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Abstract:- In this paper we describe the current enabling Clustering technologies and present the design of the LNP 
(Legendary Now Project) 8-node low-end Linux machines cluster. The main focus is optimizing the TCP layer in the 
TCP/IP suite. We have implemented three basic modifications: eliminating redundancy in the computation of the 
checksums, modifying the queuing of small packets, and directing incoming packets to follow the slow-path by 
default. Eliminating the redundant computation of the checksum saved computation time on both the sender and 
receiver sides. Removing of the queuing of small packets accelerated their arrival time, and finally forwarding the 
incoming packets to follow the slow path by default saved computation time spent on prediction. 
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1-Introduction 
 

Computing power and technology have evolved 
over the past few years. Standalone machines are now 
conventionally used for lightweight loads, personal and 
simple business applications. As users strive for more 
power along with the rising need for sharing data, 
information and expensive resources, networking 
technology has greatly advanced to satisfy those needs.  
Meanwhile, large databases, complicated graphical 
applications and scientific applications are requiring 
even higher computing capabilities that cannot be met 
except by supercomputers.  As a result of current 
communication speeds in networking, along with the 
increasing demand for supercomputing power with 
lower costs, networks of workstations that act as clusters 
have been developed to satisfy these growing needs. The 
current exponential advancement in computing power 
and capabilities has led to a visible disadvantage; 
computers nowadays are forced to retire at an early age 
when they are still capable of giving and functioning 
properly. As a result of this, we have decided to recycle 
these retired machines by combining them into a 
network of workstations that would ultimately provide 
an overall increase in performance using components 
that were  “sentenced to death”.  
2-Configuration Issues  
 

There are many ways of configuring each 
component or layer in a cluster [2]. Configuration issues 

relate to: Hardware, Operating systems, Network setup 
and Communication software. The choices depend 
mainly on the amount of money available for buying 
components, the type of work that needs to done on the 
cluster, and finally the issues of compatibility. 
 

Hardware which consists mainly of PC’s, varies 
according to the processor type like Intel based 
architectures: the x86 Family in general (especially 
Pentium, PPro, PII, PIII) and different AMD Processors, 
Sparc, Alpha or Macs. For Operating systems, there are 
many operating systems available and may all support 
cluster processing. The following are just a few to name: 
Solaris, Windows NT, FreeBSD (UNIX based operating 
system for Intel PCs), NetBSD (extended FreeBSD: 
available for more architectures) and Linux. The 
networking configuration is one of the hardest choices 
where an ever-increasing range of networking 
technologies and products are being developed, and most 
are available in forms that could be applied to make a 
cluster out of a group of machines. Some networking 
technologies that vary highly in cost, bandwidth and 
performance are: ATM, Ethernet (normal, fast and 
gigabit), Myrinet, SCI (Scalable Coherent Interconnect), 
SLIP (Serial Line Interface Protocol) and the USB 
(Universal Serial Bus). 
 
 Finally, we come to the Communication 
Software, also called Message Passing Systems, which is 
the layer that is responsible for distributing messages 
between different nodes. The most famous message 



  

passing systems are PVM and MPI [3]. PVM (Parallel 
Virtual Machine) is a freely available, portable, 
message-passing library generally implemented on top 
of sockets. It is clearly established as the standard for 
message-passing cluster parallel computing. PVM 
supports single-processor and SMP Linux machines, as 
well as clusters of Linux machines linked by socket-
capable networks (SLIP, PLIP, Ethernet, ATM, etc.). 
The great advantage of PVM is that it can work across 
groups of heterogeneous nodes, or in other words 
clusters built up of machines with different types of 
hardware (processors, network cards) and different 
configurations. Nevertheless, PVM requires a specific 
Operating System, which is Linux. This concept of 
heterogeneity could also be expanded, in theory, to the 
point where the machines linked together through the 
Internet act as a single, huge parallel cluster. Another 
important advantage is its free availability and ease of 
download. And this has naturally led to the development 
of many programming language compilers, various 
application libraries, debugging tools, etc. specifically  
designed to work on top of the PVM platform. However, 
there are some significant disadvantages related to the 
use of the PVM as a communication software. First, 
message-passing calls generally add an important 
overhead to standard socket communication operations, 
which already had high latency. Second, it is very 
difficult to program using PVM calls, which require 
relatively highly skilled programmers to handle them. In 
other words, PVM does not provide a user-friendly 
environment for programmers. 
 

