

A NEW HIERARCHICAL NEGOTIATION SCHEME ON TOP OF A
MULTI-AGENT ARCHITECTURE

AHMED SAMEH, NEHAL HAMMOUDA

Department of Computer Science
The American University in Cairo

P.O.Box 2511, Cairo,
EGYPT.

Abstract: The increasing demand for distributed entities to interact in complex domains necessitates the need for
cooperation, coordination and negotiation to reach agreement. Examples of such systems are: the flow of work and
information through cooperating companies (virtual enterprises), international air traffic controllers, the
coordination of logistic processes in shipping companies, the use of flexible transport systems in industrial
manufacturing and assembly, and the operation of multi-guidance and control systems. This paper describes the
design of a model that uses a hierarchy of negotiation protocols to solve conflicts in any of the INTERRAP layers.
Two testbeds have been developed to test the proposed hierarchical model: a Desktop Configuration and a Travel
Planning Domains. The testbeds proved the effectivness of the model in solving conflicts among several agents in
all the INTERRAP layers. These two domains have been chosen because they introduce various types of conflicts -
which could be solved using various negotiation protocols in the model.

Key-Words: Multi-Agent, Negotiation Protocols, Local Planning, Cooperative Planning.

1-Introduction

The development of INTERRAP [Muller96] has been
influenced by the following design decisions:

(1) Layered Control: three layers of control describe an
agent, each layer represents a certain level of
complexity and sophistication.
(2) Layered Knowledge: The beliefs of an agent are
stored in a hierarchical Knowledge base, each level of
the hierarchy represents a certain information level.
(3) Bottom-up activation: Control is shifted bottom-up;
layer i gains control only if layer i-1 is not competent
to deal with the situation.
(4) Top-down execution: Each layer uses operational
primitives defined at the next lower layer to achieve its
goals.
(5) The agent consists of three modules: a World
Interface (WIF), Knowledge Base (KB), and a Control
Unit (CU): The WIF: provides the agent’s sensoric,
communicative, and actoric links to its environment.
The KB: stores the agent’s beliefs. The CU: guides the
agent’s flow of control among different layers.

 Both the KB and the CU modules are structured in
three vertical layers. The CU layers are the Behavior-
Based Layer (BBL), the Local Planning Layer (LPL),

and the Cooperative Planning Layer (CPL). Each
control layer consists of two processes called SG
(Situation recognition and Goal activation) and PS
(Planning, Scheduling, and execution). The KB is
partitioned accordingly into a World Model (WM), a
Mental Model (MM), and a Social Model (SM): The
WM: contains object level beliefs about the agent’s
environment. The MM: holds representations of the
agent’s local goals. These representations are used in
the Local Planning Layer. The SM: holds
representations of other agents’ goals. These
representations are used in the Cooperative Planning
Layer.

2-Negotiation

Research in distributed artificial intelligence (DAI) is
concerned with how automated agents can be designed
to interact effectively. One important capability that
could aid inter-agent cooperation would be that of
negotiation. Negotiation is a mechanism allowing
autonomous agents to find mutual agreement on a
matter. Negotiation is used to resolve conflicts, or to
allocate tasks among agents. There are three main
issues that determines negotiation mechanisms among
agents:

Let D be a negotiation domain; a negotiation is a tuple
NEG=(A,R,p,N,U,P,S), where:

-A= {a1,….,…ak},.. K>=2, is a set of agents ai with
mental states Bi; Bi consists of informational,
motivational, and deliberative state of ai .
-R = {r1,…,rk}, l<=k is a set of roles;
-p is a function that assigns roles to agents: p(a)=r for a
∈ A, r ∈ R.
-N is the Negotiation Set
-U= {u1,…,uk}, where ui: N→ Real Numbers, is the
utility function for agent ai .

