
-

Dimension and Shape Invariant Array Programming: The
Implementation and the Application

AHMED SAMEH & MANAL EZZAT

Department of Computer Science,
The American University in Cairo,

P.O.Box 2511, Cairo
EGYPT.

Abstract:-Designing an architecture to handle large conceptual data blocks is very much needed. This paper
implements a model for the shape and dimension invariant programming of arrays based on the notation of the
Mathematics of Arrays (MOA) algebra. It focuses on dimension and shape invariance and their effect in parallel
computing. The MOA algebra is implemeted as a library of APIs, that contains object oriented classes
implemented in C++. The APIs reduce the erroneous loops starts, strides, and stops used by programmers in the
traditional models of handling multi-dimension arrays. The library defines the dimension and shape of the arrays at
runtime, and gives the code of the problem at hand better chances to be automatically parallelized. An image-
processing tool is implemented using the new MOA library, proving the correctness and effecicy of the model.
Some video processing operations such as transformation of AVI frames and motion detection schemes are
implemented using the MOA library. The parallelization factors inherent in the MOA implementation are
demonstrated in terms of shape polymorphism, MOA parallel architecture, data redistribution, and tiling
algorithms. Furthermore, pipelining MOA computations has also been demonstrated.

Key-Words:- Theory of Arrays, Image Processing, Video Processing, pipelining, tiling.

1. Introduction

The More’s Array Theory (AT) was formalized from
the data concepts of APL, extending them to include
nested arrays and systematic handling of second order
functions [2]. AT is a formal description of nested
arrays in a first order logic. It is a mathematical model
of the ways in which the orthogonal arrangement of
material bodies interacts with their hierarchy nesting.
The theory stems out of geometric experience with
finite collections. Originally, the motivation to
formalize array theories and languages was to create a
notation for subscripting sequences, vectors, matrices,
and higher dimensional objects. Array interactions
were always found in functional languages, whereas
imperative languages defined arrays of static
dimension and shape, and accessed them by indexing
subscription.

2. MOA Notation

Mathematics of Arrays (MOA) is a notation that is
based on the Psi-Calculus, which correspondes to the
array theory (AT) and contains a set of notations for
array interactions. It encapsulates the same array
properties as AT, only differs in that its data elements

are numeric scalars that can be extended to any
homogenous scalar types. Scalars are defined to be
arrays of no dimension and with empty shape vector.
The MOA algebra is a set of operations proven to be
useful for scientific algorithms. All operations are
based on shapes and indexing functions. Previous
research presented recommendations of the MOA
extensions to functional languages [3][4][5].

The properties of the mathematics of arrays notation
are as follows: Lazy Evaluation., Array Expression
Simplification., Updating in Place, Avoiding
Temporaries, Shift, Rotate, Take, or Drop segments of
registers or memory locations (arrays), Fit Nicely in
Cache Structures, so, Executes faster taking advantage
of nearest memory location, even on uni-processor, In
multi-processor environment, sub-array operations can
be scheduled over various processors. These potential
speed-ups could be fully realized in a parallel
architecture, and could be partially realized on a uni-
processor architecture. Therefore, a combination of an
accurate model of memory caches, concurrency of
sub-array operations, and low process communication
would achieve good performance [8].

-

The MOA notation is divided into the following seven
segments (see figure 1& Table 2 in the Appendix):

• The Measurement Operations: (Dimensionality:
δξ represent the rank of the array, Shape: ρξ

represent the length of each dimension, Tau: τξ
represent the total number of elements , Ravel: rav
ξ collapses the array to one dimension flat vector,

Pi: πξ represent the product of the elements of
any arbitrary vector).

• The Indexing Operations: (Psi: :
ni ψξ

r
 accesses

selected index from the array, Gamma: ()ba
rr

;γ
returns an index in the flattened array, Gamma

Reverse: γ ′ returns the index of a scalar raveled
array).
• The Array Constructing Operations: (Reshape:

ρξs
r

 binary infix operation the constructs arrays,

Catenate: 21 ξξ ⊕ concatenates arrays over the

required dimension, Iota: nι a vector whose
entries are specified integers).
• The Scalar Operations: (Point-wise Extension:

21 ξξ op apply an operator on the equally
indexed pair of elements of two arrays, Scalar

Extension: ξσ op applies an operation
between the scalar and every element in the array).

In order to implement the MOA notation, the
original equations were analyzed, and sometimes
rewritten to suite the programming point of view.
The following example for the reduction operation
in the original equation, and the rewritten one,
shows how recursion was eliminated in the new
equation. It is followed by another example for the
resulting shape after the take operation, showing
the reduction to simplify programmability of the
equation.

