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Abstract:- It has been shown that the standardized hash-algorithms SHA-1, RIPEMD-160, MD-5 and 
others of that type have substantial performance restrictions due to their sequential structure. Modified 
variants of hash-algorithms are suggested which make it possible to independently calculate partial hash-
signatures while maintaining the irreversibility level of the standard algorithms. These variants give new 
opportunities for wide parallel calculation of hash-signatures. In fact, applying the suggested modified 
algorithms remove the performance restrictions affiliated with the calculation an information message’s 
hash-signatures. In practice, the hash-algorithms suggested may be used for integrity and authentication of 
information messages in computer network. 
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1 Introduction 
An important component for having modern 

and effective network technologies is ensuring 
the integrity and authenticity of the information 
transmitted. In practice, to solve the problem, 
special standardized protocols and digital 
signature procedures are applied, such as DSS 
(Digital Signature Standard).  

In a DSS, the dominant role belongs to 
algorithms that form hash-signatures, i.e. codes 
of a small fixed length that accumulate the 
maximum amount of information contained in 
the message.  

The role of hash-signatures and is not just 
restricted to systems providing information 
integrity and authentication in computer 

networks. Since early 60’s they have been widely 
implemented for associative access in databases 
and information systems.  

During the last decade, the hash-algorithms 
effective application field extended far at the cost 
of information security systems. They play an 
important role in software protection from 
computer viruses, for the prevention of 
unauthorized program copying, for designing 
pseudorandom sequence generators, and for 
authentication programming products and 
documents. 
In practice, hash-signatures must provide: 

- Hash-signature code dependence on each 
bit of an information message; 



- One way transformation, i.e. practical 
impossibility to find the input message 
code by the given hash-signature code; 

- Possibility to form an information 
message hash-signature of an arbitrary 
length; 

- Fast calculation of hash-signature using 
either personal computers or special 
processors. 

 
To be able to create an information message’s 
hash-signature of any length, modern hash-
algorithms, such as MD-5, SHA-1, RIPEMD-
160, ГОСТ Р.34.11-94, MDC-4 [4], are 
developed on a block basis. This principle is 
based on the procedure of dividing the message 
text into blocks of fixed length which are then 
processed with a hash-algorithm sequentially. 
Most hash-algorithms have a sequential structure, 
i.e. each information block that follows is 
processed taking in account the result of the 
previous block’s processing. This creates major 
restrictions when trying to achieve high 
performance hash-signature formation. 

The performance requirement of hash-
signature formation on personal computers with 
clock frequency 500 MHz is about 3-5 Mbytes/s 
[3] and causes significant delays in information 
flow processing. What is required is development 
of new methods and means of hash-signature 
formation in order to increase performance. 
Because the speed of data communications 
systems is growing at a faster rate than processor 
speed itself, the importance placed on the 
efficiency of the formation of a hash-signature’ 
increases even more. 

On the other hand, it should be kept in mind 
that processor speed growth results in a necessary 
complication of hash-algorithms in order to 
ensure their irreversibility. This means an 
increase in calculation complexity and, 
correspondingly, computation time.  In fact, the 
earlier hash-algorithms MD-4 and MD-5 are 
three times faster than the modern SHA-1 and 
RIPEMD-160 algorithms that have been 
developed more for irreversibility [3]. Thus, the 
important problem of the calculation of the 
information message’s hash-signature cannot be 
solved only by getting higher speed of 
processing. 

The only possible way to drastically increase 
hash-signature formation speed is to arrange 
them so that their parallel calculation is possible. 
This, in its turn, requires development of new 

approaches to independent formation of partial 
hash-signatures of several blocks and their merging 
without decreasing the hash-algorithm’s level of 
irreversibility. 
 
2  Algorithm SHA-1 and the problem of 

its parallel calculation 
 

Nowadays, the most widespread hash-
algorithm is SHA-1 (Secure Hash 
Algorithm), created at the beginning of 90’s 
as an improvement of the earlier MD-4 and 
MD-5 [4] hash-algorithms. Later on, its 
European version RIPEMD-160 was 
developed. All these algorithms are 
structurally related, differing only in the 
length of the input information block and 
hash-signature as well as in the functions of 
their hash-transformations. Therefore, further 
presentation on SHA-1 seems to be justified 
taking into consideration that all the results 
obtained may be applied to any of the hash-
algorithms mentioned above. 

Algorithm SHA-1 provides for preliminary 
modification of an information message М. 
The executive message is the concatenation 
of three parties: the input message M with L-
bit length, fragment Р=100...0 and a 64-bit 
code which contained the code L. The length 
of the P fragment should be such that the total 
length of the executive message will be a 
multiple of 512. After that modification, the 
message is divided into n of 512-bits blocks - 
M1,M2,…,Mn and for each jth block Мj, 
j=1,…,n – a hash-transformation H(λ,Mj) is 
performed that results in a 160-bit partial 
hash-signature hj. Here λ is the initiating 160-
bit code, which is a fixed code α at the 
processing of the first block and is formed as 
an XOR of all the previous partial hash-
signatures while all the next blocks are being 
processed. 

The total hash signature HS(M), of information 
message М, is formed as the XOR of all the 
partial hash-signatures. 
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The structure described provides that each 

information message bit has equal influence on 
the hash-signature HS(M) code. At the same 
time, the impossibility to find a collision 
message Mk≠M: HS(Mk)=HS(M) by block 
manipulations (by permutation of the input 
message blocks), is assured by the fact that the 
XOR of the partial hash-signatures of all 
previous blocks is used as the initiating code of 
the next block. The most significant part of the 
hash-algorithm is the hash transformation 
structure H(λ,M). It gives the hash-algorithm’s 
requirements as stated above and consists of 80 
cycles of the recursive calculation of the 160-bit 
code λ presented as the 5 of 32-bit variables A, 
B, C, D, E with the participation of the 
information block M. The 512 bit information 
block is expanded from the 16 of 32-bit sub-
blocks W0,…,W15 to 80 of 32-bit sub-blocks 
W0,…,W79 according to the following formula: 
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where ROL1 is the operation of cyclic shift to 
the left of the 32-bit code by one bit. The 80 
cycles that compose the process of hash-
transformation are divided into 4 groups by 20 
cycles, each one of them uses the 
corresponding Boolean function f1,…,f4 that is 
based on variables В, С and D: 
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In each of the 80 cycles, algorithm SHA-1 
calculates a 32-bit variable Т, as the sum 
modulo 232 of: 

• the code А shifted circularly by 5 bits,  
• the value result of the calculation of 

function f,  

• the corresponding to a number cycle - 
32-bit sub-block W,  

• the variable Е, 
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Execution of an іth cycle (і=2,...,80) is finished 
with recursive re-determination of variables Aі, 
Bі, Cі, Dі and Eі : 
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The partial hash-signature h(Mj) of a jth block 

of the information message consists of the 5 
variables A80, B80, C80, D80, E80 after the 
execution of all the 80 cycles. The hash-
transformation information message M is the 
160-bit hash-signature HS(M) code that has the 
property of the maximum total and differential 
entropy regarding to any of the information 
message bits. 

The property of the total entropy maximum 
consists of the equal chance for all the hash-
signature bits to be equal either to zero or to one, 
at any codes of the message.  

The property of the differential entropy 
maximum (the property of the avalanche effect) is 
that, by altering the bits of any message, there is a 
50% chance that each hash-signature bit will 
change its value. In fact, SHA-transformation is 
the system of 160 nonlinear balanced Boolean 
functions, whose set of variables is created by all 
the bits of the input message. The differential of 
these functions with respect to any subset of 
variables is also a balanced Boolean function. 

The properties of SHA–transformation stated 
above, give it a practical irreversibility when 
attempting to find a collision message by means 
of linear and differential analysis. Because the 
length of the input block equals 512, while the 
length of a partial hash-signature equals only to 
160, there exist 2512-160=2342 input block variations 
that have a given code of the hash-signature. 
However, to find at least one of them, 2160 input 
block variations are to be searched. This exceeds 
the resources of contemporary computers many 
times. Unfortunately, the SHA-1 weak point is the 



sequential calculation of partial hash-signatures. 
Although the SHA-1 structure is intended to 
employ Intel 32-bit multipurpose 
microprocessors, the complexity of the 
algorithm for this processor is rather high 
because, to calculate a partial hash-signature, 
about 1000 commands need to be executed. 

Paralleling of hash-signature calculation may 
be implemented both as a collateral (parallel) 
calculation of a partial hash-signature and as 
collateral (parallel) formation of several partial 
hash-signatures. It should be noticed that the 
former does not imply an alteration of the 
algorithm structure while the latter requires 
modification of the algorithms themselves. 

The problem of collateral execution of a 
single hash-signature calculation was studied in 
[1]. It was partly shown that the critical path’s 
length for the SHA-1 algorithm is made by 160 
operations and the maximum collating sequence 
level is 7. Employing a 7-processor architecture, 
calculation of a partial hash-signature may be 
theoretically performed in the time it takes to 
execute 160 commands. This makes it possible 
to increase hash-signature formation speed by 
about 6.25 times. In this case the number of the 
registers required is 26, and the processor 
efficiency is 0.85.  

Thus, according to the results of investigation 
[1], by collating the operations and employing a 
special-purpose multiprocessing computer the 
speed of one partial hash-signature calculation 
cannot be increased more than by 6.25 times. 
This amount is not enough for practical 
problems. Hence, in practice the only possible 
way to greatly increase the hash-signature 
formation speed is to arrange a parallel 
calculation of partial hash-signatures. This 
requires modification of SHA-like algorithms 
while maintaining maximum security level 
against manipulation of the blocks of the input 
message. 
 

3 Requirements to arrange the partial 
hash-signatures parallel formation 

 
The main reason for arranging hash-

signature sequel formation is that it makes it 
impossible to find collision messages through 
block manipulations, i.e. by permutation of the 
initial information message blocks. 

On the other hand, sequential formation of 
partial hash-signatures does not allow multiple 
searching for a collision message. That means 

searching input block codes by way of calculation 
of the corresponding partial hash-signature till the 
latter coincides with one of n-1 partial hash-
signatures of the original information message is 
impossible. 
It is obvious that at in a single attempt to search a 
collision block, the success probability is 2-160. 
Let t attempts to find a collision block for a 
concrete information block be carried out. The 
probability of success in this case is 1-(1-2-160)t. If 
the same number of attempts is carried out taking 
into account the possibility of coincidence 
between the formed partial hash-signature and 
any of (n-1) original blocks, the probability of 
success is much higher at 1-(1-2-160)t⋅(n-1) . 

Thus, the problem consists of arranging the 
calculation of partial hash-signatures and the total 
hash-signature in such a way so that, on one hand, 
allows for independent calculation of partial 
hash-signatures and on the other hand, makes it 
possible to  

• maintain the property of the total and 
differential entropy maximum 

• prevent the finding of a collision 
information message by means of block 
manipulations and multiple searching. 

Also, complex calculations should not be used 
because they require considerable computational 
resources. 

The problem may be solved by modifying the 
function that creates the total hash-signature from 
the partial hash-signatures, or by modifying the 
function that creates the partial hash-signatures. 
The modification of the function that creates the 
partial hash–signature is necessary when the total 
hash signature is formed as an XOR of partial 
hash-signatures: 
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Such a function retains the properties of the total 
and differential entropy maximum but it does not, 
by itself, assure the impossibility of block 
manipulations. 

The modification of the function that forms the 
partial hash-signatures is to be carried out in such 
a way that at permutation of a jth block Mj, the 
corresponding partial hash-signature hj=H(Mj) 
code should change. The idea may be 
implemented in the following ways: 

• Altering the information block code at the 
hash-transform input, i.e. feeding its input 



with the modified code Mm
j=ϕ(Mj,mj), 

instead of code Mj, where mj is the 
modifying code for the jth block; 

• Using the modifying code mj as the 
initiating code λ at processing the j-th 
block; 

• Transforming the partial hash-signatures 
codes after their obtaining hm

j=φ(hj,mj). 
The presented ways of modifying the 

function that forms the partial hash-signatures 
may be used either independently or 
simultaneously. The modifying code mj is 
determined by the number of the jth block in the 
message and may be formed with use of some 
additional information. 
 
4 Arrangement of independent 

calculation of partial hash-signatures 
by modifying their formation 
procedure 

 
The simplest form for the arrangement of the 

independent calculation of partial hash-
signatures is modifying the input block 
Mm

j=ϕ(Mj,mj) directly before calculating its 
partial hash-signature Mm

j=ϕ(Mj,mj). In this 
case it should be kept in mind that, on one 
hand, the functional transformation ϕ(Mj,mj) 
has to ensure the change of one bit Mmj at the 
change of any single bit Mj, and on the other 
hand, that the transformations ϕ(Mj,mj) as such 
are to eliminate the finding M’j ≠ Mj : 
ϕ(M’j,mj)= ϕ(Mj,mj). This may be achieved if 
the function ϕ(Mj,mj) is either single-valued or 
a one–way function (i.e. computation resource 
expenditure on finding the collision block 
M’j≠Mj: ϕ(M’j,mj) =ϕ(Mj,mj) should be beyond 
the computer implementation). Application of 
one–way functions requires significant 
computation resources. Therefore, utilization of 
modified information blocks of single-valued 
functions as function ϕ(Mj,mj) has better 
prospects. For such functions the condition 
L(Mm