-P= (K,{ π:R X K →2K|r ∈ R}) Here, R is the set of
roles, K={k1,…km} is a finite set of communication
primitives. There are two distinguished primitives
{start, done}. They facilitate internal control and are
not communicated. π Maps communication primitives
into a subset of admissible reactions with respect to a
specific role r within the protocol.
-S={σ i : P × R × K × 2 D × U → K × N | 1 <=i <= k} is
a set of negotiation strategies, one for each agent. The
input of σ i is the current protocol and the role of the
agent in the protocol, a received (possibly
parameterized) message, the current negotiation set,
the agent’s utility function, and its current internal
state. The output of σi is a reaction (i.e., the reply to
the received message), the modified negotiation set
and internal state.

2-1 Joint Plan Negotiation Protocol

 Joint plans are plans that represent both actions of
multiple agents and coordination relationships among
these actions. A joint plan describes a set of single-
agent plans whose coordinated execution leads to a
world state in which the goals of the agents involved
are no longer blocked (not necessarily satisfied, but
simply not blocked, in other words the involved agents
would be able to resume their local goals instead of
being blocked by a conflict for example).

 Assume two agents: a1 and a2 have run into a
conflict and have to agree on a single joint plan. There
are two roles in the protocol: R={leader, follower}. Let
the role assignment function p be a random function
with Pr (p (a1) = leader) = Pr (p (a2) = follower)=0.5.
Let the protocol be P=(K, π JPN), where
K={PROPOSE, ACCEPT, MODIFY, CONFIRM}. In
this and all the following negotiation protocols, the
comma means OR, and the semi colon means AND.
Let p, p’, p” be plans, and let π JPN define the Joint
Plan Negotiation Protocol as:

Negotiation Protocol

π JPN (start)={PROPOSE (p)}
π JPN (ACCEPT (p)) = {CONFIRM (p)}
π JPN(MODIFY(p, p’)) ={ACCEPT(p’),MODIFY(p’,
p”)}
π JPN(PROPOSE(p))={ACCEPT(p),MODIFY(p, p’)}
π JPN(CONFIRM(p))={done}.

Beginning with a state start, the leader proposes a
solution from the negotiation set. The follower either
accepts the proposed solution or it makes a
counterproposal; the latter is indicated by MODIFY
message. This process continues until either agent
accepts the other’s proposal. In that case, the
proposing agent confirms the deal, and the protocol is
finished.

Negotiation Strategy

σ1(start,N,u1)={(PROPOSE(p),N) with p∈ N with
u1(p)= max u1(p’) where p’∈ N}
σ f (PROPOSE(p), N, uf)=
 {if uf (p)>=max uf (p’) ∈ N then (ACCEPT(p),N)
 else (MODIFY(p,p’),N – {p}) with p’ ∈ N,
uf(p’)= max (p’) where p’ ∈ N}
σ i (ACCEPT (p),N,ui)= (CONFIRM(p),{p})
σ i (MODIFY (p,p’),N,ui)=
 {N’=N- {p};
 If ui (p’)>=max ui(p’) ∈ N’ then (ACCEPT (p’),
{p’})
 Else (MODIFY (p’, p”), N’ – {p’}) where p” ∈ N’
with ui (p”)= max ui (p”) where p”
 ∈ N}
σ i (CONFIRM(p), N, ui)=(done, N)

 Each agent starts with the offer that maximizes its
utility. If the other agent rejects an offer, it proposes a
counter offer. In case an offer is rejected, the agent
who made this offer deletes the corresponding element
from the negotiation set. Similarly, if an agent rejects
an offer, it deletes this element from the negotiation
set.

2-2 Contract Net Negotiation Protocol

The contract net protocol is the classical protocol for
task allocation in MAS [Sandholm 89]. Its original
purpose has been to allocat tasks among a group of
distributed problem solvers. In the contract net, a
manager agent who has a task to be performed is
looking for the most suitable agent from the list of
bidder agents.

Negotiation Protocol

In the negotiation model presented so far the contract
net is formalized as follows: the set of agents is
A={a1,…, ak}. The roles is R={manager, bidder}. The
role assignment function is given by p(a1)= manager,
p(a2)=…=p(ak)=bidder, The protocol is P=(K, πCNP),
where K={ANNOUNCE, BID, AWARD,
TAKEAWARD, REJECT} and πCNP describes the
Contract Net Protocol for manager and bidder. In the
following, t is a task, and v denotes a value.