Original Equation

()()ξξψξ ↓= 10 redopred opop

() () () ()ρξτξρ iiabsi
rrr

.=↑

New Equation:

() ξψξψ]1[...,],1[,]0[
0 −= =

= jiicopredi bc
cop

r

()
kj

kj

if

if

kbjbjii

i
i

<≤
=

−−
=↑

0]1[...,],[],1[...,],0[

r
r

ξρ

the elements of the array on a required dimension,

Rotate : θξσr rotates the array on every axe towards

increasing indices, Transpose: ξΦv
r

 apply

reduction function, Compress: •/ compresses the

array on the positions given, Expand: \• the
revese of the previous function). The Reduction &
Scan Operations: (Reduce: (op red) like the scalar
function but applied on the components of the array

cumulatively, Scan:
ξscanop returns all the

partial results of the array.

• The Higher Order Operations: (Omega:

21 ξξ baop Ω
 high order function that

applies operation on pairs of identically indexed
subarrays, Unary Dot: • outer product, Binary Dot:
• ’ inner product).

The Axis Transposition & Partition Operations: (Take:

ξ↑i
r

 this partition an array by returning a subarray,

Drop: ξ↓i
r

 returns the remaning of the array in the

take function, Reverse: : φξd reverses

The Psi reduction theorem is applied in the
implementation of the MOA notation. This theorem
states that any MOA expression can be reduced to a
simple expression based on the Psi function only.
Also, reductions functions were implemented using the
MOA red construct, and the compress construct. The
elements of the Psi Correspondence Theorem (PCT)
were formalized into three equations: expr (extracts
slices from an array, according to their Psi index
position, by definning the index of the slice required in
every dimension in the array), mix (glues arrays
formed using ψ on partial indices), and link
(concatenates the items collected from the array in a
previous expr operation). Equations for the three PCT
notations are presented, and their usage is magnified
later in the Video Processing Application (section 4).

An MOA library is implemented in three classes:
CMOA, CMOAImage, and CMOAVideo. The main
class CMOA is designed to operate all MOA notations
on an MOA_rec structure that contains the dimension
n, shape (n tuple of sizes – extents or upper bounds - of
the n dimensions), and the data elements of the MOA
array, stored as a flat (raveled) array in principal raw
major order. The length of the flat array of the MOA
array data elements is equal to the product of the
bounds of its dimensions (the values of the shape

-

vector elements). The shape and data of the MOA
array are explicitly separated for the advantages of the
shape theory. The type of the Data is fixed in this
implementation to be a DWORD. The choice of
DWORD data type is influenced by the image and
video applications implemented as described later
(sections 3 & 4). The image pixels, which are the array
elements of the MOA arrays in both applications,
require a minimum of one bit (black and white images)
and a maximum of double word (32-bit pixel,
describing the intensities of the blue, green, and red
components of each pixels) space in memory to store a
pixel value. However, data morphology (see section 4)
can be implemented since C++ is a language that
allows for overloading. Overloading can be employed
to redefine the MOA functions to operate on different
data types for array elements, based on different MOA
structures denoting the different types.

3. Image Processing with MOA

In the experimental part of this research, Image and
Video files are mapped to MOA structures and
processed using the MOA notations. The nesting of the
MOA provides a high order functional efficiency. The
Image was defined in MOA paradigm as a two-
dimensional array, where the height of the image is
denoted by the first dimension, and the second
dimension denotes the width. The values of the array
elements represent the pixel color value, of the
specified x, y coordinates, which are the indices of the
current position. The speed benefits of representing the
image in MOA structures were not fully achieved
because of the mapping between the traditional image.

structure and the MOA structure to apply MOA
notations, and then transform back to traditional image
structure for display. To fully utilize the MOA notation
in image processing, and for achieving better
performance results, an image MOA file format should
be designed and a drawing function that reads directly
from the new format.

This spatial representation allowed for reshaping,
transposing, rotating, and reversing the elements of the
array causing symmetrical effects on the image.
Having a convolution function implemented in the
tool, applied for all types of filtering, and even for
morphology. The convolution is defined in MOA
notation using the following equation:

∇

 −∆= −
+ i

m
mmr iredi ξ

ρξ
ρξξξψ

2
* 1

r

with 2

)(
**

2
11 −− −≤≤ m

m
m i

ρξ
ρξ

ρξ r

This equation was refined to allow for double
convolution, taking two masks to apply on the input
array, and was refined again to allow for convoluting
the image to select the maximum or minimum values
in a defined area to execute the dilation or erosion
morphology respectively. Then opening (erosion, then
dilation), and closing (dilation, then erosion) of the
images were implemented also. Figure 3 illustrates
some filter effects, showing in image (a) the original
image, in (b) the effect of a high pass filter as
generated by the CMOAImage class, in (c) the effect
of dilation, and finally in (d) the effect of erosion.