The other, equally popular, communication 
software is MPI, or Message Passing Interface [4]. MPI 
is known as the official new standard, and is largely 
based on the old PVM. PVM has a unique execution 
control environment, and hence making a program 
execution done the same way everywhere. On the other 
hand, MPI is highly dependent on the implementation 
being used, and thus does not specify how the control 
environment is being implemented. The second issue is 
that of heterogeneity. PVM was designed in the first 
place to support clusters of heterogeneous machines. But 
MPI assumes a high degree of parallelism across 
workstations, or to MPP (Massively Parallel Processor) 
architectures. Third, MPI provides much more 
functionality than simple message passing techniques, 
such as Remote Memory Access (RMA) and parallel file 
I/O [5]. So PVM is more specialized than the 
generalized MPI message passing system. 
 

 
3 Cluster Design 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1 shows the layout of the LNP 8-node 
cluster. This design emphasizes the fact that the external 
world (the internet) does not see the cluster; it only sees 
the main node. The same happens on the other side, the 
cluster (nodes) cannot see except themselves and their 
server, but know nothing about the outside world. In this 
case the cluster behaves and acts as one entity. All the 
configuration issues mentioned in the previous section 
were decided upon in the LNP Cluster. The hardware 
used, are Intel based machines varying from 486 to 
Pentium-I (233 MHz), the OS is Linux 2.2.12 kernel, the 
network configuration is a Xyplex switch with 10 Mbps 
Ethernet cards, star topology and finally, the virtual 
machine used was PVM 3.4.3. Security is eliminated 
between the nodes of the cluster to enable remote access 
(rlogin, rsh… etc) from other internal nodes. All the 
nodes are connected together via a 10 Mbps switch, each 
having what we call a virtual IP. The main node is 
connected to the cluster and the Internet via two different 
Ethernet cards. This means that the main node has one 
main IP and another virtual IP.  
 

 
4 TCP & Reverse Engineering  
 

After introducing the cluster design and various 
configuration issues, we now move to the second phase 
that is optimizing TCP. After narrowing down our study 
to the TCP layer in the TCP/IP suite, we now discuss the 
reverse engineering of the TCP suite under Linux [6]. 
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Figure1. The LNP Cluster Design 



  

Working with a legacy system like TCP/IP Suite, we had 
to answer the question of what are the different 
approaches we could adopt to analyze this Suite 
(especially the TCP layer within the suite). Before we 
decide on the possible changes to make in the code, we 
had to carry out an extensive analysis of the code, find 
the different links between functions and modules, 
understand what each function does, and most important 
of all, identify the traditional paths in the communication 
process under TCP: namely establishing a connection, 
sending and receiving a packet, and terminating the 
connection. In other words, we used the reverse 
engineering technique to derive the design and 
specification of the system from its source code. 
 

Following this, we ended up having a physical 
chart of code dependencies and intercommunications. Of 
course, reverse engineering to develop a better 
understanding of a system is a part of the reengineering 
process. One of the tools used was a program called 
Portable Book Shelves (PBS) for visualization of the 
code [7]. Along with the LXR Web Page [8] to follow 
functions and variable dependencies, we traced 
dependencies and definitions of variable and functions. 
Thus, having a physical chart mapping theory of the 
code to reality, we ended up optimizing the TCP layer as 
presented in the next section. 
 
 
5-Optimizing TCP 
 
It is known that packets sent are check-summed and a 
specific value is then stored in an appropriate field in the 
TCP header. Also, all incoming packets are check-
summed to verify that they are correct, and that the value 
in the header matches the real, computed checksum on 
the packet. If these values match, then the packet is 
considered to be correct; if not, the packet is faulty and a 
retransmission request is issued. This is the way TCP 
deals with error control. 
 