π CNP (start)={ANNOUNCE (t)}
π CNP (ANNOUNCE (t))={BID (t, v), REJECT (t)}
π CNP (BID (t, v)) = {AWARD (t, v), REJECT (t)}
π CNP (REJECT (t))={done}
π CNP (AWARD (t, v))={TAKEAWARD (t, v)}
π CNP (TAKEAWARD (t, v))={done}

Negotiation Strategy

The negotiation strategy for this protocol for agents a1
,a2,….and ak is as follows:

σ m(start,um)={(ANNOUNCE (t),um) with t∈ manager
agent Task list, and um the manager’s task cost }
σ b (ANNOUNCE (t),u b)= {if u b (t) < um then BID(t,
v)}
σ m(BID(t),v, um)= {If Time >= Fixed Time

{if v<min_all_bids then {(AWARD (t), v);
min_all_bids = v}
 else {(REJECT (t), v); {(AWARD (t), v)
reject the coming bidder and award the one
with the min_all_bids value }}

 else
{if v<min_all_bids then min_all_bids=v}}

σ b (AWARD(t), v)=(TAKEAWARD())
σ m(TAKEAWARD())={done}
σ b (REJECT(t),v)=(done)

2-3 Negotiated Search Negotiation Protocol

Negotiated search [Lander 94] is a flexible and widely
applicable distributed search strategy that specifically
addresses issues that arise in MAS comprising reusable
and heterogeneous agents. Negotiated search
acknowledges the inevitability of conflict among the
agents, and exploits that conflict to drive agent
interaction and guide local search. It treats conflict as
an integral part of problem solving and as a source of
control information for agent communication.

Negotiation Protocol

The set of agents in A={a1…,ak}, the set of roles is
R={ Problem Initiator (PI),Solution Initiator (I),
Solution Extender (E),Solution Critic(C)}, the protocol
P=(K,πNSP),where K={ANNOUNCE, MERGE, NEW,
ANNOUNCE DESIGN, SEND CONFLICT,
REGISTER, REJECT DESIGN, SAVE DESIGN ,
CRITIC, RELAX CONSTRAINT, NULL,INFORM},
and π NSP define the Negotiated Search Protocol.
Where Merge is an action performed by the (PI) agent
to merge a solution with a design, NEW DESIGN is an
action performed by the (PI) agent to come up with a
new design in case the solution can’t be merged with
any previous design. REJECT DESIGN is an action
performed by the (PI) agent to stop receiving solutions
from the other agents if it received an infeasible
solution. ANNOUNCE DESIGNS is an action
performed by the (PI) agent when a whole cycle is
finished, that is when all involved agents with
appropriate roles have sent their solutions to the (PI)
agent and their solutions have been processed, this
action announces all the resulting designs. SEND
CONFLICT is an action performed by the (PI) agent to
send a notification for all agents about a certain
constraint that should be respected in all coming
designs. CRITIC is an action performed by the (C)
agent to criticize a complete design. REGISTER is an
action performed by all (I) and (E) agents, to register
the new constraint that has to be respected in all their
coming designs. RELAX CONSTRAINT is performed
by the (PI) agent after the maximum number of cycles
between agents has been exhausted, the (PI) agent then
revises all the previous designs and relaxes their
constraints, thus coming up with many announcements
to be revisited. NULL is performed by all agents
except the (PI), to indicate that there are no more
suggestions available. INFORM is performed by all
agents except the (PI) to suggest a solution to the (PI)
agent.

Let t be a task, ac = Agent Contribution to the
solution, d = Design Solution, c = Constraint
Violation, v = critic value, s = solution state =
{acceptable, unacceptable (a conflict with a flexibility
>0), infeasible (a conflict with a flexibility =0)
according to presence of conflicts and their flexibility
level}.

