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Abstract

Our aim in this paper is to develop a new approach for solving the discrete Model Matching Prob-
lem (MMP) by the static state feedback in the sense of Ho, optimality criterion by using Linear Matrix
Inequalities (LMIs). The main contribution of this study could briefly be explained as to reformulate
the discrete MMP in the formulation of LMI and to present the solvability conditions of the problem,
and to give a design procedure for the static state feedback control law that provides the best perfor-
mance of the discrete MMP in the sense of the H,, norm. It might be noticed that the formulation
developed here makes it possible to deal with irregular static state feedback case as well as regular case.
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1 Introduction

The Model Matching Problem is one of the most fa-
miliar problems in control theory. This problem is
of practical importance since it consists in compen-
sating a given system so that the resultant system
has a prespecified (model) transfer function. This
is a brief formulation of many problems of practical
interest, including the design of a servo with desired
closed-loop dynamics, the realization of a transfer
function using copies or approximates of a given dy-
namic component and the design of model-following
control systems.

The discrete Hoo MMP is to find a controller
transfer matrix R(z) as a precompensator, with
property of stable and causal rational matrix, that
is R(z)€ERHoo, that minimizes the Ho norm of
T1(z) — T2(z)R(z) such that the stable and proper
rational matrices T7(z) and T(z) are given as the
model and the system transfer matrices respec-

tively. The Hoo norm of a transfer matrix is

SUP  Omaz (T(ej“’))
we[0,27]
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This means that the closed-loop performance of the
controlled system, namely T5(z)R(z) that can eas-
ily be established by the dynamic state feedback,
approximates the desired performance in given as
Ti(z), in the sense of the following criterion,

inf
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In the literature, there are some results on the
Hoo MMP. Two of them are based on Nevanlinna-
Pick Problem (NPP) [2] and Nehari Problem (NP)
[4,5]. In these studies, the Ho MMP has been re-
duced to the one of these problems and then by us-
ing the results on the solution of NPP or NP, first
the value 7y, defined in (2) is found and then the
controller transfer matrix are obtained in the form
of stable and proper rational matrix. A state-space



solution of the H,, MMP that is based on canonical
spectral factorizations and solutions of the algebraic
Riccati equations (ARE), is given in [8].

In all these studies, the controller transfer ma-
trix R(z) is considered in the form of a precompen-
sator given in (2) and R(z) is found as a stable and
proper rational matrix. Since the precompensators
in the form of a proper and stable rational matrix
can generally be established by the dynamic state
feedback in the feedback configuration [9], none of
these results on the standard H., MMP cannot di-
rectly be used to solve the Ho MMP by the static
state feedback.

In this study, a special formulation is devel-
oped to solve the discrete Ho MMP by the static
state feedback. This formulation enables us to use
the methods and results presented for the solution
of the standard H,, OCP and so the problem is
completely solved by the LMI-based parameteriza-
tion. It should be noted that, in this paper, the
static state feedback law that solves the discrete
Hoo MMP has not been limited to be regular, i.e.
the control law can be obtained as an irregular static
state feedback, if the optimal performance requires.

The paper is organized in the following way: In
Chapter 2, we introduce some necessary preliminary
background. In Chapter 3, we present some special
formulation for the discrete MMP by the static state
feedback in formulation of LMI. In Chapter 4, main
result is given in Theorem 4.3 with including exis-
tence conditions of the problem. In Chapter 5, we
construct the static state feedback controller by us-
ing Theorem 4.3 and the some conclusions are given
in Chapter 6.

The following notation will be used throughout
the paper: KerM and ImM for the null space and
range of the linear operator associated with M re-
spectively and N* for the transpose conjugate of N
matrix. Moreover P > 0 denotes that P matrix is
positive definite.

2 Preliminaries and Problem

Statement

Consider a causal discrete Linear Time-Invariant
(LTT) generalized plant P(z) described by the equa-

tion,
z(k+1) Az (k) + Byw(k) + Bau(k)
z(k) = Ciz(k)+ Dyyw(k) + Digu(k) (3)
y(k) = Cg@(k) + Dglw(k) + Dggu(k)

where z(k)ER™ is the state vector, u(k)ER™? is the
vector of control inputs, w(k)ER™ is the vector of
exogenous inputs, i.e. reference signals, disturbance
signals, sensor noise, etc., y(k)ERP? is the vector of
measurements and z(k)E€RP! is the vector of out-
put signals described to the performance of control
system. The closed-loop system with the controller
K(z) is shown as in Figure 1:
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Figure 1

It is obvious that the plant P(z) in Figure 1 can
be given in the following form,
|+

P(z) = [ Pii(2)  Pia(z) ] _ [ Dy
] (zI-A)"'[ B By] (4)
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about the state-space model of the plant and the

transfer matrix from w(k) to z(k) in Figure 1 can
be written as,

Tow(z) = Pi1(z) + Pia(z)K(z).
(I — Pn(2)K(2) ' Pa(z) (5)