   After thorough analysis of “layers” below the TCP 
layer, we discovered that each layer has some way of 
error control, built in it. For example, the IP layer does 
error control in its header; the Ethernet layer does low-
level error control too [9].  We need to go back in 
history to understand why this was done in the first 
place. When the communication protocols were first 
invented, the hardware used at that time was not as 
reliable as today’s hardware: error rates were high, even 

on short distances, and within the same machine. In 
addition to that, because of the idea of the “universality” 
of TCP, in other words the ability to use it over very 
large distances, the assumption was that when distances 
increase, the probability of error increases. Another issue 
behind this multi-layer error control is the modularity of 
each layer involved: each one has its “own” environment 
to deal with. Therefore, the error control was done at 
different levels. So the idea that we had was to remove 
the error checking from within the TCP layer, or at least 
reduce it to the minimum, so that computation time 
needed for check summing is saved, and thus latency is 
reduced. It is important to note that the reliability of our 
system was not compromised for saving time: error 
control was still done at other layers, and in addition we 
conducted a number of tests to monitor the error rate on 
our cluster, which we found to be zero at all times. 
 
  In an attempt to improve efficiency in standard TCP, 
the designers of this communication layer introduced the 
idea of queuing small packets before they are sent, so 
that a big packet of small packets is built and sent one 
time. The way it is implemented in TCP is that packets 
are checked for their size, and if a packet is “too” small 
to be sent right away, or in other words its size is less 
than the maximum segment size agreed upon between 
communicating ends, this packet is queued in a specific 
queue so that other small packets that could possibly fit 
in are assembled together into one big packet and sent in 
one time, instead of doing it many times. Timers are 
specified to monitor this, and to put the packets that have 
been queued for a “long” time on the line and transmit 
them [10]. 
 
   When the designers of standard TCP thought of this 
idea, they had in mind the transmission time over long 
distances, and the overhead of adding headers on packets 
that are too small, especially when these are sent to the 
same destination. For example, when a packet is sent 
overseas, the transmission time is to be considered, not 
only because of the distance, but also because of the 
different network problems that could occur on the way, 
such as congestion for instance. This is not true in our 
case, where we have very short distances, no congestion 
at all, transmission time is negligible, and therefore 
problems related to network are non-existent. In addition 
to the mentioned facts, cluster computing is heavily 
based on the fast exchange of small-size messages, and 
this was the reason of thinking of eliminating the 
queuing of small packets all together. So the time the 
packets, which are small in size in most of the cases in 



  

clustering environments, wait before being sent is large 
enough compared to the time it would take to transmit 
physically the packet, and to the overhead added by the 
header on each one of them. This approach is wasteful, 
thus we thought of modifying it, and allowing small 
packets to be sent as they are built. 
 
    In order to speed up the processing time spent when 
receiving a packet, standard TCP defines a “header 
prediction” mechanism, which is responsible for 
“guessing” what will be in the packet itself from the first 
few fields of the header, and by recording the link 
identification between the source and destination  [11].  
According to this header prediction, a received packet 
follows one of two paths in the receiving process: the 
fast path or the standard, slow path. The fast path really 
cuts down some of the computation time when the 
packet satisfies one of the conditions known through the 
prediction mechanism. However, it works only when 
there are pure senders or pure receivers, that is, one end 
is always sending and the other one acknowledging the 
received packets; in this situation, either the sequence 
number or the ACK value must stay constant. When 
these conditions are not satisfied, the packet drops into a 
standard receive procedure that handles all cases: this is 
what is called the “slow path”.  
 