j)=L(Mj)+L(mj) is held. Here L(Mj) is the 
information block length, L(mj) is the 
modifying code length and L(Mm

j) is the hash-
transformation input code length. The simplest 
function that satisfies the stated demands is 
concatenation of the information block and its 
ordinal number in the message (mj=j): 
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Decreasing the length of an information (block 
assigned to) a partial hash-signature by value 
L(mj) of the modifying code mj results in the 
growth of the hash-signature formation speed by 
a value of L(Mm

j)/L(Mj)= L(Mm
j)-L(mj)) on the 

same processor. In particular, for SHA-1 and 
MD-5 the L(Mm

j)=512, correspondingly the speed 
of hash-signature formation decreases by 
512/(512-L(mj)) times. If the lower bound of the 
modifying code length equals Log2n, the lower 
bound of hash-signature calculation speed 
decreases by 512/(512-Log2(n)) times. 
Specifically, if L(mj)=32, it is possible to form 
hash-signatures of messages with a length of up 
to 240 Gbyte. (In this case), the block length 
decreases from 512 to 480 bits and the time for 
the total hash-signature formation increases, upon 
exploiting k processors, by k/1.076 times. 
Further growth of operation speed may be 
achieved by modifying code mj as the initial code 
λ at processing the jth block, which, in this case, is 
calculated as the XOR of the constant α and the 
block ordinal number: 
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The advantage of being able to modify partial 
hash-signatures after their formation and before 
the total hash-signature calculation is that 
falsification of partial hash-signatures after their 
calculation before the total hash-signature 
calculation is practically impossible at the input 
of modifying procedures. On the other hand, 
special requirements to keep statistic and 
differential characteristics of the total hash-
signature are put forward to the procedures. 
Modification of the partial hash-signature codes 
hj of each of the jth of the n blocks Mj of the 
information message after their formation as the 
result of hash-transformation hj=H(Mj) is 
performed by means of modifying function 
hm

j=φ(hj,mj). If the set of non-modified partial 
hash-signatures of all the n blocks of the 
information message is designated as 
ϑ={h1,h2,…,hn}, then, to exclude the possibility 
of finding a colliding message by block 
permutation (resistance to attacks), it is necessary 
that the modifying function fulfills the following 
condition: 
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Function φ(hj,mj) is to conserve the statistic 
properties of hash-signatures, i.e. by altering any 
bit of unmodified hash-signature hj, the same 
number of bits of modified hash-signature hm

j 
should change at any value of modifying code 
mj: 
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where HW(X) is Hamming weight of binary 
code Х, equal to the number of ones in the code 
Х, and α is an arbitrary binary vector whose 
length coincides with hj. 

The last requirement put forward is satisfied 
by the functions of initial partial hash-signature 
bit permutation. In this case, the permutation 
functions should be simple and effective in 
their implementation as well able to satisfy 
condition (9) at the given maximal number of 
information blocks in the message. 

Specifically, (it should be) a permutation 
function that satisfies the stated demands and 
may be applied in practice to modify the output 
partial hash-signatures is function Р(Х,r) of the 
fragmental circular shift. 

The operation of fragmental circular shift of 
the q-bit code X supposes its division into m of 
k-bit fragments, where k=m/q: 
Х=D1||D2||…||Dm. In turn, each fragment Dj, 
j=1,…,m comprises k of binary bits 
Dj=dj1,dj2,…,djk, d∈{0,1}. Each jth of m 
fragments Dj of code Х is put into 
correspondents with analogous binary bit of m-
bit code U={u1,u2,…,um}, uj∈{0,1}. The bit 
permutation P(X,r) supposes sequential 
execution of r circular shifts of fragments Х, in 
so doing, in each tth shift (t=1,…,r) only those 
fragments X take part to which single values of 
code U corresponds. The numerical value of 
the code equals U(t)= (t-1) mod (2m-1)+1. 
Thus, the basic operation for the functional 
transformation Р(Х,r) is the logical shift by one 
bit to the left of k-bit fragment Dj for which 
uj=1 with filling the deleted bit by the bit of cj 
transfer into jth fragment : Dj<<cj. Denoting Θ 
as the set of fragment numbers that participate 
in the shift, i.e. Θ=∪j:uj=1, the process of 

single bit permutation P(h,1) may be presented 
formally as: 
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From a processing aspect, the Forre method does 
not correspond to the requirements imposed 
above for the design of balanced SAC-functions. 