The discrete Hoo OCP is to find all admissible
controllers K (z) such that || T, (2)||,, is minimized.
The following Lemma is known as The Bounded
Real Lemma for discrete-time systems and can be
used to turn the discrete Ho, OCP into an LMI:

Lemma 2.1 Consider a discrete-time transfer ma-
triz T(z) of (not necessarily minimal) realization
T(z) = D + C(zI — A)~'B. The following state-
ments are equivalent:

i) |D+C(2I — A)~'B||, <7 and A is Hurwitz in



the discrete-time sense;
ii) there erists a solution X > 0 to the LMI:
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Proof: [3]. O

3 Discrete Model Matching Prob-
lem in Formulation of LMI

In order to solve the discrete Hoo MMP via LMI
approach, the problem should be reformulated as a
standard Ho, OCP in state-space equations. For
this aim, we shall consider a minimal realizations
(A,B,C,D) of Ty(z), namely controlled system,
and (F,G, H,J) of T1(z), namely model system, so
the state-space equations of these systems can be
given as follows,

Ti(z): q(k+1) = Fq(k)+ Gw(k)
yi(k) = Hq(k)+ Jw(k)
To(z): =z(k+1) = Ax(k)+ Bu(k)
yo(k) = Cz(k) + Du(k)

and the control input u(k) can be generated by the
static state feedback controller K = [ L M } such
that:

w(k)

Figure 2

It must be noted that the static state feedback
is said to be regular, if M is nonsingular and it is

said to be irregular if M is singular. It is eas-
ily seen as in Figure 2 that discrete Hoo MMP
can be considered as in the discrete Ho, OCP with
HTzw(z)Hoo <7.

We propose a plant P(z) described by,

] = [e ]
4 {g]w(k)—l-[?]u(k)(g)
2(k) =yi(k) —ge(k) = [ -C H] 2((2))]
+  Jw(k) — Du(k) (9)
wo=[2®] = [19][29]
N [?]w(k) (10)

where g(k) € R™ and z(k) € R™ are the state
vectors of the model and system given in 7} (z) and
T5(z), respectively.

As a result of above analysis, the following Re-
mark can be given:

Remark: The discrete Hoo MMP for the model
and system given in T1(z) and Ta(z), respectively,
s equivalent to the discrete Hoo OCP for the plant
described by equation (8), (9) and (10). Figure 3
shows this idea:
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Figure 3

We have assumed Dgo = 0 because of removing
more complicated formulas. So, a realization (not
necessarily minimal) of the closed-loop transfer ma-
trix from w(k) to z(k) is obtained as

Tzw(z) =Dy + Ccl(ZI - Acl)_chl (11)



where

Aq = A+ByKCy (12)
B, = B+ ByKDy (13)
Cq = Ci1+4+D13KCy (14)
Dy = Di+ D12KDo (15)

The following Lemma can be given on the in-
ternal stability of the closed-loop system:

Lemma 3.1 For the system described in (8), (9)
and (10), there exists any compatible matriz K such
that the matriz Ay = A+ BoKCs is Hurwitz, if and
only if the pair (A, B) is stabilizable and the matriz
F is Hurwitz.

Proof: When one considers A, By, Cy and K
in A, the following relation is obtained:

ta= [0 p]e o] fo o)
_ [A+OBL 1(;] (16)

The matrix A, is Hurwitz if and only if the matrix
F' is Hurwitz and there exists any compatible ma-
trix L such that the matrix A+ BL is Hurwitz, i.e.
the pair (A, B) is stabilizable. O

In order to guarantee the existence of the static
state feedback law such that the closed-loop system
is internally stable, throughout the paper, we as-
sume that the pairs (A, B) is stabilizable and the
matrix F' is Hurwitz.

4 Main Result

In order to present a synthesis theorem on the LMI-
based characterization of the discrete H,, MMP, let
us give the following Lemmas that will be used to
prove of the Theorem that will be presented later.

Lemma 4.1 Suppose P, QQ and H are matrices and
that H is symmetric. The matrices Np and Ng are
full rank matrices satisfying ImNp = KerP and
ImNg = KerQ. Then there exists a matriz J such
that

H+PJQ+QJP<O (17)
if and only if the inequalities
NpHNp <0 and NGHNg <0 (18)

both hold.
Proof: See [6]. O
Lemma 4.2 The block matriz

<

if and only if N < 0 and P — MN—'M* < 0. In
the sequel, P — M N ~'M* will be referred to as the
Schur Complement of N.