 
6-Experimentation and Results 
 
A procedure was set to measure the performance of the 
cluster in general and the results of different 
modifications, as we moved on. Since our focus was on 
elements inside the Linux Kernel communication suite, 
we had to devise a flexible testing strategy to be applied 
on an “ongoing” basis. First, we had to make extensive 
measures on the standard version of the Kernel, so that 
we refer to these (use them as reference) to evaluate the 
impact of our changes. After each specific modification 
within the code, we reevaluated the performance of our 
cluster and compared it relative to the standard set or to 
other different results we obtained in other attempts. 
Finally, we evaluated all the results we had at our 
disposition, rejected the “useless” ones, and combined 
the attempts that had a considerable improvement.  
 
  To measure the performance of the communication 
suite in our cluster, we used several benchmarking tools, 
mainly Netpipe [12], Netperf [13], and Povray [14]. By 
taking the end-to-end application view of a network, 

Netpipe clearly shows the overhead associated with 
different protocol layers. Netpipe really helps 
determining the time needed to transmit a data block of a 
specific size, the maximum throughput and saturation 
level, and comparing performance between different 
protocol layers, namely TCP and the virtual machine. 
Netperf is a benchmarking tool that can be used to 
measure various aspects of networking performance. Its 
primary focus is on bulk data transfer and 
request/response performance using either TCP or UDP. 
Povray is a little bit different. It is a 3D-Image rendering 
application that makes use of parallelism, specifically 
designed to give information about the performance of 
parallel and distributed systems. It tells about the time 
needed to render an image, load balancing within the 
system, and other connection-related data. After having 
implemented the three changes we mentioned above, we 
tested the new TCP, through the benchmarks, to measure 
the improvement. The results were good and were 
“constant” in a sense: we were able to record an 
improvement of 5.7% on a packet size of 1 byte. The 
improvement we obtained for packets less than 128 
bytes was always greater than 2.6%, for the range of 128 
bytes to 259 bytes it was above 1%, and for the rest an 
improvement of less than 1%. The following graph 
depicts this, it shows the time needed to transmit a 
packet of a specified size. We were able to shift the 
curve down: 
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   We also have undertaken a series of tests on the PVM 
using our modified TCP. The ranges of results were very 
similar to the ranges for the TCP tests, which is very 
natural. However, the upper limit for the improvement 
was less than that measured when testing TCP only: for 
one byte, the improvement was about 3.8%. But in this 
case, the distribution of the performance on different 
ranges was more normal than in the case of TCP; in 
other words, we measured an improvement of more than 
1% on all packets with size less than 1K. The graph 
below illustrates this (the right side of the graph): 

Figure2. Zoomed Transmission Time VS Data Blocks
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   We conducted three sets of tests using Povray: always 
keeping the same size of the image, we tested rendering 
the same image using different block sizes. The first test 
was on 4X4 pixels, in this case, more traffic exists in the 
network because we have more frames to exchange. The 
results conformed to our previous results; we were able 
to render the image, on two nodes, in 355 seconds on the 
modified TCP, whereas it took 359 seconds on the 
standard TCP. This diagram illustrates this: 
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   We tested rendering an image divided into 16X16 
pixels frames, and 32X32 pixels frames. And as we 
expected, the bigger the block size, the less visible the 
improvement is. In the former, we saved 3 seconds; in 
the latter, we saved 1 second. The reason for the 
decreasing performance along with the increasing block 
size is easy to understand. When packets are large 
enough, the computation time (on headers, etc…) is 
much less important relative to the total size, than when 
the same computations are done on small packets with 

less data. Another point is that the elimination of the 
queuing, which originally took place in the case of small 
packets, had an effect on this sort of packets only. In 
other words, the smaller the packets, the more queuing 
was done in the standard TCP, whereas this is not true 
anymore in the modified TCP. 
 
7 Conclusion 
 
Currently, we have our TCP working only on our cluster 
environment; in other words, when we are disconnected 
from the external world. The need to maintain the 
connection with the external world is necessary, and 
based on this, the TCP could be future enhanced to be 
able to dynamically switch between two paths of 
computations that it would go through: The first path is 
the standard TCP, and the second is our optimized 
cluster based TCP. This could actually be done by using 
the reserved bits in the TCP header, that designers long 
ago left them for any possible future uses.  
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