For example, let Х=1100 1010 0110 1001 i.e. 
q=16; code h is divided into 4 fragments by 4 
bits, correspondingly m=4 and k=4. The values of 
the fragments are equal to: D1=0100, D2=1010, 
D3=0110, D4=1001. Let U=6=(1010) in the 
current shift, correspondingly, set Θ={1,3}. This 
implies that the first and third fragments are 
shifted. In so doing, the transfer is carried out to 
the first fragment from the output of overflow at 
the third fragment shift c1=d31=0, and the transfer 
into the third fragment is carried out from the 
output of overflow of the first fragment c3=d11=1. 
Code h has the form of X=1000 1010 1101 1001 
after shifts of D1 and D3. The value of U=6 is less 
than 24-1=15, correspondingly the next value of 
U is equal to U+1 = 7=(0111). 

If the modified jth partial hash-signature of the 
fragmental shift function P(hj,mj) described above 
is taken as function φ(hj,mj), it is important to 
assume a high speed of partial hash-signature 
modification. Apparently, realization of r 
fragmental shifts P(X,r) requires time in 
proportion to r. However, because the function of 
the fragmental shift permutation has the property: 
P(h⊕t,y)=P(h,y)⊕P(t,y), the modification of 
partial hash-signatures may be executed 
simultaneously. Specifically, at each step, 
modification of all the partial hash-signatures 
calculated earlier may be executed collaterally 
with use of difference n-j as the modifying code 
mj for the j-th partial hash-signature hj, i.e. at 
mj=n-j and, correspondingly, φ(hj,mj)=P(hj,n-j). 
At each step, the modification is determined by 
the time of one fragmental shift. In this case the 
total hash-signature code is being formed 
recursively according to the following expression: 
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Concerning the 160-bit code of the SHA-1 
hash-signature (q=160), it may be divided into 
5(five) 32-bit fragments, 10(ten) 16-bit 
fragments and 20(twenty) 8-bit fragments. In 
principle, other divisions may also be 
considered but the ones mentioned above 
provide highest processing simplicity in 
implementing the bit permutation function. 
Considering that the processor efficiency for 
calculation of a partial hash-signature in SHA-1 
takes about 1000 computer commands, 
modification of partial hash-signatures, even 
with use of the 20-fragment division, doesn’t 
require more than 20 shift commands, i.e. 
slowing down the total hash-signature 
calculation makes not more than 2%. 

Periods of permutation iteration at the 
fragmental circular shift for dividing a 160-bit 
hash-signature into 5, 10 and 20 fragments 
make correspondingly 231⋅120=3720, 
21023⋅60=61380 and 21048575⋅495≈5⋅108. In such 
a way, upon division into 5 fragments, the 
application of the permutation function P(hj,mk) 
as partial hash-signatures modification function 
φ(hj,mk) ensures condition (9) to be held at the 
message length up to 232.5 Kbytes. With 
division into 10 and 20 fragments, condition (9) 
is held at the message length equal 
correspondingly to 3.74 Mbytes and 31.68 
Gbytes. 
 
5 Arrangement of partial hash-

signatures independent calculation at 
by modifying the total hash-signature 
formation function 

 
Applying asymmetric functions ψ(h1,h2,…,hn) 
to form the total hash-signature from the codes 
of partial hash-signatures is another way to 
prevent breaks of SHA-1 hash-signatures  
through block manipulations and arrangement 
of independent calculation of partial hash-
signatures. 
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The asymmetry condition is that for any pair of 
partial hash-signatures, hk≠ht, t,k∈{1,…,n} the 
condition ψ(h1,…,hk-1,hk,hk+1,…,ht-1-

,ht,ht+1,…,hn) ≠ ψ(h1,…,hk-1, ht, hk+1,…, ht-1, 
hk,ht+1,…,hn) is held, i.e. function ψ alternates 
with a change of components succession on 
which it is determined. Besides, function ψ is 

to conserve the statistic properties of the whole 
hash-signature. Namely, upon alteration of a half 
of the partial hash-signature bits a half bit of the 
total hash-signature should change. This property 
may be replaced with a simpler one: under the 
condition that the other partial hash-signatures are 
left without change, upon alternating an arbitrary 
number of bits of a partial hash-signature the 
corresponding number of the total hash-signature 
bits should alternate. 

