
��

where� V
n� � �v�
n� v�
n� � � �vM��
n��
T � and

L � diag�� � � � ��M���� The power of the er�
ror between the stabilized and the original FS�
SDFT transform� over all frequency bins� has
be used as a metric of performance� It can ex�
plicitly be estimated� in terms of � and M � and
can be kept arbitrarily small� by proper choice
of �� �����

� Frequency Domain Adaptive
Filtering

The Frequency Domain LMS algorithm� ���� can
be interpreted as a preconditioned version of



the original LMS scheme� ���� The DFT is ef�
�ciently utilized to speed up the convergence
of the LMS algorithm� This preprocessing im�
proves the eigenvalue distribution of the input
signal autocorrelation matrix� and thus� a�ects
the convergence speed of the LMS algorithm�
The performance of the FD�LMS adaptive �l�
ter is analyzed� for the case when the stabilized
FS�SDFT is utilized for the computation of the
frequency domain data transformation�

��� The stabilized FS�SDFT FD�LMS

Let x
n� be an input signal and y
n� be a de�
sired response signal� The FD�LMS algorith�
m based on the modi�ed data transformation�
namely the stabilized FS�SDFT de�ned by eq�

��� takes the form

eV 
n� � y
n�� CH

V 
n� ��V 
n� 
��

CV 
n� � CV 
n� �� � �VP
��
V V
n�e�
n� 
��

PV is a diagonal matrix with entries the sig�
nal power associated to each frequency bin� It
has the form PV � diag

�
��
V��� �

�
V��� � � ��

�
V�M��

�
�

where� ��
V�k is the signal power at the k�th fre�

quency bin� ��
V�k � EEE �jvk
n�j��� In practice� PV

is a time varying matrix� whose elements� are
calculated in terms of available data� using for
example� an exponentially weighted power esti�
mator� implemented by the recursive di�erence
equation ��

V�k
n� � ���
V�k
n����
����jvk
n�j��

� � 
�� ��� However� in order to make the
performace analysis of the FD�LMS algorith�
m� more tracktable� we will consider PV to be
a constant diagonal matrix� �������������

The statistical properties of the FD�LMS
algorithm described by eqs� 
���
��� will ana�
lyzed using the standard independence assump�
tions� ���� rephrased in the frequency domain
as� ����� Independence assumptions� �A����
The input vectors V
��� V
��� � � � constitute
a sequence of statistically independent vectors�
�A��� The input vector V
n� is statistically in�
dependent of all previous samples of the de�
sired response� y
��� y
��� � � �y
n���� �A��� The

desired response signal y
n� is dependent on
V
n�� but statistically independent of all previ�
ous samples of the desired response signal� i�e��
y
��� � � �y
n� ���

��� Mean tap�weight behavior

Let us consider the average tap�weight behav�
ior� EEE �CV 
n��� Taking the expected value of
both sides of eq� 
�� we get EEE �CV 
n�� �
EEE �CV 
n� �����P��

V
EEE �V
n�VH
n�C
n� ����

�P��
V
EEE �V
n�y�
n��� Using the independence

assumptions�A���A��� we are allowed to write
EEE �V
n�VH
n�CV 
n� ��� � EEE �V
n�VH
n��
EEE �CV 
n� ���� De�ne the correlation parame�

tersRV � EEE
h
V
n�VH
n�

i
�DV � EEE �V
n�y�
n��

Thus� EEE �CV 
n�� �
�
I� �P��

V
RV

�EEE �CV 
n� ���
��P��

V
DV � Using standard arguments� ���� it

can be shown that the steady state solution�
EEE �CV 
��� � C�

V � of the above equation is giv�
en by the solution of the system of linear equa�
tions RVC

�

V � DV � provided that � � �V �
��tr
P��

V RV � � ��M � The relationship be�
tween C�

V and the optimum Wiener solution�
can be established� Using eq� 
��� we get

RV �WLRLW
H � DV �WLD 
�

where�R � EEE
�
x
n�xH
n�

�
�d � EEE 
x
n�y�
n���

are the autocorrelation matrix of the input sig�
nal� and the cross correlation vector between
the input signal and the desired response sig�
nal� Finally� we have

