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Abstract:-Designing an architecture to handle large conceptual data blocks is very much needed. This paper 
implements a model for the shape and dimension invariant programming of arrays based on the notation of the 
Mathematics of Arrays (MOA) algebra. It focuses on dimension and shape invariance and their effect in parallel 
computing. The MOA algebra is implemeted as a library of APIs, that contains object oriented classes 
implemented in C++. The APIs reduce the erroneous loops starts, strides, and stops used by programmers in the 
traditional models of handling multi-dimension arrays. The library defines the dimension and shape of the arrays at 
runtime, and gives the code of the problem at hand better chances to be automatically parallelized. An image-
processing tool is implemented using the new MOA library, proving the correctness and effecicy of the model. 
Some video processing operations such as transformation of AVI frames and motion detection schemes are 
implemented using the MOA library. The parallelization factors inherent in the MOA implementation are 
demonstrated in terms of shape polymorphism, MOA parallel architecture, data redistribution, and tiling 
algorithms. Furthermore, pipelining MOA computations has also been demonstrated.  
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1. Introduction 
 
The More’s Array Theory (AT) was formalized from 
the data concepts of APL, extending them to include 
nested arrays and systematic handling of second order 
functions [2]. AT is a formal description of nested 
arrays in a first order logic. It is a mathematical model 
of the ways in which the orthogonal arrangement of 
material bodies interacts with their hierarchy nesting. 
The theory stems out of geometric experience with 
finite collections. Originally, the motivation to 
formalize array theories and languages was to create a 
notation for subscripting sequences, vectors, matrices, 
and higher dimensional objects. Array interactions 
were always found in functional languages, whereas 
imperative languages defined arrays of static 
dimension and shape, and accessed them by indexing 
subscription. 
 

2. MOA Notation 
 
Mathematics of Arrays (MOA) is a notation that is 
based on the Psi-Calculus, which correspondes to the 
array theory (AT) and contains a set of notations for 
array interactions. It encapsulates the same array 
properties as AT, only differs in that its data elements 

are numeric scalars that can be extended to any 
homogenous scalar types. Scalars are defined to be 
arrays of no dimension and with empty shape vector. 
The MOA algebra is a set of operations proven to be 
useful for scientific algorithms. All operations are 
based on shapes and indexing functions. Previous 
research presented recommendations of the MOA 
extensions to functional languages [3][4][5].  
 
The properties of the mathematics of arrays notation 
are as follows: Lazy Evaluation., Array Expression 
Simplification., Updating in Place, Avoiding 
Temporaries, Shift, Rotate, Take, or Drop segments of 
registers or memory locations (arrays), Fit Nicely in 
Cache Structures, so, Executes faster taking advantage 
of nearest memory location, even on uni-processor, In 
multi-processor environment, sub-array operations can 
be scheduled over various processors. These potential 
speed-ups could be fully realized in a parallel 
architecture, and could be partially realized on a uni-
processor architecture. Therefore, a combination of an 
accurate model of memory caches, concurrency of 
sub-array operations, and low process communication 
would achieve good performance [8].  
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The MOA notation is divided into the following seven 
segments (see figure 1& Table 2 in the Appendix): 

• The Measurement Operations: (Dimensionality: 
δξ   represent the rank of the array, Shape: ρξ  

represent the length of each dimension, Tau: τξ  
represent the total number of elements , Ravel: rav 
ξ  collapses the array to one dimension flat vector, 

Pi: πξ   represent the product of the elements of 
any arbitrary vector ). 

• The Indexing Operations: (Psi: : 
ni ψξ

r
 accesses 

selected index from the array, Gamma: ( )ba
rr

;γ  
returns an index in the flattened array, Gamma 

Reverse: γ ′  returns the index of a scalar raveled 
array). 
• The Array Constructing Operations: (Reshape: 

ρξs
r

 binary infix operation the constructs arrays, 

Catenate: 21 ξξ ⊕  concatenates arrays over the 

required dimension, Iota: nι  a vector whose 
entries are specified integers). 
• The Scalar Operations: (Point-wise Extension: 

21 ξξ op  apply an operator on the equally 
indexed pair of elements of two arrays, Scalar 

Extension:  ξσ op  applies an operation 
between the scalar and every element in the array). 
 
