
HASH ALGORITHMS: A DESIGN FOR PARALLEL
CALCULATIONS

N.G.Bardis

Research Associate
Hellenic Ministry of the Interior, Public

Administration and Decentralization
8, Dragatsaniou str., Klathmonos Sq.

10559, Greece

Alex Polymenopoulos.

Hellenic College of National Defense
Athens, Greece

E.G.Bardis

Senior Security Analyst
Hellenic Ministry of the Interior, Public

Administration and Decentralization
Athens, Greece

A.P.Markovskyy

Department of Computer Engineering
National Technical University of Ukraine

37, Peremohy, pr. Kiev 252056, KPI 2003,
Ukraine

Nikos E. Mastorakis

Military Institutes of University Education, Hellenic Naval Academy,
Terma Hatzikyriakou, 18539, Piraeus, GREECE

Abstract:- It has been shown that the standardized hash-algorithms SHA-1, RIPEMD-160, MD-5 and
others of that type have substantial performance restrictions due to their sequential structure. Modified
variants of hash-algorithms are suggested which make it possible to independently calculate partial hash-
signatures while maintaining the irreversibility level of the standard algorithms. These variants give new
opportunities for wide parallel calculation of hash-signatures. In fact, applying the suggested modified
algorithms remove the performance restrictions affiliated with the calculation an information message’s
hash-signatures. In practice, the hash-algorithms suggested may be used for integrity and authentication of
information messages in computer network.

Key words: Cryptographic hash functions, instruction-level parallelism, multiple-issue architectures,
parallel calculation arrangement.

1 Introduction
An important component for having modern

and effective network technologies is ensuring
the integrity and authenticity of the information
transmitted. In practice, to solve the problem,
special standardized protocols and digital
signature procedures are applied, such as DSS
(Digital Signature Standard).

In a DSS, the dominant role belongs to
algorithms that form hash-signatures, i.e. codes
of a small fixed length that accumulate the
maximum amount of information contained in
the message.

The role of hash-signatures and is not just
restricted to systems providing information
integrity and authentication in computer

networks. Since early 60’s they have been widely
implemented for associative access in databases
and information systems.

During the last decade, the hash-algorithms
effective application field extended far at the cost
of information security systems. They play an
important role in software protection from
computer viruses, for the prevention of
unauthorized program copying, for designing
pseudorandom sequence generators, and for
authentication programming products and
documents.
In practice, hash-signatures must provide:

- Hash-signature code dependence on each
bit of an information message;

- One way transformation, i.e. practical
impossibility to find the input message
code by the given hash-signature code;

- Possibility to form an information
message hash-signature of an arbitrary
length;

- Fast calculation of hash-signature using
either personal computers or special
processors.

To be able to create an information message’s
hash-signature of any length, modern hash-
algorithms, such as MD-5, SHA-1, RIPEMD-
160, ГОСТ Р.34.11-94, MDC-4 [4], are
developed on a block basis. This principle is
based on the procedure of dividing the message
text into blocks of fixed length which are then
processed with a hash-algorithm sequentially.
Most hash-algorithms have a sequential structure,
i.e. each information block that follows is
processed taking in account the result of the
previous block’s processing. This creates major
restrictions when trying to achieve high
performance hash-signature formation.

The performance requirement of hash-
signature formation on personal computers with
clock frequency 500 MHz is about 3-5 Mbytes/s
[3] and causes significant delays in information
flow processing. What is required is development
of new methods and means of hash-signature
formation in order to increase performance.
Because the speed of data communications
systems is growing at a faster rate than processor
speed itself, the importance placed on the
efficiency of the formation of a hash-signature’
increases even more.

On the other hand, it should be kept in mind
that processor speed growth results in a necessary
complication of hash-algorithms in order to
ensure their irreversibility. This means an
increase in calculation complexity and,
correspondingly, computation time. In fact, the
earlier hash-algorithms MD-4 and MD-5 are
three times faster than the modern SHA-1 and
RIPEMD-160 algorithms that have been
developed more for irreversibility [3]. Thus, the
important problem of the calculation of the
information message’s hash-signature cannot be
solved only by getting higher speed of
processing.