Also segmentation of an image can be done using the
convolution function, by sending a detection mask,
like horizontal line detection, vertical line detection,
point detection,etc. Other segmentation techniques can
be implemented by designing their algorithms based
on MOA structures, like the region segmentation based
on discontinuities detection, or applying thresholds.
The region segmentation will then require a
representation scheme. Representation and description
of images have several alternatives that most of them
can be easily mapped to the MOA image structures.

4. Video Processing with MOA

As a three-dimensional illustration of the MOA
notation, a video processing application was
implemented. Video processing is another field where
MOA can be very beneficial. The AVI file format is

Frames designed to contain Audio-Video Interleaved
streams. This means that the images forming the
frames of a video file, are stored in form of streams,
then another layer of an audio stream is interleaved in
the file. This structure complicates the video
processing operation. Since streams will need to be
processed one by one, and will require more effort
from the programmer to isolate frames while being
able to process them collectively in a symmetric
manner. The MOA representation for a video file is a
3-dimensional MOA array structure, where the first
dimension is the time sequencer or the frame number,
and the remaining two are the height and width of the
frames images. Video processing operation on the
Video frames can be processed individually using the
Psi MOA indexing function to return the image of the
frame number required, or collectively by working on

-

all the frames at one shot (by applying all operations
on the second dimension).

The CMOAVideo class provides the main interfacing
between the MOA structure defined in the CMOA
class and the AVI file format. The main objective
achieved from this class is the decomposition of the
AVI video stream into frames of the images, which the
video displays. The pixels of all these frames are
mapped to a 3-dimensional MOA.The Video MOA
structure allows all the transformations discussed in
the previous section, to be applied to image frames
composing the video stream (flip vertical, flip
horizontal, transpose). Extra transformations can be
applied like the reversing the order of frames in the
video stream symmetrically. Also, forward and rewind
operations are a simple positioning of the current
display index in the images frame.

Object tracking (Motion detection) is implemented in
this research work, using a simple xoring technique,
which cumulatively xores the equally indexed pixels in
every frame with the previous cumulative differential
frame, applying the following formula:

()

 >

=
otherwise

yxtfxoryxtfif
yxd ji

ij 0

|),,(),,(|1
,

θ

Where x and y are the spatial coordinates of pixels in
images of the video stream, and t is the time of the
image display. It starts from the first frame as the
initial cumulative frame, and produces a final
cumulative xored frame that shows the boundary of the
moving object along its track of movement through all
images in the video stream. This is implemented by
partitioning the video MOA structures (3-D MOA
arrays) to image frames (2-D MOA arrays) and
applying a point-wise extension to each frame and the
differential image. This technique zeros out the still
background. In case of noise, thresholds need to be
applied first to ensure that only moving objects will be
detected in the final result. Different methods can be
applied to show different analysis for the moving
object. Figure 4 gives an example as analyzed by the
implemented object tracking algorithm. It shows all
the images in the video stream of an AVI file as
decomposed by the MOA partitioning operations
(partitioning on the time – 0th- dimension), and the
resulted cumulative xored differential image showing
the movement of the pointers of the clock AVI file.
Also, audio and video correspondence in an AVI video
file can be implemented in the MOA video structure
by applying the Psi Correspondence Theorem (PCT),
by relating the audio stream and the video stream

coded in the AVI file format as two MOA structures in
correspondence of each other. Streaming is a technique
of using a small buffer to play a large file by filling the
buffer with data from the file at the same rate that data
is taken from the buffer and played.