In order to implement the MOA notation, the 
original equations were analyzed, and sometimes 
rewritten to suite the programming point of view. 
The following example for the reduction operation 
in the original equation, and the rewritten one, 
shows how recursion was eliminated in the new 
equation. It is followed by another example for the 
resulting shape after the take operation, showing 
the reduction to simplify programmability of the 
equation. 
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ξρ

the elements of the array on a required dimension, 

Rotate : θξσr rotates the array on every axe towards 

increasing indices, Transpose: ξΦv
r

  apply 

reduction function, Compress: •/   compresses the 

array on the positions given, Expand: \•   the 
revese of the previous function). The Reduction & 
Scan Operations: (Reduce: (op red)  like the scalar 
function but applied on the components of the array 

cumulatively, Scan: 
ξscanop   returns all the 

partial results of the array. 
 
• The Higher Order Operations: (Omega: 

21 ξξ baop Ω
  high order function that 

applies operation on pairs of identically indexed 
subarrays, Unary Dot: •  outer product, Binary Dot: 
• ’   inner product). 

The Axis Transposition & Partition Operations: (Take: 

ξ↑i
r

  this partition an array by returning a subarray, 

Drop: ξ↓i
r

  returns the remaning of the array in the 

take function, Reverse: : φξd  reverses 
 

The Psi reduction theorem is applied in the 
implementation of the MOA notation. This theorem 
states that any MOA expression can be reduced to a 
simple expression based on the Psi function only. 
Also, reductions functions were implemented using the 
MOA red construct, and the compress construct. The 
elements of the Psi Correspondence Theorem (PCT) 
were formalized into three equations: expr (extracts 
slices from an array, according to their Psi index 
position, by definning the index of the slice required in 
every dimension in the array), mix (glues arrays 
formed using ψ on partial indices), and link 
(concatenates the items collected from the array in a 
previous expr operation).  Equations for the three PCT 
notations are presented, and their usage is magnified 
later in the Video Processing Application (section 4).   
 
An MOA library is implemented in three classes: 
CMOA, CMOAImage, and CMOAVideo. The main 
class CMOA is designed to operate all MOA notations 
on an MOA_rec structure that contains the dimension 
n, shape (n tuple of sizes – extents or upper bounds - of 
the n dimensions), and the data elements of the MOA 
array, stored as a flat (raveled) array in principal raw 
major order. The length of the flat array of the MOA 
array data elements is equal to the product of the 
bounds of its dimensions (the values of the shape 
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vector elements). The shape and data of the MOA 
array are explicitly separated for the advantages of the 
shape theory. The type of the Data is fixed in this 
implementation to be a DWORD. The choice of 
DWORD data type is influenced by the image and 
video applications implemented as described later 
(sections 3 & 4). The image pixels, which are the array 
elements of the MOA arrays in both applications, 
require a minimum of one bit (black and white images) 
and a maximum of double word (32-bit pixel, 
describing the intensities of the blue, green, and red 
components of each pixels) space in memory to store a 
pixel value. However, data morphology (see section 4) 
can be implemented since C++ is a language that 
allows for overloading. Overloading can be employed 
to redefine the MOA functions to operate on different 
data types for array elements, based on different MOA 
structures denoting the different types.  
 

3. Image Processing with MOA 
 
In the experimental part of this research, Image and 
Video files are mapped to MOA structures and 
processed using the MOA notations. The nesting of the 
MOA provides a high order functional efficiency.  The 
Image was defined in MOA paradigm as a two-
dimensional array, where the height of the image is 
denoted by the first dimension, and the second 
dimension denotes the width. The values of the array 
elements represent the pixel color value, of the 
specified x, y coordinates, which are the indices of the 
current position. The speed benefits of representing the 
image in MOA structures were not fully achieved 
because of the mapping between the traditional image. 

structure and the MOA structure to apply MOA 
notations, and then transform back to traditional image 
structure for display. To fully utilize the MOA notation 
in image processing, and for achieving better 
performance results, an image MOA file format should 
be designed and a drawing function that reads directly 
from the new format. 
 