LW
H
C
�

V
� c� 
��

where c� is the optimum Wiener �lter given by
the solution of the normal equations Rc� � d�

��� Mean Squared Error Analysis

The instantaneous error eV 
n�� de�ned by eq�

��� can be expressed in terms of the optimum
transformed �lter parameter as

eV 
n� � e�
V

n�����H
n�V
n� 
��



���
n� is the parameter	s error vector� ���
n� �
CV 
n��C�

V � e
�

V 
n� is the optimum �ltering er�
ror attained� when the input signal is �ltered by
the optimum �lter parameters� e�V 
n� � y
n��
C�H

V
V
n�� The MSE� EV � is estimated as

EV � EEE
h
jeV 
n�j�

i
� E�

V
�Eex 
��

E�

V
is the optimum MSE given by

E�

V
� EEE

h
je�
V

n�j�

i
� EEE

h
jy
n�j�

i
�DH

V
C
�

V

���

Using eqs� 
� and 
�� it can be easily shown
that the optimumMSE� E�

V
� equals to the MSE

attained by the Wiener solution� i�e�� E�

V
� E��

Eex� the excess MSE error� which is estimated
to be Eex � tr �RVK�� Matrix K� appeared
above� is the covariance of the parameters error
vector� K � EEE ����
n����H
n���

In order the get an explicit expression for
Eex� the covariance matrix K should �rst be
estimated� To this end� ���
n� is expressed as

���
n� �
�
I� �P��

V V
n�VH
n�
�
���
n� ���

�P��
V V
n�e�V 
n�

Using results from averaging analysis� ����� the
solution of the above stochastic di�erence equa�
tion is� for su�cient small �� close to the solu�
tion of another stochastic di�erence� obtained
by replacing

�
I � �P��

V
V
n�VH
n�

�
by its av�

erage
�
I� �P��

V RV

�
� Using the above results�

the covariance matrix K
n� is estimated as

K
n� �
�
I � �P��

V RV

�
K
n� ��

�
I� �RVP

��
V

�
���P��

V RVP
��
V E�

V

The steady state solutionK � K
�� is then es�
timated from the above equation� A �rst order
approximation with respect to � of K can be
obtained by dropping the term ��P��

V RVP
��
V �

resulting to the more tractable expression

P
��
V RVK�KRVP

��
V � �P��

V RVP
��
V E�

V 
���

or�

RVK �PVKRVP
��
V

� �RVP
��
V
E�

V

Thus� tr 
RVK� � ����tr
�
P
��
V
RV

�
E�� since

tr
AB� � tr
BA�� Finally� we get

Eex
V

� 
�����ME�

V

���

��� Convergence analysis

The convergence performance of the stabilized
FS�SDFT FD�LMS of subsection ���� depends
on the eigenvalue spread of matrix P��

V
RV � On

the other hand� the performance of the conven�
tional LMS algorithm depends on the eigenval�
ue spread of the input autocorrelation matrix
R� Therefore� in comparing the performance
between these two algorithms� it is su�cient
to compare the eigenvalue spread of the corre�
sponding matrices P��

V
RV and R� Following

����� we adopt a useful index that measure the
eigenvalue spread of a positive semide�nite ma�
trix� i�e�� a function of the ratio of the arith�
metic mean over the geometric mean of the
eigenvalues� de�ned as