π NSP (start)={ANNOUNCE (t)}
π NSP (ANNOUNCE (t)) = {INFORM (t, ac, s), NULL
()}
π NSP (NULL ())= { RELAX CONSTRAINTS () }
π NSP (INFORM (t, ac, s))= { (MERGE (t, ac) ,
NEW DESIGN(t, ac) , REJECT DESIGN(t, ac))

 ; ANNOUNCE
DESIGNS() ; SEND CONFLICT (t, c)
; CRITIC (t)}

π NSP (ANNOUNCE DESIGNS ())={ANNOUNCE (t)
, SAVE DESIGN (t) if the design is unacceptable }
π NSP (SEND CONFLICT (c))={REGISTER (c)}
π NSP (RELAX CONSTRAINT (t))={ANNOUNCE (t)
, CRITIC (t) }
π NSP (CRITIC (t))= {done}

Negotiation Strategy

The negotiation strategy for this protocol for the agents
is as follows:

σ PI(start,N)={(ANNOUNCE(t)) to all agents}
σ I,E (ANNOUNCE(t))= {(INFORM (t, ac, s)) If t
parameters satisfy the agent-input parameters ,
 (NULL ()) if no more suggestions available }
σ PI (INFORM (t, ac, s))=
{(((MERGE (t, ac)) If s != infeasible and ac can be
merged with the already formed proposed solutions ,
(NEW DESIGN (t, ac)) If s != infeasible and ac can
not be merged with the already
 formed proposed solutions , (REJECT DESIGN
()); (done)) if s=infeasible)
; (ANNOUNCE DESIGNS()) if all agents announcing
solutions have sent their proposals to the PI agent that
is the cycle is finished ; (SEND CONFLICT (t, c)) to
all agents involved in violating the constraints if s =
unacceptable; (CRITIC (t)) if design has complete
set of components;
(RELAX CONSTRAINTS ()))
if max # of cycles exhausted or there are unacceptable
designs already saved then relax the constraints}
σ PI (NULL ())= { (RELAX CONSTRAINTS ()) if
max # of cycles exhausted or there are unacceptable
designs already saved then relax the constraints}
σ PI (RELAX CONSTRAINTS ())=
{ ((ANNOUNCE(t))) announce all the saved
unacceptable designs t to be further processed after
there constraints have been relaxed in case they are not
complete,
(CRITIC (t)) if available unacceptable designs saved
are complete}
σ I,E (SEND CONFLICT (c))={(REGISTER (c))}
σ PI (ANNOIUNCE DESIGNS()) =
{(ANNOUNCE(t)) announce designs if acceptable
ones
exist or announce a new request for a design, (SAVE
DESIGN (t)) if the design is unacceptable}
σ C (CRITIC (t))={(REPORT (t, v))}
σ C (REPORT (t))={(done)}

3-The Proposed System

A model can be devised to use a hierarchy of several
negotiation protocols to solve conflicts in any of the
INTERRAP three layers. Conflicts in INTERRAP
occur when there are more than one direction to
resolve a certain situation, and such an occurrence can
take place in any of the three layers: Behavior Based
Layer (BBL), Local Planning Layer (LPL), and
Cooperative Planning Layer (CPL).

 Assume several agents: a1, a2….., an have run into a
conflict, and that all agents agree on one of them to
have the role of the manager to perform the constraint
satisfaction search procedure in case all other
negotiation protocols have failed. There are two roles
in this conflict resolution protocol: R={Manager,
Follower}. Let the role assignment function p be a
random function with Pr (p (a1)=Manager) = Pr (p
(a2))= follower) = 0.5. Let the protocol be P=(K, π JPN),
where K={QUERY, SATISFY, ACCEPT, REJECT,
CONFIRM}. Let p be the whole plan arrived at, p’ the
partial plan of the follower agent, s the status of the
follower agent and let π CSP define the protocol as:

Negotiation Protocol

π CSP (start)={QUERY(s)}
π CSP (QUERY(s)) = {CONFIRM (s)}
π CSP (CONFIRM(s)) ={SATISFY (p), REJECT ()}
π CSP (SATISFY (p))={ACCEPT (p’), REJECT ()}
π CSP (ACCEPT (p’))= {done}.
π CSP (REJECT (p’))= {done}.

Beginning with a state start, the Manager queries the
status of all follower agents participating in a problem.
Then the Manager performs a constraint satisfaction
search procedure, which might come up with a
solution or not. If a solution is reached then partial
plans are to be sent to the follower agents.