5. Parallelism, Pipelining and Hardware
Implementation

The existence of the parallelisation factors in the MOA
deign, and the possibility of pipelining its execution
are investigated. Also, a hardware package of the
notation was implementing using the VHDL language
on Renoir [1]. Parallelism in MOA is discussed in
terms of Implicit Parallelism in MOA design, Shape
Separation benefits, MOA Parallel Architecture
Mapping Scheme, MOA in Data Redistribution, and
MOA & Tiling Algorithms.
Since MOA is a higher construct for array interactions,
compilers can extract implicit parallelism from the
code. MOA as based on Psi-Calculus, is a
mathematical formalization that decides the data
placement from the array expression, allowing the
array mapping to processors to be based on the Psi-
Reduction theorem, and Psi-Correspondence theorem
on two levels. The first is the functional normal form,
which is a minimal semantic form expressed in terms
of selections using Cartesian coordinates, employing
Psi- Tiling is the process of applying geometric
transformations in the iteration space in order to
restructure the loop nest (execution of statements
within the loop, or the loop iteration), in order to
improve the performance. These transformations need
also to preserve a reasonable tradeoff between
communication, computation, and allow for automatic
parallelisation.

Pipelining is one of the parallel processing techniques,
Accessing arrays by loops allows pipelining to be a
process of scheduling technique that starts a loop
iteration, before the previous iteration completes. This
part of the research work [1], considered the
Monolithic Array Pipelining Algorithm in terms of
MOA. The main constructors of the algorithm were
fount to be:

• IGEN (Index Generator Sub-graph).
• AGEN (Array Generator Sub-Graph).
• Selection Operation with Index Calculation
expression.

As MOA can implement the above constructors
effectively invariant of shape & dimension, it is safe to
say that pipelining is feasible using the MOA structure
implemented.

-

The hardware implementation is intended to allow for
designing hardware accelerators for different
applications based on the MOA package implemented
in this research work. The hardware implementation
was done using VHDL – a hardware description
language that has syntax like C – on Renoir [1]. It was
simulated using the ModelSim Simulator [1]. The
VHDL MOA package was implemented using the
same logic applied in C++. The simulation produced
the same results except for the lack of dynamic size
allocations that was compensated by a constant upper
bound.

Reduction theorem. The second level is the
transformation of the functional normal form to its
equivalent operational normal form, which describes
the implementation results, in terms of starts, strides,

and lengths to select from the linear arrangement of the
items, employing the Psi-Correspondence Theorem.

Shape definition is useful for determining
communication strategies, load balancing, evaluation
strategies, etc. Parallel Computing (can be referred to
as shape-based computing) requires separating the
shape of the data structure away from the data itself.
Dynamic and Static shape analysis steps are usually
done by compilers. Data types are divided into shapely
data-types (regular & irregular arrays, graphs, records,
variant records, lists and trees) and non-shapely data-
types (functions and sets). In this work, the MOA
structures are implemented with separate vectors for
shape, eliminating the need for extra analysis, and
providing shape polymorphism.

6. Conclusion

This research work attempted to link the MOA
notation with the current application requirements in
image and video processing and provid a model that
can be used to achieve parallel processing in
imperative languages. This research work has shown
that the MOA implementation neither need a compiler
nor extensions to functional languages. It can be
implemented as APIs in an imperative Object Oriented
Language like C++.

7. Bibliography

[1] Manal E. Helal, “Dimension and Shape Invariant
Programming: The Application and the Implementation”, A
Master of Science Thesis Dissertation, American University
in Cairo, January 2001.

[2] Mullin, Lenore, "A Mathematics of Arrays", Ph. D.
Dissertation, Syracuse University, December 1988.
[3] Lenore Mullin, Scott Thibault, “A Reduction Semantics
for Arrays Expressions: The PSI Compiler”, Department of
Computer Science, University of Missouri-Rolla, Rolla,
Missouri 65401, CSC-94-05, March 9, 1994.
[4] Lenore M. R. Mullin, Michael A. Jenkins, “Effective
Data Parallel Computation using the PSI-Calculus”, July 25,
1995.
[5] Lenore R. Mullin (PA), Werner Kluge, “On
Programming Scientific Applications in a Functional
Language Extended by a - Calculus Subsystem for Array
Operations”, March, 13, 1995
[6] Rafael C. Gonzalez, Richard E. Woods, “Digital Image
Processing”, Addison-Wesley Publishing Company, 1993.
[7] Hoda A. Khalil, “Tiling as a Loop Parallelisation
Technique”, AMaster of Science Thesis Dissertation,
American University In Cairo, May 2000.
[8] C. Barry Jay, “Shape Analysis for Parallel Computing”,
School of Computing Sciences, University of Technology,
Sydney.

Figure 1: MOA Operations implemented in CMOA class

-

Figure 2: Image Filters Effects

a) Original Image

b) High Pass filter Effect

c) Dilation Effect

d) Erosion Effect

a) Clock Images in the Video Stream

b) Cumulative Xored Result

Figure 3: Object tracking algorithm applied on
a Moving Clock

