

Optimizing TCP in a Cluster of Low-End Linux Machines

ABDALLA MAHMOUD, AHMED SAMEH, KHALED HARRAS, TAREK DARWICH
Dept. of Computer Science,

The American University in Cairo,
P.O.Box 2511, Cairo,

EGYPT

Abstract:- In this paper we describe the current enabling Clustering technologies and present the design of the LNP
(Legendary Now Project) 8-node low-end Linux machines cluster. The main focus is optimizing the TCP layer in the
TCP/IP suite. We have implemented three basic modifications: eliminating redundancy in the computation of the
checksums, modifying the queuing of small packets, and directing incoming packets to follow the slow-path by
default. Eliminating the redundant computation of the checksum saved computation time on both the sender and
receiver sides. Removing of the queuing of small packets accelerated their arrival time, and finally forwarding the
incoming packets to follow the slow path by default saved computation time spent on prediction.

Key Words: Clusters, Message Passing, TCP, Checksum, Packet Queuing.

1-Introduction

Computing power and technology have evolved
over the past few years. Standalone machines are now
conventionally used for lightweight loads, personal and
simple business applications. As users strive for more
power along with the rising need for sharing data,
information and expensive resources, networking
technology has greatly advanced to satisfy those needs.
Meanwhile, large databases, complicated graphical
applications and scientific applications are requiring
even higher computing capabilities that cannot be met
except by supercomputers. As a result of current
communication speeds in networking, along with the
increasing demand for supercomputing power with
lower costs, networks of workstations that act as clusters
have been developed to satisfy these growing needs. The
current exponential advancement in computing power
and capabilities has led to a visible disadvantage;
computers nowadays are forced to retire at an early age
when they are still capable of giving and functioning
properly. As a result of this, we have decided to recycle
these retired machines by combining them into a
network of workstations that would ultimately provide
an overall increase in performance using components
that were “sentenced to death”.
2-Configuration Issues

There are many ways of configuring each
component or layer in a cluster [2]. Configuration issues

relate to: Hardware, Operating systems, Network setup
and Communication software. The choices depend
mainly on the amount of money available for buying
components, the type of work that needs to done on the
cluster, and finally the issues of compatibility.

Hardware which consists mainly of PC’s, varies
according to the processor type like Intel based
architectures: the x86 Family in general (especially
Pentium, PPro, PII, PIII) and different AMD Processors,
Sparc, Alpha or Macs. For Operating systems, there are
many operating systems available and may all support
cluster processing. The following are just a few to name:
Solaris, Windows NT, FreeBSD (UNIX based operating
system for Intel PCs), NetBSD (extended FreeBSD:
available for more architectures) and Linux. The
networking configuration is one of the hardest choices
where an ever-increasing range of networking
technologies and products are being developed, and most
are available in forms that could be applied to make a
cluster out of a group of machines. Some networking
technologies that vary highly in cost, bandwidth and
performance are: ATM, Ethernet (normal, fast and
gigabit), Myrinet, SCI (Scalable Coherent Interconnect),
SLIP (Serial Line Interface Protocol) and the USB
(Universal Serial Bus).

 Finally, we come to the Communication
Software, also called Message Passing Systems, which is
the layer that is responsible for distributing messages
between different nodes. The most famous message

passing systems are PVM and MPI [3]. PVM (Parallel
Virtual Machine) is a freely available, portable,
message-passing library generally implemented on top
of sockets. It is clearly established as the standard for
message-passing cluster parallel computing. PVM
supports single-processor and SMP Linux machines, as
well as clusters of Linux machines linked by socket-
capable networks (SLIP, PLIP, Ethernet, ATM, etc.).
The great advantage of PVM is that it can work across
groups of heterogeneous nodes, or in other words
clusters built up of machines with different types of
hardware (processors, network cards) and different
configurations. Nevertheless, PVM requires a specific
Operating System, which is Linux. This concept of
heterogeneity could also be expanded, in theory, to the
point where the machines linked together through the
Internet act as a single, huge parallel cluster. Another
important advantage is its free availability and ease of
download. And this has naturally led to the development
of many programming language compilers, various
application libraries, debugging tools, etc. specifically
designed to work on top of the PVM platform. However,
there are some significant disadvantages related to the
use of the PVM as a communication software. First,
message-passing calls generally add an important
overhead to standard socket communication operations,
which already had high latency. Second, it is very
difficult to program using PVM calls, which require
relatively highly skilled programmers to handle them. In
other words, PVM does not provide a user-friendly
environment for programmers.