	
�
P
��
V RV

�
� 
�a��g�

M 
���

where� �a and �g are the arithmetic and the
geometric averages of the eigenvalues of matrix
P��
V RV � respectively� Large spread of eigenval�

ues result in large values for 	
�
P
��
V RV

�
� For

equal eigenvalues 	
�
P
��
V RV

�
is equal to one�

Eq�
��� can be evaluated by a more tractable
expression as�

	
�
P
��
V RV

�
�

�
tr
h
P
��
V RV

i
�M

�M
det

h
P
��
V RV

i
Notice that tr

�
P
��
V RV

�
� M � det

�
P
��
V RV

�
�

det
�
P
��
V

�
det �RV �� Thus� 	

�
P
��
V
RV

�
� det�PV ��

det�RV � �

Eq�
� results to det �RV � � det �L�� det �R�� Us�

ing the equation det �L� �
QM��

i�� �i � �
M�M���

� �
we get det �RV � � �M�M���det �R�� Moreover�
tr �PV � � tr �RV � � tr �LRL�� From the above
facts� tr �PV � is estimated as

tr �PV � �
M��X
m��

��m �
�� ��M

�� ��
tr �R�

M



Thus� 	
�
P
��
V
RV

�
can be expressed in the form

	
�
P
��
V
RV

�
�

det �PV �


tr �PV ��M�M

tr �RV ��M �M

det
RV �

Finally� we get 	
�
P��
V
RV

�
� 

�� ��R�

��PV �
where�



�� �

�
�� ��M

M��M���
�� ���

�M

� Notice that�

when � is close to one� which is the basic as�
sumption that guarantees that the stabilized
transform is close to the SDFT� we have 

�� �
�� Thus� we can conclude that

	
�
P
��
V
RV

�
� 	 
R� 
���

since� 	
PV � is� by de�nition� always greater
than� or equal� to one� Thus� the eigenval�
ue spread of the stabilized FS�SDFT FD�LMS
algorithm is expected to be smaller that the
eigenvalued spread of the classic LMS scheme�
which implies that the former algorithm con�
verges faster than the later one�

� Simulation

The performance of the stabilized FS�SDFTFD�
LMS adaptive algorithm is illustrated by a typ�
ical system identi�cation experiment� A sta�
tionary AR process of order �� driven by a white
noise signal� was used as an input to an FIR
�lter� Identi�cation of FIR �lters of various or�
ders has been considered� namely� M� � ���
M� � ��M	 � ���� and M
 � ��� The �l�
ter coe�cients were randomly selected� At the
output of the FIR system white gaussian noise
was added� resulting to an SNR equal to about
��dB� for all cases�

Five di�erent values for the stabilization fac�
tor� �� has been tested� namely� �� � �� �� �
������� �	 � ������ �
 � ����� and �� � ����
The smoothed MSE� EV for each case has been
estimated� It is depicted on Figure �� Notice
that for all four �lter tested� the stabilized fac�
tor of size �� � ��� failed to give a considerable
improvement of the convergence speed� Iden�
ti�cation experiments for �� up to �
� perform

almost undistinguishable� The dependence of
the ratio �max

�min
of matrix P��

V RV � on the stabi�
lization factor �� is depicted on Figure �� for
di�erent �lter sizes�

� Conclusions

A performance analysis of the FD�LMS adap�
tive �lter has been presented for the case when
the Sliding DFT is utilized for the frequency
domain data transformation� A statistical per�
formance analysis in terms of the mean� and
the mean squared error of the �lter parame�
ters has been presented� Although the stabi�
lized FS that is used for the recursive estima�
tion of the SDFT of the input data� results
to a non�orthogonal data transform� the per�
formance of the adaptive �lter is superior of
the performance of the original LMS algorith�
m� implemented in the time domain� It has
been shown that the algorithm converges in the
mean� to a transformed Wiener solution� The
minimum Mean Squared Error attained� equal�
s to that of the original LMS scheme� provided
that the adaptation step size has been properly
chosen� The convergence speed of the frequen�
cy domain algorithm is always faster than that
of the conventional LMS time domain adap�
tive scheme� Finally� the theoretical results has
been validated by means of computer experi�
ments�
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Figure �� Learning curves of the stabilized
FS�SDFT TD�LMS adaptive algorithm for var�
ious �lter sizes and values of the stabilization
parameter ��
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Figure �� Eigenvalue spread of the stabi�
lized FS�SDFTTD�LMS adaptive algorithm for
various �lter sizes and values of the stabiliza�
tion parameter ��


