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Abstract: - In this paper, we present a new methodology for modeling the dynamics of a winding 
process using a back-propagation neural network model. Herein, a neural network structure, model 
estimation, and model validation are developed to estimate a nominal linear model around the 
system operating point. The simulation results show that the estimated model response is 
satisfactory for industry applications.    
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1 Introduction 
 
Winding processes are continuous-time 
systems often used in web conveyance 
systems, paper and textile making, plastic 
extrusion, steel rolling and food industries. 
Their main function is to make the conveyance 
of a continuous sheet of flexible material as 
regular as possible. The process can be 
represented as subsystem of complex industrial 
processes, known to be multivariable, 
nonlinear, and time variant. This type of 
processes is challenging in modeling, 
identification, and control. Moreover, most 
process variables (e.g. radius) are not 
measurable. For the last few decades, 
researchers have studied how to reduce the 
computational load associated with the design, 
analysis of multivariable web conveyance 
systems[3], sheet and film processes [5], 
Aluminum industries [7], and steel 
industries[6]. However, These Multi-Input 
Multi-output (MIMO) linear models are 
difficult to apply to a full scale and require 
complete knowledge of all process physical 
parameters. With the development of powerfull 
computational machines and statistical 
methods, new techniques for the analysis of 
data have emerged, these methods allow for 
more accurate and robust modeling of control 
systems. Neural networks are paticularly suited 
for modeling ill-defined, non-linear systems 
[13]. In this paper we use a neural network as a 
tool for system identification to estimate an 

ARMA (Auto regressive moving average) 
winding system model. The paper is organized 
as follows. Section 2 presents the winding 
process. The dynamical multivariable process 
model is formulated in section 3. Section  4 is 
concerned with the identification study 
including the experiment design, model 
estimation, and model validation. Finally, 
results and conclusion  are outlined in section 
5.  
 
2 Process Description 
 
Aluminum rod continuous casting and rolling 
plant at Egypt Alum in Naga Hammadi in 
Egypt has been in routine operation since 1974. 
It is designed for continuous aluminum casting 
with following crystallization and hot rolling of 
stock into rod (wire) of diameter from 9 to 14 
mm. Ready wire is continuously wound onto 
two-spool winder. The maximum line speed is 
10 m/sec. The line has a production capacity of 
4.5 tones/hr. The main mechanisms used in this 
process are: Casting wheel units, shears, a 
rolling mill, a winder, lubricating and cooling 
systems. The majority of these mechanisms are 
equipped with DC electric drives that use 
thyristor converter cards. Auxiliary 
mechanisms are driven by induction motors. In 
1999 a modernization plan for this line was 
implwmented to take advantage of new 
technology in drive systems and electrical 
controls, including tension control. Phase 1 of 
the modernization was concerned with the 



winder section of the plant. The winder is 
composed of spools, layer, and turret. Spool 
DC motors are replaced by AC induction 
motors equipped with frequency converters 
(FC). A hydraulic cylinder drives the layer 
movement with a proportional flow control 
valve instead of DC motor drive. The turret is 
driven by a bidirection AC induction motor to 
move the turret to threading, laying, and 
change positions of each spool. A 
progammable logic controller (PLC) is used to 
control the system. The PLC reads the feeding 
speed using a tachometer, the actual spool 
motors speed using a pulse encoders with 
200p/rev, the actual spool motors current, and 
the position of the cylinder piston. The PLC 
sends a speed setpoints to the FC and the 
cylinder drive. The PLC is also used for the 
identification of the process with a sampling 
rate down to 10 ms.    
 
3 Process Model   
 
Several modeling studies have been proposed 
to describe tension behavior in different 
winding processes [1,3,4]. Most of those 
theoretical models are based on the Hoke’s 
equation (1), which expresses the linear 
relationship between the traction force, δT and 
the elongation, δe, of an elastic stick. 
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where: 
E   Young’s modulus (N/mm2) 
L distance between feeding and winding   
sections(m)   
A  cross section area(mm2) 
 
In winding systems the elastic wire moves 
from a feeding roll to the winding spool. 
Consequently, the elongation is time-variant, 
and can be expressed in terms of linear 
velocity, as defined by equation (2):   
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where: 
 
 