The only possible way to drastically increase
hash-signature formation speed is to arrange
them so that their parallel calculation is possible.
This, in its turn, requires development of new

approaches to independent formation of partial
hash-signatures of several blocks and their merging
without decreasing the hash-algorithm’s level of
irreversibility.

2 Algorithm SHA-1 and the problem of

its parallel calculation

Nowadays, the most widespread hash-
algorithm is SHA-1 (Secure Hash
Algorithm), created at the beginning of 90’s
as an improvement of the earlier MD-4 and
MD-5 [4] hash-algorithms. Later on, its
European version RIPEMD-160 was
developed. All these algorithms are
structurally related, differing only in the
length of the input information block and
hash-signature as well as in the functions of
their hash-transformations. Therefore, further
presentation on SHA-1 seems to be justified
taking into consideration that all the results
obtained may be applied to any of the hash-
algorithms mentioned above.

Algorithm SHA-1 provides for preliminary
modification of an information message М.
The executive message is the concatenation
of three parties: the input message M with L-
bit length, fragment Р=100...0 and a 64-bit
code which contained the code L. The length
of the P fragment should be such that the total
length of the executive message will be a
multiple of 512. After that modification, the
message is divided into n of 512-bits blocks -
M1,M2,…,Mn and for each jth block Мj,
j=1,…,n – a hash-transformation H(λ,Mj) is
performed that results in a 160-bit partial
hash-signature hj. Here λ is the initiating 160-
bit code, which is a fixed code α at the
processing of the first block and is formed as
an XOR of all the previous partial hash-
signatures while all the next blocks are being
processed.

The total hash signature HS(M), of information
message М, is formed as the XOR of all the
partial hash-signatures.

j

n

j

jk

j

k
j

hMHS

njMhHh

MaHh

⊕

⊕

=

−

=

=

==

=

1

1

1

11

)(

)1(,...,2),,(

),(

The structure described provides that each

information message bit has equal influence on
the hash-signature HS(M) code. At the same
time, the impossibility to find a collision
message Mk≠M: HS(Mk)=HS(M) by block
manipulations (by permutation of the input
message blocks), is assured by the fact that the
XOR of the partial hash-signatures of all
previous blocks is used as the initiating code of
the next block. The most significant part of the
hash-algorithm is the hash transformation
structure H(λ,M). It gives the hash-algorithm’s
requirements as stated above and consists of 80
cycles of the recursive calculation of the 160-bit
code λ presented as the 5 of 32-bit variables A,
B, C, D, E with the participation of the
information block M. The 512 bit information
block is expanded from the 16 of 32-bit sub-
blocks W0,…,W15 to 80 of 32-bit sub-blocks
W0,…,W79 according to the following formula:

)2(79,...,16

),(1614831

=∀

⊕⊕⊕= −−−−

j

WWWWROLW jjjjj

where ROL1 is the operation of cyclic shift to
the left of the 32-bit code by one bit. The 80
cycles that compose the process of hash-
transformation are divided into 4 groups by 20
cycles, each one of them uses the
corresponding Boolean function f1,…,f4 that is
based on variables В, С and D:

DCBDCBf
DCDBCBDCDBCBDCBf

DCBDCBf
DDBCBDBCBDCBf

⊕⊕=
⋅⊕⋅⊕⋅=⋅∨⋅∨⋅=

⊕⊕=
⊕⋅⊕⋅=⋅∨⋅=

),,(
)3(),,(

),,(
),,(

4

3

2

1

In each of the 80 cycles, algorithm SHA-1
calculates a 32-bit variable Т, as the sum
modulo 232 of:

• the code А shifted circularly by 5 bits,
• the value result of the calculation of

function f,

• the corresponding to a number cycle -
32-bit sub-block W,

• the variable Е,

)4(20mod)1(,80,...,1

,),,()(5

+==

++++=

iqi

EWKDCBfAROLT iiqqi

Execution of an іth cycle (і=2,...,80) is finished
with recursive re-determination of variables Aі,
Bі, Cі, Dі and Eі :

TA
AB

BROLC
CDDE

i

ii

ii

iiii

=
=
=

==

−

−

−−

1

130

11

)5()(
,

The partial hash-signature h(Mj) of a jth block

of the information message consists of the 5
variables A80, B80, C80, D80, E80 after the
execution of all the 80 cycles. The hash-
transformation information message M is the
160-bit hash-signature HS(M) code that has the
property of the maximum total and differential
entropy regarding to any of the information
message bits.