This spatial representation allowed for reshaping, 
transposing, rotating, and reversing the elements of the 
array causing symmetrical effects on the image. 
Having a convolution function implemented in the 
tool, applied for all types of filtering, and even for 
morphology. The convolution is defined in MOA 
notation using the following equation: 
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This equation was refined to allow for double 
convolution, taking two masks to apply on the input 
array, and was refined again to allow for convoluting 
the image to select the maximum or minimum values 
in a defined area to execute the dilation or erosion 
morphology respectively. Then opening (erosion, then 
dilation), and closing (dilation, then erosion) of the 
images were implemented also. Figure 3 illustrates 
some filter effects, showing in image (a) the original 
image, in (b) the effect of a high pass filter as 
generated by the CMOAImage class, in (c) the effect 
of dilation, and finally in (d) the effect of erosion. 

  
 

 

Also segmentation of an image can be done using the 
convolution function, by sending a detection mask, 
like horizontal line detection, vertical line detection, 
point detection,etc. Other segmentation techniques can 
be implemented by designing their algorithms based 
on MOA structures, like the region segmentation based 
on discontinuities detection, or applying thresholds. 
The region segmentation will then require a 
representation scheme. Representation and description 
of images have several alternatives that most of them 
can be easily mapped to the MOA image structures. 
 

4. Video Processing with MOA 
 
As a three-dimensional illustration of the MOA 
notation, a video processing application was 
implemented. Video processing is another field where 
MOA can be very beneficial. The AVI file format is 

Frames designed to contain Audio-Video Interleaved 
streams. This means that the images forming the 
frames of a video file, are stored in form of streams, 
then another layer of an audio stream is interleaved in 
the file. This structure complicates the video 
processing operation. Since streams will need to be 
processed one by one, and will require more effort 
from the programmer to isolate frames while being 
able to process them collectively in a symmetric 
manner. The MOA representation for a video file is a 
3-dimensional MOA array structure, where the first 
dimension is the time sequencer or the frame number, 
and the remaining two are the height and width of the 
frames images. Video processing operation on the 
Video frames can be processed individually using the 
Psi MOA indexing function to return the image of the 
frame number required, or collectively by working on 



-

all the frames at one shot (by applying all operations 
on the second dimension).  
 
The CMOAVideo class provides the main interfacing 
between the MOA structure defined in the CMOA 
class and the AVI file format. The main objective 
achieved from this class is the decomposition of the 
AVI video stream into frames of the images, which the 
video displays. The pixels of all these frames are 
mapped to a 3-dimensional MOA.The Video MOA 
structure allows all the transformations discussed in 
the previous section, to be applied to image frames 
composing the video stream (flip vertical, flip 
horizontal, transpose). Extra transformations can be 
applied like the reversing the order of frames in the 
video stream symmetrically. Also, forward and rewind 
operations are a simple positioning of the current 
display index in the images frame.  
 
Object tracking (Motion detection) is implemented in 
this research work, using a simple xoring technique, 
which cumulatively xores the equally indexed pixels in 
every frame with the previous cumulative differential 
frame, applying the following formula: 
 

( )


 >

=
otherwise

yxtfxoryxtfif
yxd ji

ij 0

|),,(),,(|1
,

θ

 
 
Where x and y are the spatial coordinates of pixels in 
images of the video stream, and t is the time of the 
image display. It starts from the first frame as the 
initial cumulative frame, and produces a final 
cumulative xored frame that shows the boundary of the 
moving object along its track of movement through all 
images in the video stream. This is implemented by 
partitioning the video MOA structures (3-D MOA 
arrays) to image frames (2-D MOA arrays) and 
applying a point-wise extension to each frame and the 
differential image. This technique zeros out the still 
background. In case of noise, thresholds need to be 
applied first to ensure that only moving objects will be 
detected in the final result. Different methods can be 
applied to show different analysis for the moving 
object. Figure 4 gives an example as analyzed by the 
implemented object tracking algorithm. It shows all 
the images in the video stream of an AVI file as 
decomposed by the MOA partitioning operations 
(partitioning on the time – 0th- dimension), and the 
resulted cumulative xored differential image showing 
the movement of the pointers of the clock AVI file.  
Also, audio and video correspondence in an AVI video 
file can be implemented in the MOA video structure 
by applying the Psi Correspondence Theorem (PCT), 
by relating the audio stream and the video stream 

coded in the AVI file format as two MOA structures in 
correspondence of each other. Streaming is a technique 
of using a small buffer to play a large file by filling the 
buffer with data from the file at the same rate that data 
is taken from the buffer and played. 
 