The other, equally popular, communication
software is MPI, or Message Passing Interface [4]. MPI
is known as the official new standard, and is largely
based on the old PVM. PVM has a unique execution
control environment, and hence making a program
execution done the same way everywhere. On the other
hand, MPI is highly dependent on the implementation
being used, and thus does not specify how the control
environment is being implemented. The second issue is
that of heterogeneity. PVM was designed in the first
place to support clusters of heterogeneous machines. But
MPI assumes a high degree of parallelism across
workstations, or to MPP (Massively Parallel Processor)
architectures. Third, MPI provides much more
functionality than simple message passing techniques,
such as Remote Memory Access (RMA) and parallel file
I/O [5]. So PVM is more specialized than the
generalized MPI message passing system.

3 Cluster Design

 Figure 1 shows the layout of the LNP 8-node
cluster. This design emphasizes the fact that the external
world (the internet) does not see the cluster; it only sees
the main node. The same happens on the other side, the
cluster (nodes) cannot see except themselves and their
server, but know nothing about the outside world. In this
case the cluster behaves and acts as one entity. All the
configuration issues mentioned in the previous section
were decided upon in the LNP Cluster. The hardware
used, are Intel based machines varying from 486 to
Pentium-I (233 MHz), the OS is Linux 2.2.12 kernel, the
network configuration is a Xyplex switch with 10 Mbps
Ethernet cards, star topology and finally, the virtual
machine used was PVM 3.4.3. Security is eliminated
between the nodes of the cluster to enable remote access
(rlogin, rsh… etc) from other internal nodes. All the
nodes are connected together via a 10 Mbps switch, each
having what we call a virtual IP. The main node is
connected to the cluster and the Internet via two different
Ethernet cards. This means that the main node has one
main IP and another virtual IP.

4 TCP & Reverse Engineering

After introducing the cluster design and various
configuration issues, we now move to the second phase
that is optimizing TCP. After narrowing down our study
to the TCP layer in the TCP/IP suite, we now discuss the
reverse engineering of the TCP suite under Linux [6].

M

N

N

N

N

N

N

N

X
Inte

Figure1. The LNP Cluster Design

Working with a legacy system like TCP/IP Suite, we had
to answer the question of what are the different
approaches we could adopt to analyze this Suite
(especially the TCP layer within the suite). Before we
decide on the possible changes to make in the code, we
had to carry out an extensive analysis of the code, find
the different links between functions and modules,
understand what each function does, and most important
of all, identify the traditional paths in the communication
process under TCP: namely establishing a connection,
sending and receiving a packet, and terminating the
connection. In other words, we used the reverse
engineering technique to derive the design and
specification of the system from its source code.

Following this, we ended up having a physical
chart of code dependencies and intercommunications. Of
course, reverse engineering to develop a better
understanding of a system is a part of the reengineering
process. One of the tools used was a program called
Portable Book Shelves (PBS) for visualization of the
code [7]. Along with the LXR Web Page [8] to follow
functions and variable dependencies, we traced
dependencies and definitions of variable and functions.
Thus, having a physical chart mapping theory of the
code to reality, we ended up optimizing the TCP layer as
presented in the next section.

5-Optimizing TCP

It is known that packets sent are check-summed and a
specific value is then stored in an appropriate field in the
TCP header. Also, all incoming packets are check-
summed to verify that they are correct, and that the value
in the header matches the real, computed checksum on
the packet. If these values match, then the packet is
considered to be correct; if not, the packet is faulty and a
retransmission request is issued. This is the way TCP
deals with error control.

 After thorough analysis of “layers” below the TCP
layer, we discovered that each layer has some way of
error control, built in it. For example, the IP layer does
error control in its header; the Ethernet layer does low-
level error control too [9]. We need to go back in
history to understand why this was done in the first
place. When the communication protocols were first
invented, the hardware used at that time was not as
reliable as today’s hardware: error rates were high, even

on short distances, and within the same machine. In
addition to that, because of the idea of the “universality”
of TCP, in other words the ability to use it over very
large distances, the assumption was that when distances
increase, the probability of error increases. Another issue
behind this multi-layer error control is the modularity of
each layer involved: each one has its “own” environment
to deal with. Therefore, the error control was done at
different levels. So the idea that we had was to remove
the error checking from within the TCP layer, or at least
reduce it to the minimum, so that computation time
needed for check summing is saved, and thus latency is
reduced. It is important to note that the reliability of our
system was not compromised for saving time: error
control was still done at other layers, and in addition we
conducted a number of tests to monitor the error rate on
our cluster, which we found to be zero at all times.