The property of the total entropy maximum
consists of the equal chance for all the hash-
signature bits to be equal either to zero or to one,
at any codes of the message.

The property of the differential entropy
maximum (the property of the avalanche effect) is
that, by altering the bits of any message, there is a
50% chance that each hash-signature bit will
change its value. In fact, SHA-transformation is
the system of 160 nonlinear balanced Boolean
functions, whose set of variables is created by all
the bits of the input message. The differential of
these functions with respect to any subset of
variables is also a balanced Boolean function.

The properties of SHA–transformation stated
above, give it a practical irreversibility when
attempting to find a collision message by means
of linear and differential analysis. Because the
length of the input block equals 512, while the
length of a partial hash-signature equals only to
160, there exist 2512-160=2342 input block variations
that have a given code of the hash-signature.
However, to find at least one of them, 2160 input
block variations are to be searched. This exceeds
the resources of contemporary computers many
times. Unfortunately, the SHA-1 weak point is the

sequential calculation of partial hash-signatures.
Although the SHA-1 structure is intended to
employ Intel 32-bit multipurpose
microprocessors, the complexity of the
algorithm for this processor is rather high
because, to calculate a partial hash-signature,
about 1000 commands need to be executed.

Paralleling of hash-signature calculation may
be implemented both as a collateral (parallel)
calculation of a partial hash-signature and as
collateral (parallel) formation of several partial
hash-signatures. It should be noticed that the
former does not imply an alteration of the
algorithm structure while the latter requires
modification of the algorithms themselves.

The problem of collateral execution of a
single hash-signature calculation was studied in
[1]. It was partly shown that the critical path’s
length for the SHA-1 algorithm is made by 160
operations and the maximum collating sequence
level is 7. Employing a 7-processor architecture,
calculation of a partial hash-signature may be
theoretically performed in the time it takes to
execute 160 commands. This makes it possible
to increase hash-signature formation speed by
about 6.25 times. In this case the number of the
registers required is 26, and the processor
efficiency is 0.85.

Thus, according to the results of investigation
[1], by collating the operations and employing a
special-purpose multiprocessing computer the
speed of one partial hash-signature calculation
cannot be increased more than by 6.25 times.
This amount is not enough for practical
problems. Hence, in practice the only possible
way to greatly increase the hash-signature
formation speed is to arrange a parallel
calculation of partial hash-signatures. This
requires modification of SHA-like algorithms
while maintaining maximum security level
against manipulation of the blocks of the input
message.

3 Requirements to arrange the partial
hash-signatures parallel formation

The main reason for arranging hash-

signature sequel formation is that it makes it
impossible to find collision messages through
block manipulations, i.e. by permutation of the
initial information message blocks.

On the other hand, sequential formation of
partial hash-signatures does not allow multiple
searching for a collision message. That means

searching input block codes by way of calculation
of the corresponding partial hash-signature till the
latter coincides with one of n-1 partial hash-
signatures of the original information message is
impossible.
It is obvious that at in a single attempt to search a
collision block, the success probability is 2-160.
Let t attempts to find a collision block for a
concrete information block be carried out. The
probability of success in this case is 1-(1-2-160)t. If
the same number of attempts is carried out taking
into account the possibility of coincidence
between the formed partial hash-signature and
any of (n-1) original blocks, the probability of
success is much higher at 1-(1-2-160)t⋅(n-1) .

Thus, the problem consists of arranging the
calculation of partial hash-signatures and the total
hash-signature in such a way so that, on one hand,
allows for independent calculation of partial
hash-signatures and on the other hand, makes it
possible to

• maintain the property of the total and
differential entropy maximum

• prevent the finding of a collision
information message by means of block
manipulations and multiple searching.

Also, complex calculations should not be used
because they require considerable computational
resources.