T tension of the wire(N) 
Vw winding spool linear speed(m/s) 
Vf feeding linear speed(m/s) 
 
The linear velocities of the feeding and 
winding  can be obtained from their motors 
angular speeds as follows: 
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where:  
 

fmω
 Feeding motor angular speed (rad/min) 

smω  Spool motor angular speed (rad/min) 

imD  Dim. of last rolling mill (m) 

iR  Rad. of spool at layer i (m) 

fn
 Feeding motor gear box ratio 

sn  Spool motor gear box ratio  

minD  Dim. of winding spool (m) 
d wire dim.(m) 
 
An important characteristic of the winder 
system described above is the variation of the 
winding spool radius. The radius variation 
results in the corresponding variations in the 
moment of inertia of the winding spool as 
expressed in equation(3) 
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smJ  Winding spool inertia (kgm2) 

sM  Mass of winding spool (kg) 
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 (4) 
smβ  Friction coefficient of spool 

 



Figure (3) The network used 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The theoretical equations, presented so far, 
show that angular speed smω  provide a degree 
of freedom which can be used as a control 
input. The associated control scheme is 
referred to as SS (speed speed) model 
configuration[11]. The drawback of this 
scheme is that any speed difference between 
feeding and winding affect the tension and can 
not be adjusted later due to the breakage of the 
Aluminum wire. Moreover, the resulting 
dataset does not contain sufficient sampled 
data to allow an accurate estimation of the 
model. This explains the use of spool motor 
current (Im) as a system output  variable instead 
of the motor angular speed.  
 
This second strategy consists of using the 
system identification to find a linear model for 
the frequency converter and the motor with the 
load at normal operating conditions. Figure(1) 
shows the block diagram of the system and the 
black box for the system identification 
process.The system consists of single input, 
two output system. The input is the desired 
spool winding speed u1 = *

smω  and the two 
ouputs are the motor current y1= Im and the 
actual speed y2 = smω . 
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Figure (1) Block diagram of the control system 
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u1 

System identification black box 

Figure (2) Input and output data 

Figure (4) Criterion against iterations for y1 



4 Neural Network in Modeling the Winding 
Machine 
 
In this section, a multivariable online(on 
normal operating conditions) system 
identification of the winding process is given. 
A pseudo random binary sequence is 
superimposed to the speed set point at nominal 
operating conditions in order to overcome the 
problems of purely feedback systems[14].The 
sampling rate is set to  (Ts = 40ms ), and the 
data set size is 1000 sample. Figure(2) shows 
the data set of the experiment for 500 sample 
points. 
After acquiring the data, the next step is to 
select a model structure. This issue is more 
difficult in the nonlinear compared to the linear 
systems. Not only it is necessary to choose  the 
set of regressors but also a network 
architecture is required. The idea is to select 
the regressors based on inspiration from linear 
system identification and then determine the 
best posible network achitecture with the given 
regressors as inputs[12]. )(tφ is a vector 
containing the regressors, The regressor vector: 
 

)(tφ =[y(t-1)  …  y(t-na)   u(t-1)  …  u(t-nb)]T 

 
After some trials the neural network ARMA 
model is used with nb=na=8  given as: 
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where nb, na are the number of regressors for 
input and output respectively.The input layer 
consists of 16 element. One hidden layer is 
used that consists of 16 neuron. The decision 
function is purly linear as shown in Figure (3).   
Figures(4) and (5)  show the fitting criterion 
ploted against the number of iterations. The 
Actual and estimated data for each output is 
ploted in Figures(6) and (7). The auto 
correlation  and cross correlations of as 
compared to inputs is ploted in Figures(8) and 
(9). 

Figure (5) Criterion against iterations for y2 

Fig (6) Actual versus estimated torque 

Fig(7) Actual versus Estimated speed 



 
5 Results and Conclusion 
In this paper, we presented a neural network 
model for the winding machine. The presented 
results show that the obtained models are 
acceptable for industerial objectives. The auto 
corrlation of errors and the cross corrlation of 
error and input are within the confidence 
levels. Hence the Neural netwok back 
propagation method is an efficient apprcah for 
modeling the dynamics of winding machines 
when nonlinearlies are in presence. 
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Fig. (8) Torque model validation 

Fig (9) Speed model validation 