Negotiation Strategy

In the example the negotiation strategy for this
protocol for the agents is as follows:

σM (start)={(QUERY(s)) for all follower agents (i)}
σ i (QUERY(s))={CONFIRM(s)}
σ M (CONFIRM(s))= {SATISFY (P), REJECT () if
one follower agent rejects or if all

 CONFIRM but no solution
found}

σ i (SATISFY(p))={ACCEPT(p’),REJECT()}

σ M (ACCEPT (p’))= {done}
σ M (REJECT ())= {done}

4-SystemDesign and Implementation

4-1 Desktop Configuration Domain

The environment of the domain is the Internet, where
several software agents exist and employ search
techniques for contacting vendors for desktop
components’ offers. Those offers are written in XML
format which agents can read and interrupt. These are
considered managing agents who locate vendors,
creates agents to represent them, and manage
negotiation among them.

 Communication between negotiating agents is
through sending messages managed by the managing
agents. The agents negotiations take place in the
Behavior Based Layer (BBL), Local Planning Layer
(LPL) and in the Cooperative Planning Layer (CPL) as
shown in figure 1. The manufacturer agent has facts in
its BBL about several components in its warehouse,
and thus when an order arrives, it can have many
matches in its warehouse, so it uses negotiation in this
layer to come up with the best offer. Negotiation in
this layer takes place by creating two agents each using
a different criterion for choosing the best possible
component. For example one agent orders the
components that match the offer according to their
prices, and the other agent orders them according to
their performance, thus the outcome of the two agents’
negotiation would be really the best component out of
the many components that match the specification
required.

 The Desktop Component agent has local plans in its
LPL about how to get information from the Internet
about the different vendors that deal with specific
desktop components. And it might have different plans
on how to get such information, either from search
engines, or from local repository of previous
negotiation results. And so negotiation here can be
employed to get the best plan according to criteria like
time or space. CNP Negotiation can be employed to
get the best results in the least time possible for
example from search engines using bidding. The
Desktop Component agent needs negotiation in its
CPL to come up with the best offer from the many
vendors competing for getting the deal, and they
negotiate over criteria like the best price for example.
And the Desktop main agent also needs negotiation in
its CPL to compile the desktop components from the
several Desktop Component agents in a way that fits

all the constraints between the components. Also the
Vendor agent needs negotiation in its CPL to come up
with the best offer from the many manufacturers
competing for getting the deal.

4-2 Travel Planning Domain

Travel agencies are companies that deal with hotels,
airlines, and tour guides to come up with vacation
packages that suite customers. Suppose a travel agency
deals with many airlines, hotels and tour guides to
make a trip from USA to Egypt, at a specific date.
Then each agent of the three types will provide its own
prices to the Travel agency, who combines these offers
in several packages according to their preferences, and
then chooses the best package out of the many
compiled.

 Communication between negotiating agents is
through sending messages managed by the managing
agent. The agents’ negotiation takes place in the
Behavior Based Layer (BBL), Local Planning Layer
(LPL) and in the Cooperative Planning Layer (CPL).
The company agent has facts in its BBL about several
offers it can offer, and thus when an order arrives it
can have many matches to it, so it uses negotiation in
this layer to come up with the best offer. Negotiation
in this layer takes place by creating two agents each
using a different criterion for choosing the best
possible component. For example one agent orders the
components that match the offer according to their
prices, and the other agent orders them according to
their performance, thus the outcome of the two agents’
negotiation would be really the best component out of
the many components that match the specification
required.

4-3 The Design of the Simulation
The Simulation is designed using Object Oriented
design. The implementations of the two examples are
simulated by creating separate instances of different
agent classes, such that there is a class for
manufacturers, another for vendors and a third for
desktop components in the Desktop Configuration
Domain. And a class for the Company, another for the
Company Criteria and a third for the travel
components in the Travel Planning Domain. Objects
communicate through function calls.