The problem may be solved by modifying the
function that creates the total hash-signature from
the partial hash-signatures, or by modifying the
function that creates the partial hash-signatures.
The modification of the function that creates the
partial hash–signature is necessary when the total
hash signature is formed as an XOR of partial
hash-signatures:

)6()()(
11

j

n

j
j

n

j
MHhMHS ⊕⊕

==

==

Such a function retains the properties of the total
and differential entropy maximum but it does not,
by itself, assure the impossibility of block
manipulations.

The modification of the function that forms the
partial hash-signatures is to be carried out in such
a way that at permutation of a jth block Mj, the
corresponding partial hash-signature hj=H(Mj)
code should change. The idea may be
implemented in the following ways:

• Altering the information block code at the
hash-transform input, i.e. feeding its input

with the modified code Mm
j=ϕ(Mj,mj),

instead of code Mj, where mj is the
modifying code for the jth block;

• Using the modifying code mj as the
initiating code λ at processing the j-th
block;

• Transforming the partial hash-signatures
codes after their obtaining hm

j=φ(hj,mj).
The presented ways of modifying the

function that forms the partial hash-signatures
may be used either independently or
simultaneously. The modifying code mj is
determined by the number of the jth block in the
message and may be formed with use of some
additional information.

4 Arrangement of independent

calculation of partial hash-signatures
by modifying their formation
procedure

The simplest form for the arrangement of the

independent calculation of partial hash-
signatures is modifying the input block
Mm

j=ϕ(Mj,mj) directly before calculating its
partial hash-signature Mm

j=ϕ(Mj,mj). In this
case it should be kept in mind that, on one
hand, the functional transformation ϕ(Mj,mj)
has to ensure the change of one bit Mmj at the
change of any single bit Mj, and on the other
hand, that the transformations ϕ(Mj,mj) as such
are to eliminate the finding M’j ≠ Mj :
ϕ(M’j,mj)= ϕ(Mj,mj). This may be achieved if
the function ϕ(Mj,mj) is either single-valued or
a one–way function (i.e. computation resource
expenditure on finding the collision block
M’j≠Mj: ϕ(M’j,mj) =ϕ(Mj,mj) should be beyond
the computer implementation). Application of
one–way functions requires significant
computation resources. Therefore, utilization of
modified information blocks of single-valued
functions as function ϕ(Mj,mj) has better
prospects. For such functions the condition
L(Mm

j)=L(Mj)+L(mj) is held. Here L(Mj) is the
information block length, L(mj) is the
modifying code length and L(Mm

j) is the hash-
transformation input code length. The simplest
function that satisfies the stated demands is
concatenation of the information block and its
ordinal number in the message (mj=j):

)7(||),(jMmMM jjj
m
j == ϕ

Decreasing the length of an information (block
assigned to) a partial hash-signature by value
L(mj) of the modifying code mj results in the
growth of the hash-signature formation speed by
a value of L(Mm

j)/L(Mj)= L(Mm
j)-L(mj)) on the

same processor. In particular, for SHA-1 and
MD-5 the L(Mm

j)=512, correspondingly the speed
of hash-signature formation decreases by
512/(512-L(mj)) times. If the lower bound of the
modifying code length equals Log2n, the lower
bound of hash-signature calculation speed
decreases by 512/(512-Log2(n)) times.
Specifically, if L(mj)=32, it is possible to form
hash-signatures of messages with a length of up
to 240 Gbyte. (In this case), the block length
decreases from 512 to 480 bits and the time for
the total hash-signature formation increases, upon
exploiting k processors, by k/1.076 times.
Further growth of operation speed may be
achieved by modifying code mj as the initial code
λ at processing the jth block, which, in this case, is
calculated as the XOR of the constant α and the
block ordinal number:

)8(ajms jj ⊕==

The advantage of being able to modify partial
hash-signatures after their formation and before
the total hash-signature calculation is that
falsification of partial hash-signatures after their
calculation before the total hash-signature
calculation is practically impossible at the input
of modifying procedures. On the other hand,
special requirements to keep statistic and
differential characteristics of the total hash-
signature are put forward to the procedures.
Modification of the partial hash-signature codes
hj of each of the jth of the n blocks Mj of the
information message after their formation as the
result of hash-transformation hj=H(Mj) is
performed by means of modifying function
hm

j=φ(hj,mj). If the set of non-modified partial
hash-signatures of all the n blocks of the
information message is designated as
ϑ={h1,h2,…,hn}, then, to exclude the possibility
of finding a colliding message by block
permutation (resistance to attacks), it is necessary
that the modifying function fulfills the following
condition:

)9(,,

,),(),(

kjkj

jkkj

hhhh

mhmh

≠∈∀

≠

ϑ

φφ

Function φ(hj,mj) is to conserve the statistic
properties of hash-signatures, i.e. by altering any
bit of unmodified hash-signature hj, the same
number of bits of modified hash-signature hm

j
should change at any value of modifying code
mj:

)10()),(),((

))((

jjjj

jj

mhmhHW

hhHW

αφφ

α

⊕⊕=

=⊕⊕

where HW(X) is Hamming weight of binary
code Х, equal to the number of ones in the code
Х, and α is an arbitrary binary vector whose
length coincides with hj.

The last requirement put forward is satisfied
by the functions of initial partial hash-signature
bit permutation. In this case, the permutation
functions should be simple and effective in
their implementation as well able to satisfy
condition (9) at the given maximal number of
information blocks in the message.

Specifically, (it should be) a permutation
function that satisfies the stated demands and
may be applied in practice to modify the output
partial hash-signatures is function Р(Х,r) of the
fragmental circular shift.

The operation of fragmental circular shift of
the q-bit code X supposes its division into m of
k-bit fragments, where k=m/q:
Х=D1||D2||…||Dm. In turn, each fragment Dj,
j=1,…,m comprises k of binary bits
Dj=dj1,dj2,…,djk, d∈{0,1}. Each jth of m
fragments Dj of code Х is put into
correspondents with analogous binary bit of m-
bit code U={u1,u2,…,um}, uj∈{0,1}. The bit
permutation P(X,r) supposes sequential
execution of r circular shifts of fragments Х, in
so doing, in each tth shift (t=1,…,r) only those
fragments X take part to which single values of
code U corresponds. The numerical value of
the code equals U(t)= (t-1) mod (2m-1)+1.
Thus, the basic operation for the functional
transformation Р(Х,r) is the logical shift by one
bit to the left of k-bit fragment Dj for which
uj=1 with filling the deleted bit by the bit of cj
transfer into jth fragment : Dj<<cj. Denoting Θ
as the set of fragment numbers that participate
in the shift, i.e. Θ=∪j:uj=1, the process of

single bit permutation P(h,1) may be presented
formally as:

1:12,1:12

)11(min,max

,min,:min,

,:

1

=−=+=−<

Θ=Θ=

Θ==Θ≠Θ∈∀

<<=Θ∈∀

>

UUUUU

qc

ldctt

cDDj

mm

q

tllt

jjj

From a processing aspect, the Forre method does
not correspond to the requirements imposed
above for the design of balanced SAC-functions.

For example, let Х=1100 1010 0110 1001 i.e.
q=16; code h is divided into 4 fragments by 4
bits, correspondingly m=4 and k=4. The values of
the fragments are equal to: D1=0100, D2=1010,
D3=0110, D4=1001. Let U=6=(1010) in the
current shift, correspondingly, set Θ={1,3}. This
implies that the first and third fragments are
shifted. In so doing, the transfer is carried out to
the first fragment from the output of overflow at
the third fragment shift c1=d31=0, and the transfer
into the third fragment is carried out from the
output of overflow of the first fragment c3=d11=1.
Code h has the form of X=1000 1010 1101 1001
after shifts of D1 and D3. The value of U=6 is less
than 24-1=15, correspondingly the next value of
U is equal to U+1 = 7=(0111).