(19)

P M
M* N

Proof: See [1]. O

We can now present the synthesis theorem on the
LMI-based solution of the discrete Hoo MMP with
the static state feedback:

Theorem 4.3 A controller K = [ L M ] which
solves the discrete Hoo MMP with the static state
feedback and the closed-loop system is internally sta-
ble, if and only if there exists a symmetric matriz

X, X
X = [ X% Xz ] > 0 such that,
F*X3F — X3+ lH*H <0 (20)
Y
(A O)XC_II(A 0)*_Xc_zl
[I\éc ?]{ ?—gH)chlo‘gg)*
(o )
A 0 —1 —-C* 0
—71(+<0§ )H)lx(—llz —H%* ) ( f) N9 ]<o en
J* —~I
where N, is a full rank matriz with
ImN, = Ker[ B* 0 —D* | (22)

and a minimal realizations (A, B,C,D) of Ty(z),
namely controlled system, and (F,G,H,J) of T1(z),
namely model system.

Proof: From the Bounded Real Lemma, K =
[ L M } is the static state feedback controller in
Figure 3 if and only if the LMI

-X,' Ay By O
A* —-X 0 C*
cl cl cl
i ¢ <0 (23)
B, 0 I Dy
0 Ccl Dcl —’)’I



holds for some X > 0 in R™*". Using the expres-
sions (12), (13), (14) and (15) of A, Be, Cq and
D, this LMI can also be written as:

Hx,+P'KQ+QK*P <0 (24)
where
-X;' A B 0
o A* _Xcl 0 Cik
Hxa B 0 —1 i, |
0 Ci Dn -l
Q = [O Cy Do O] (26)
P = [B; 0 0 Dj | (27)

We can use Lemma 4.1 to eliminate the matrix K
in (24). Therefore, (24) holds for some K if and
only if

NpHx,Np <0 and NZQHXCINQ <0 (28)
where

ImNp = KerP , ImNg = Ker@Q , Xq > 0.

Meanwhile, from (27) it follows that bases of KerP
are of the form

Vi 0 0
0 I 0
Ne=119 o1 (29)
Vo 0 0
where
W
-1 ] (30)
is any basis of the null space of [ B} Dj, ]. So
NpHx,Np <0 can be reduced to
Vi 0 0]°[-X' A B 0
0 I 0 A —Xg 0 CF
0 0 I B} 0 —I Dy
sz 00 0 Cl Dn —’)’I
Vi 00
0 10
0 0 I <0 (31)
Vo 0 0
and
Vi 07 [AX'A*-X;' B
0 I B} —I
Va 0 CiX,'A*  Du
AX'Ct Vi 0
D, 0 I |<0(32
I+ C X ;' Ct Vo 0

or equivalently

—1 —1
AXcl AT — Xcl

[ ch ? :| CIXC_lIA*
By
—1 %
AX'Cq B N o
—I+C1X'C; Dny ¢ <0 (33)
e 0 I
Dy, -1

On the other hand,

ImNg = Ker[0 Cy Dy 0]
0 I 000
_KeT[OOOIO] (34)
and
I 00
0 00
Nog=1010 (35)
0 00
0 0 I

so, the condition NZ)H x,;Ng < 0 is equivalent to

N =1 A 0 0
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0 0 0 A o0 \*
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0 0 0 o £
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Then one can easily see that the reduced form of
above inequality is in the form of a Lyapunov in-
equality as follows:

1
F*X3F — X3 + ;H*H <0 (37)

by using Lemma 4.2. Finally, it can easily be de-
rived the condition (21) when one considers the re-
lations (8), (9) and (10) in (33). O



5 Controller Construction

Although the Theorem 4.3 is about the solvability
conditions of the discrete Ho, MMP with the static
state feedback, it also provides a construction pro-
cedure:

Step 1: Find the matrix X' > 0 for 7, with
satisfying the LMI given in (21) by using The LMI
Control Toolbox [7].

X, X ]
X5 X3 ]

obtained in the previous step and verify the condi-
tion (20) for v and X3.

Step 2: Find X3 by using X' = [

Step 3: If the LMI (20) is satisfied, find the static
state feedback control law as K = [ L M | by
solving the LMI given in (24) and stop the con-
troller construction procedure, else increase 7.

Step 4: Find the matrix Xc_l1 > 0 for new 7y with
satisfying the LMI given in (21) and go to Step 2.

Since the matrix F' is Hurwitz, the LMI given
(20) has a positive definite solution for all value of
YERT. So we need to solve only one LMI (21) to ob-
tain the optimal solution of the discrete Hoo MMP
by the static state feedback.

6 Conclusions

In this study, the discrete Ho, MMP by the static
state feedback has been investigated in state-space
formulation and an LMI-based solution of the prob-
lem has been presented. The existence conditions of
the static state feedback controller have been given
in Theorem 4.3 and a construction procedure has
been proposed in Section 5. The results on the dis-
crete Hoo MMP by the static state feedback, pre-
sented in this paper, might be regarded as the gen-
eral results, since the static state feedback law that
solves the discrete Hoo, MMP has not been limited

to be regular, i.e. the control law could be obtained
as an irregular static state feedback, if the optimal
performance requires.
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