Because n the number of block changes which 
cannot be known in advance, function ψ should 
be simply implemented through the recursive 
procedure. 

One of the possible variations in implementing 
partial the hash-signatures collation function is 
the utilization of SHA-transformation. Existence 
of the 512-bit input makes it possible to collate 3 
partial hash-signatures. The ordinal number of the 
jth triplet of the information message blocks being 
collated may feed, as the modifying code, the 32 
inputs left unused. Correspondingly, the total 
hash-signature is calculated according to the 
formula: 
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Applying the SHA-transform for partial hash-

signatures collation provides for asymmetry and 
conservation of the total hash-signature statistic 
properties. It reliably protects the total hash-
signature from breaks by means of block 
manipulations. On the other hand, applying a 
rather time-consuming SHA–algorithm for partial 
hash-signatures collation distinctly slows down 
the total hash-signature formation by 30%. In 
practice, it may be justified using some 
specialized high efficiency hardware for SHA–
transform. 

The other variant (of the function) adequate for 
practical application is employing nonlinear 
functional transformers with memory. The 
function collating partial hash-signatures remains 
asymmetric and conserves the statistic properties 
of SHA-1 hash-signatures. The memory of the 
transformers is being utilized through q 160-bit 
vectors W1,…,Wq, which are initially set to zero. 
Collation of the partial hash-signatures is 
performed by alteration of vectors W1,…,Wq 
accordingly to the formula: 
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where δ(W2,…,Wq) is a nonlinear balanced 
Boolean SAC-function of q–1 variables. 

The total hash-signature is formed after 
implementing a collating operation over the last 
partial hash-signature hn in the following way: 
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The asymmetry property is provided for by 
nonlinear transformations and conservation of 
SHA hash-signature statistic property is 
determined by application of SAC-function δ. 
After collating the jth partial hash-signature hj 
each bit of vector Wq alternates with the change 
of the analogous bit hj. Because function 
δ(W1,…,Wq) is a SAC one, and Wq is 
completely correlated with hj, and the 
probability for any bit Wq to alternate with the 
corresponding bit hj is 0.5 when the next (j+1)th 
hash-signature hj+1 is being collated. Similar 
reasoning may reveal that after collating the 
(h+q)th partial hash-signature, any bit of all the 
q vectors W1,…,Wq changes with a probability 
of 0.5 when alternating the corresponding bit hj. 
Because the total hash-signature HS(M) is 
formed as a SAC-function of W2,…,Wq, half of 
the total hash-signature bits change upon 
alteration of any number of bits of any of the 
partial hash-signatures. 

The studies have shown that at q=8, less than 
100 processor commands are spent on the 
operations of total hash-signature formation at 
exploiting the nonlinear function transformers 
with memory. Hence, increasing the time 
expenditures on formation of the total SHA-1 
hash-signature resistant to breaks by block 
manipulations at independent calculation of 
partial hash-signatures makes not more than 
1% for single processor. 
 
6 Annotation 
 
Research on widespread hash-algorithm SHA-
1, RIPEMD-160, MD-5 and others of the type 
whose resources are modified with the intent to 
arrange their parallel implementation on 
multiprocessor complexes or high efficiency 
specialized hardware systems. 

 
7 Conclusions 
 
Through investigation, it has been shown that 
standardized algorithms SHA-1, RIPEMD-160, 
MD-5 and others of the type have substantial 
restrictions on performance due to their 
sequential structure. The sequential pattern of 
hash-signature formation according to known 
schemes is determined by the fact that, in this 
case, finding a collision message by block 
manipulation and multiple searches becomes 
impossible. Variants of modified hash-algorithms 
proposed are resistant to block manipulations and 
multiple search. At the same time they enable the 
calculation of independent partial hash-
signatures. This gives the opportunity for wide 
parallel calculation of hash-signatures and, in 
practice, solves the problem of performance 
restrictions on calculation of an information 
message’s hash-signature. This is of great 
importance for high-speed telecommunication 
systems, especially for mobile communication 
systems and image transmission. 

Two groups of methods are suggested. One is 
connected with the modification of the procedure 
that obtains a partial hash-signatures and the other 
relates to modification of the function that obtains 
the total hash-signature. The main advantage of 
the former method compared to the latter is the 
impossibility to reproduce a collision message 
both by means of block manipulation and by 
multiple searches. The methods developed may 
be applied in combination or independently. 
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