If the modified jth partial hash-signature of the
fragmental shift function P(hj,mj) described above
is taken as function φ(hj,mj), it is important to
assume a high speed of partial hash-signature
modification. Apparently, realization of r
fragmental shifts P(X,r) requires time in
proportion to r. However, because the function of
the fragmental shift permutation has the property:
P(h⊕t,y)=P(h,y)⊕P(t,y), the modification of
partial hash-signatures may be executed
simultaneously. Specifically, at each step,
modification of all the partial hash-signatures
calculated earlier may be executed collaterally
with use of difference n-j as the modifying code
mj for the j-th partial hash-signature hj, i.e. at
mj=n-j and, correspondingly, φ(hj,mj)=P(hj,n-j).
At each step, the modification is determined by
the time of one fragmental shift. In this case the
total hash-signature code is being formed
recursively according to the following expression:

)12(,)1,(001 hShSPS jjj =⊕= −

Concerning the 160-bit code of the SHA-1
hash-signature (q=160), it may be divided into
5(five) 32-bit fragments, 10(ten) 16-bit
fragments and 20(twenty) 8-bit fragments. In
principle, other divisions may also be
considered but the ones mentioned above
provide highest processing simplicity in
implementing the bit permutation function.
Considering that the processor efficiency for
calculation of a partial hash-signature in SHA-1
takes about 1000 computer commands,
modification of partial hash-signatures, even
with use of the 20-fragment division, doesn’t
require more than 20 shift commands, i.e.
slowing down the total hash-signature
calculation makes not more than 2%.

Periods of permutation iteration at the
fragmental circular shift for dividing a 160-bit
hash-signature into 5, 10 and 20 fragments
make correspondingly 231⋅120=3720,
21023⋅60=61380 and 21048575⋅495≈5⋅108. In such
a way, upon division into 5 fragments, the
application of the permutation function P(hj,mk)
as partial hash-signatures modification function
φ(hj,mk) ensures condition (9) to be held at the
message length up to 232.5 Kbytes. With
division into 10 and 20 fragments, condition (9)
is held at the message length equal
correspondingly to 3.74 Mbytes and 31.68
Gbytes.

5 Arrangement of partial hash-

signatures independent calculation at
by modifying the total hash-signature
formation function

Applying asymmetric functions ψ(h1,h2,…,hn)
to form the total hash-signature from the codes
of partial hash-signatures is another way to
prevent breaks of SHA-1 hash-signatures
through block manipulations and arrangement
of independent calculation of partial hash-
signatures.

)13(),...,,()(21 nhhhMHS ψ=

The asymmetry condition is that for any pair of
partial hash-signatures, hk≠ht, t,k∈{1,…,n} the
condition ψ(h1,…,hk-1,hk,hk+1,…,ht-1-

,ht,ht+1,…,hn) ≠ ψ(h1,…,hk-1, ht, hk+1,…, ht-1,
hk,ht+1,…,hn) is held, i.e. function ψ alternates
with a change of components succession on
which it is determined. Besides, function ψ is

to conserve the statistic properties of the whole
hash-signature. Namely, upon alteration of a half
of the partial hash-signature bits a half bit of the
total hash-signature should change. This property
may be replaced with a simpler one: under the
condition that the other partial hash-signatures are
left without change, upon alternating an arbitrary
number of bits of a partial hash-signature the
corresponding number of the total hash-signature
bits should alternate.

Because n the number of block changes which
cannot be known in advance, function ψ should
be simply implemented through the recursive
procedure.

One of the possible variations in implementing
partial the hash-signatures collation function is
the utilization of SHA-transformation. Existence
of the 512-bit input makes it possible to collate 3
partial hash-signatures. The ordinal number of the
jth triplet of the information message blocks being
collated may feed, as the modifying code, the 32
inputs left unused. Correspondingly, the total
hash-signature is calculated according to the
formula:

)14()||)(||)(||)((

)||||||()(

31323

3/

1

31323

3/

1

jMHMHMHH

jhhhHMHS

jjj

n

j

jjj

n

j

⋅−⋅−⋅
=

⋅−⋅−⋅
=

⊕

⊕

=

==

Applying the SHA-transform for partial hash-

signatures collation provides for asymmetry and
conservation of the total hash-signature statistic
properties. It reliably protects the total hash-
signature from breaks by means of block
manipulations. On the other hand, applying a
rather time-consuming SHA–algorithm for partial
hash-signatures collation distinctly slows down
the total hash-signature formation by 30%. In
practice, it may be justified using some
specialized high efficiency hardware for SHA–
transform.