5. Parallelism, Pipelining and Hardware 
Implementation 
 
The existence of the parallelisation factors in the MOA 
deign, and the possibility of pipelining its execution 
are investigated. Also, a hardware package of the 
notation was implementing using the VHDL language 
on Renoir [1]. Parallelism in MOA is discussed in 
terms of Implicit Parallelism in MOA design, Shape 
Separation benefits, MOA Parallel Architecture 
Mapping Scheme, MOA in Data Redistribution, and 
MOA & Tiling Algorithms. 
Since MOA is a higher construct for array interactions, 
compilers can extract implicit parallelism from the 
code. MOA as based on Psi-Calculus, is a 
mathematical formalization that decides the data 
placement from the array expression, allowing the 
array mapping to processors to be based on the Psi-
Reduction theorem, and Psi-Correspondence theorem 
on two levels. The first is the functional normal form, 
which is a minimal semantic form expressed in terms 
of selections using Cartesian coordinates, employing 
Psi- Tiling is the process of applying geometric 
transformations in the iteration space in order to 
restructure the loop nest (execution of statements 
within the loop, or the loop iteration), in order to 
improve the performance. These transformations need 
also to preserve a reasonable tradeoff between 
communication, computation, and allow for automatic 
parallelisation.  
 
Pipelining is one of the parallel processing techniques, 
Accessing arrays by loops allows pipelining to be a 
process of scheduling technique that starts a loop 
iteration, before the previous iteration completes. This 
part of the research work [1], considered the 
Monolithic Array Pipelining Algorithm in terms of 
MOA. The main constructors of the algorithm were 
fount to be: 

• IGEN (Index Generator Sub-graph). 
• AGEN (Array Generator Sub-Graph). 
• Selection Operation with Index Calculation 
expression. 

As MOA can implement the above constructors 
effectively invariant of shape & dimension, it is safe to 
say that pipelining is feasible using the MOA structure 
implemented. 
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The hardware implementation is intended to allow for 
designing hardware accelerators for  different 
applications based on the MOA package implemented 
in this research work. The hardware implementation 
was done using VHDL – a hardware description 
language that has syntax like C – on Renoir [1]. It was 
simulated using the ModelSim Simulator [1]. The 
VHDL MOA package was implemented using the 
same logic applied in C++. The simulation produced 
the same results except for the lack of dynamic size 
allocations that was compensated by a constant upper 
bound. 
 
Reduction theorem. The second level is the 
transformation of the functional normal form to its 
equivalent operational normal form, which describes 
the implementation results, in terms of starts, strides, 

and lengths to select from the linear arrangement of the 
items, employing the Psi-Correspondence Theorem. 

 
Shape definition is useful for determining 
communication strategies, load balancing, evaluation 
strategies, etc. Parallel Computing (can be referred to 
as shape-based computing) requires separating the 
shape of the data structure away from the data itself. 
Dynamic and Static shape analysis steps are usually 
done by compilers. Data types are divided into shapely 
data-types (regular & irregular arrays, graphs, records, 
variant records, lists and trees) and non-shapely data-
types (functions and sets). In this work, the MOA 
structures are implemented with separate vectors for 
shape, eliminating the need for extra analysis, and 
providing shape polymorphism. 
 

  

6. Conclusion 
 
This research work attempted to link the MOA 
notation with the current application requirements in 
image and video processing and provid a model that 
can be used to achieve parallel processing in 
imperative languages. This research work has shown 
that the MOA implementation neither need a compiler 
nor extensions to functional languages. It can be 
implemented as APIs in an imperative Object Oriented 
Language like C++.  
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Figure 1: MOA Operations implemented in CMOA class 
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Figure 2: Image Filters Effects 

 

 
 

a) Original Image 

 
 

b) High Pass filter Effect 

 
c) Dilation Effect 

 
d) Erosion Effect 

 
a) Clock Images in the Video Stream 

 
b) Cumulative Xored Result 

 
 
 
 
 

Figure 3: Object tracking algorithm applied on 
a Moving Clock 

 