 In an attempt to improve efficiency in standard TCP,
the designers of this communication layer introduced the
idea of queuing small packets before they are sent, so
that a big packet of small packets is built and sent one
time. The way it is implemented in TCP is that packets
are checked for their size, and if a packet is “too” small
to be sent right away, or in other words its size is less
than the maximum segment size agreed upon between
communicating ends, this packet is queued in a specific
queue so that other small packets that could possibly fit
in are assembled together into one big packet and sent in
one time, instead of doing it many times. Timers are
specified to monitor this, and to put the packets that have
been queued for a “long” time on the line and transmit
them [10].

 When the designers of standard TCP thought of this
idea, they had in mind the transmission time over long
distances, and the overhead of adding headers on packets
that are too small, especially when these are sent to the
same destination. For example, when a packet is sent
overseas, the transmission time is to be considered, not
only because of the distance, but also because of the
different network problems that could occur on the way,
such as congestion for instance. This is not true in our
case, where we have very short distances, no congestion
at all, transmission time is negligible, and therefore
problems related to network are non-existent. In addition
to the mentioned facts, cluster computing is heavily
based on the fast exchange of small-size messages, and
this was the reason of thinking of eliminating the
queuing of small packets all together. So the time the
packets, which are small in size in most of the cases in

clustering environments, wait before being sent is large
enough compared to the time it would take to transmit
physically the packet, and to the overhead added by the
header on each one of them. This approach is wasteful,
thus we thought of modifying it, and allowing small
packets to be sent as they are built.

 In order to speed up the processing time spent when
receiving a packet, standard TCP defines a “header
prediction” mechanism, which is responsible for
“guessing” what will be in the packet itself from the first
few fields of the header, and by recording the link
identification between the source and destination [11].
According to this header prediction, a received packet
follows one of two paths in the receiving process: the
fast path or the standard, slow path. The fast path really
cuts down some of the computation time when the
packet satisfies one of the conditions known through the
prediction mechanism. However, it works only when
there are pure senders or pure receivers, that is, one end
is always sending and the other one acknowledging the
received packets; in this situation, either the sequence
number or the ACK value must stay constant. When
these conditions are not satisfied, the packet drops into a
standard receive procedure that handles all cases: this is
what is called the “slow path”.

6-Experimentation and Results

A procedure was set to measure the performance of the
cluster in general and the results of different
modifications, as we moved on. Since our focus was on
elements inside the Linux Kernel communication suite,
we had to devise a flexible testing strategy to be applied
on an “ongoing” basis. First, we had to make extensive
measures on the standard version of the Kernel, so that
we refer to these (use them as reference) to evaluate the
impact of our changes. After each specific modification
within the code, we reevaluated the performance of our
cluster and compared it relative to the standard set or to
other different results we obtained in other attempts.
Finally, we evaluated all the results we had at our
disposition, rejected the “useless” ones, and combined
the attempts that had a considerable improvement.

 To measure the performance of the communication
suite in our cluster, we used several benchmarking tools,
mainly Netpipe [12], Netperf [13], and Povray [14]. By
taking the end-to-end application view of a network,

Netpipe clearly shows the overhead associated with
different protocol layers. Netpipe really helps
determining the time needed to transmit a data block of a
specific size, the maximum throughput and saturation
level, and comparing performance between different
protocol layers, namely TCP and the virtual machine.
Netperf is a benchmarking tool that can be used to
measure various aspects of networking performance. Its
primary focus is on bulk data transfer and
request/response performance using either TCP or UDP.
Povray is a little bit different. It is a 3D-Image rendering
application that makes use of parallelism, specifically
designed to give information about the performance of
parallel and distributed systems. It tells about the time
needed to render an image, load balancing within the
system, and other connection-related data. After having
implemented the three changes we mentioned above, we
tested the new TCP, through the benchmarks, to measure
the improvement. The results were good and were
“constant” in a sense: we were able to record an
improvement of 5.7% on a packet size of 1 byte. The
improvement we obtained for packets less than 128
bytes was always greater than 2.6%, for the range of 128
bytes to 259 bytes it was above 1%, and for the rest an
improvement of less than 1%. The following graph
depicts this, it shows the time needed to transmit a
packet of a specified size. We were able to shift the
curve down:

0.3
0.35
0.4

0.45
0.5

0.55
0.6

0.65

8 24 48 96 12
8

16
8

21
6

25
6

36
0

40
8

51
2

74
4

79
2

10
24

data block (bits)

tim
e

(m
se

c)

Standard TCP LNP TCP

 We also have undertaken a series of tests on the PVM
using our modified TCP. The ranges of results were very
similar to the ranges for the TCP tests, which is very
natural. However, the upper limit for the improvement
was less than that measured when testing TCP only: for
one byte, the improvement was about 3.8%. But in this
case, the distribution of the performance on different
ranges was more normal than in the case of TCP; in
other words, we measured an improvement of more than
1% on all packets with size less than 1K. The graph
below illustrates this (the right side of the graph):

Figure2. Zoomed Transmission Time VS Data Blocks

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

8 24 48 96 12
8

16
8

21
6

25
6

36
0

40
8

51
2

74
4

79
2

10
24

data block (bits)

tim
e

(m
se

c)

PVM on LNP PVM on Standard

 We conducted three sets of tests using Povray: always
keeping the same size of the image, we tested rendering
the same image using different block sizes. The first test
was on 4X4 pixels, in this case, more traffic exists in the
network because we have more frames to exchange. The
results conformed to our previous results; we were able
to render the image, on two nodes, in 355 seconds on the
modified TCP, whereas it took 359 seconds on the
standard TCP. This diagram illustrates this:

353

354

355

356

357

358

359

standard LNP

kernel

 We tested rendering an image divided into 16X16
pixels frames, and 32X32 pixels frames. And as we
expected, the bigger the block size, the less visible the
improvement is. In the former, we saved 3 seconds; in
the latter, we saved 1 second. The reason for the
decreasing performance along with the increasing block
size is easy to understand. When packets are large
enough, the computation time (on headers, etc…) is
much less important relative to the total size, than when
the same computations are done on small packets with

less data. Another point is that the elimination of the
queuing, which originally took place in the case of small
packets, had an effect on this sort of packets only. In
other words, the smaller the packets, the more queuing
was done in the standard TCP, whereas this is not true
anymore in the modified TCP.

7 Conclusion

Currently, we have our TCP working only on our cluster
environment; in other words, when we are disconnected
from the external world. The need to maintain the
connection with the external world is necessary, and
based on this, the TCP could be future enhanced to be
able to dynamically switch between two paths of
computations that it would go through: The first path is
the standard TCP, and the second is our optimized
cluster based TCP. This could actually be done by using
the reserved bits in the TCP header, that designers long
ago left them for any possible future uses.

9 References
[1]http://www.dgs.monash.edu.au/~rajkumar/cluster/index.ht
ml
[2] http://www.parasys.co.uk/install.html
[3] http://www.epm.ornl.gov/pvm/
[4] http://www.isi.edu/atomic2/gbn95/user-bw.html
[5]http://cch.loria.fr/documentation/local/PvmBook/node89.ht
ml
[6] Sommerville, Ian. Software Engineering. Addison Wesley,
London 1998.
[7]http://www.grad.math.uwaterloo.ca/~toparry/pbs/common/
html/pbs.html
[8] http://www.lxr.linux.no
[9] Stevens, by W. Richard .TCP/IP Illustrated, Volume 1: The
Protocols. Addison Wesley, London 1994.
[10] Beck, Michael, et al. Linux Kernel Internals. Addison
Wesley, London 1998.
[11] Wright, Gary R., et al. TCP/IP Illustrated, Volume 2: The
Implementation.
Addison Wesley, London 1995.
[12] http://www.icase.edu/coral/LinuxTCP2.html
[13] www.beowulf-underground.org/software.html
[14]www.dmoz.org/Computers/Internet/Protocols/Transmissi
on_Protocols/Networking_Resourc
 -es/Addressing/
[15]http://www.protocols.

com

Figure3. Zoomed Time of PVM on

Figure4. Time To Render Image (divided by 4x4 pixels)