The other variant (of the function) adequate for
practical application is employing nonlinear
functional transformers with memory. The
function collating partial hash-signatures remains
asymmetric and conserves the statistic properties
of SHA-1 hash-signatures. The memory of the
transformers is being utilized through q 160-bit
vectors W1,…,Wq, which are initially set to zero.
Collation of the partial hash-signatures is
performed by alteration of vectors W1,…,Wq
accordingly to the formula:

)15(,:1,...,1

),,...,(

1

21

vWWWqj

WWhWv

qjj

qj

==−=∀

⊕⊕=

+

δ

where δ(W2,…,Wq) is a nonlinear balanced
Boolean SAC-function of q–1 variables.

The total hash-signature is formed after
implementing a collating operation over the last
partial hash-signature hn in the following way:

)16(),...,()(2 qWWMHS δ=

The asymmetry property is provided for by
nonlinear transformations and conservation of
SHA hash-signature statistic property is
determined by application of SAC-function δ.
After collating the jth partial hash-signature hj
each bit of vector Wq alternates with the change
of the analogous bit hj. Because function
δ(W1,…,Wq) is a SAC one, and Wq is
completely correlated with hj, and the
probability for any bit Wq to alternate with the
corresponding bit hj is 0.5 when the next (j+1)th
hash-signature hj+1 is being collated. Similar
reasoning may reveal that after collating the
(h+q)th partial hash-signature, any bit of all the
q vectors W1,…,Wq changes with a probability
of 0.5 when alternating the corresponding bit hj.
Because the total hash-signature HS(M) is
formed as a SAC-function of W2,…,Wq, half of
the total hash-signature bits change upon
alteration of any number of bits of any of the
partial hash-signatures.

The studies have shown that at q=8, less than
100 processor commands are spent on the
operations of total hash-signature formation at
exploiting the nonlinear function transformers
with memory. Hence, increasing the time
expenditures on formation of the total SHA-1
hash-signature resistant to breaks by block
manipulations at independent calculation of
partial hash-signatures makes not more than
1% for single processor.

6 Annotation

Research on widespread hash-algorithm SHA-
1, RIPEMD-160, MD-5 and others of the type
whose resources are modified with the intent to
arrange their parallel implementation on
multiprocessor complexes or high efficiency
specialized hardware systems.

7 Conclusions

Through investigation, it has been shown that
standardized algorithms SHA-1, RIPEMD-160,
MD-5 and others of the type have substantial
restrictions on performance due to their
sequential structure. The sequential pattern of
hash-signature formation according to known
schemes is determined by the fact that, in this
case, finding a collision message by block
manipulation and multiple searches becomes
impossible. Variants of modified hash-algorithms
proposed are resistant to block manipulations and
multiple search. At the same time they enable the
calculation of independent partial hash-
signatures. This gives the opportunity for wide
parallel calculation of hash-signatures and, in
practice, solves the problem of performance
restrictions on calculation of an information
message’s hash-signature. This is of great
importance for high-speed telecommunication
systems, especially for mobile communication
systems and image transmission.

Two groups of methods are suggested. One is
connected with the modification of the procedure
that obtains a partial hash-signatures and the other
relates to modification of the function that obtains
the total hash-signature. The main advantage of
the former method compared to the latter is the
impossibility to reproduce a collision message
both by means of block manipulation and by
multiple searches. The methods developed may
be applied in combination or independently.

References

1. Bosslaers A., Govaerts R., Vandewalle J.
SHA: A Design for Parallel
Architectures. EUROCRYPTO’97.
LNCS 1233, pp.348-363. 1997.

2. Chabaud F., Joux A. Differential
Collision in SHA-0. CRYPTO’98.
LNCS 1462, pp.56-71. 1998.

3. Dobbertin H., Bosselaer A., Preneel B.
“RIPEMD-160: A strengthened Version
of RIPEMD”. Fast Software Encryption,
LNCS-1039, pp.71-82, 1996.

4. Schneier B. “Applied Cryptography.
Protocols. Algorithms and Source codes
in C. Ed.John Wiley, 1996 - 758 pp.

5. Secure Hash Standard. Federal
Information Processing Standard
Publication #180,U.S. Department of
Commerce, National Institute of
Standard and Technology,1993.

6. Secure Hash Standard. Federal
Information Processing Standard
Publication #180-1, U.S. Department
of Commerce, National Institute of
Standard and Technology, 1995.