 Negotiation is managed by a managing agent, which
takes the negotiating agents’ offers and directs
negotiation among them by calling their functions. As
to the negotiation levels, what concerns us here is the
negotiation to get the best components either between

manufacturers for the same vendor or between
different vendors, as well as the final negotiation to
compile the several desktop components with
maintaining their constraints. We are not concerned
about accessing the Internet or the search engines to
come up with a list of suitable vendors for each
component. Implementation of agents is carried out
using Borland Jbuilder [Hamouda00], which is an
Integrated Development Environment for Java. The
simulator written in Java reads information about
components from text files. Information in text files
should come from the web where information is
written in Extended Markup Language (XML) file
format. Sample XML files have been generated and
validated using Document Type Definitions (DTDs)
which is a file that can accompany a document,
essentially defining the rules of the document, such as
which elements are present and the structural
relationship between the elements. Then displayed on
the web using the Extensible Stylesheet Language
(XSL) file format, which can be used to transform
XML for display including converting XML to well-
formed HTML. The tool used to write XML, DTD,
and XSL files, is the Wattle software’s XMLwriter
[Hamouda00]. XMLwriter is a powerful XML Editor,
designed to help web application programmers take
advantage of the latest XML and XML-related
technologies such as XSL and XQL. XMLwriter
provides users with an extensive range of XML
functionality such as: validation of XML documents
against a DTD or XML Schema, and the ability to
convert XML to HTML using XSL stylesheets. The
XML files are read by an extractor program written in
Microsoft Visual Basic, which can read XML files
using the Document Object Model (DOM) in which is
a recommendation providing a standard for
programmatic access to structured data through
scripting, so developers can consistently interact with
and compute on XML-based data.

5-Conclusion

The main contribution in this paper is that using
existing INTERRAP’s model of negotiation is not
sufficient in many domains, which require more
diverse negotiation protocols than the ones supported
in INTERRAP. There are many domains, which need
more protocols and a more structured design of how to
apply these protocols. Thus a negotiation hierarchy is
introduced for diverse domains, those who requir one
protocol only, and the ones that require a layering of
several negotiation protocols to approach an
agreement. The successful implementation of the

Desktop Configuration domain and the Travel
Planning domain simulation, evidence the
appropriateness of the proposed approach for the
design of a hierarchy of negotiation protocols in real
world domains.

6. Bibliography

[1] Hammouda, Nehal (2000). “A New Hierarchical
Negotiation Scheme ontop of a Multi-Agent
Architecture”, The American University in Cairo,
M.Sc., 2000.

[2] Lander, Susan Ellen. (1994). “Distributed Search
and Conflict Management among Reusable
Heterogeneous Agents”. PhD thesis, University of
Massachusetts Amherst.

[3] Muller, Jorg P. (1996). “The Design of Intelligent
Agents: A Layered Approach”. Published by Springer-
Verlag Berlin Heidelberg New York.

[4] Sandholm, Tuomas.(1989). “An Implementation
of the Contract Net Protocol Based on Marginal Cost”.
Technical Report, http://mas.cs.umass.edu/index.html.

Figure 1: JPP, CNP, CSP & NSP Negotiations are Used to Come Up With a Desktop Offer

CNP
ACER
 BBL

FUJI
 BBL

Prop

Modify

Modify

Accep

Acer
HD 1

Acer
HD 2

Prop

Modify

Modify

Accep

FUJI
HD 1

FUJI
HD 2

JPP JPP

 Mc.
 CPL Ann./Bid Ann./Bid

Win

CNP
Hitachi
BBL

Toshib
 BBL

Prop

Modify

Modify

Accep

Hitac
HD 1

Hitac
HD 2

Prop

Modify

Modify

Accep

Toshi
HD 1

Toshi
HD 2

JPP JPP

CGate
 CPL Ann./Bid Ann./Bid

Win

CNP

Desktop

 CPL

Specifications

Receive and Merge

Send Specification

Plans Negotiating To Connect to HD Vendors
using either Internet search engines like :
Yahoo - Excite - Altavista – SmartLook OR
using Local Repository of HD Vendors.

Monitor
LPL

HD
LPLMemory

LPL
MotherBoard
LPL CPU

LPL
Ann./Bid Ann./Bid

Win

NSP

