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Abstract: - Measurement uncertainties of indirect measured values and their influences can be calculated with 
a computing model of a measurement based on a general Gaussian procedure for calculating the measurement 
results and their covariance matrix which serves as a measure of the uncertainties. Model is  given in terms of 
a system of equations. Critical parts of measurement system can be found with optimisation procedure in 
which the goal is minimal final uncertainty in predefined limits. In paper is introduced genetic algorithm for 
optimisation and is compared with analytical algorithm. 
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1   Introduction 
In scientific, industrial and legal metrology, the 
investigator and engineer are confronted with 
measurement tasks, which go far beyond the 
measurement of only a single physical quantity with 
a suitable measuring instrument. Beside carefully 
carried out measurement, the data obtained must be 
analysed in order to assess the uncertainty of the 
measurement performed. The aim of experiment is 
to get small individual and mutual uncertainties. 
Modification necessary to achieve aim can be 
expensive and time dependent. Better solution is to 
find computing model of measurement system or 
experiment, that can be modified on computer. 
Optimisation process must stay in predefined real 
limits. Parts of a measurement will be changed in 
that process to find predefined uncertainty. If a 
measurement system can be described with a 
mathematical model, one can find optimal solution 
on computer. Computed optimisation process can 
not solve all problems. With  practically designed 
best solutions can then be found final optimum. The 
idea of optimisation is to find the parts of a 
measurement system, that effect final uncertainty the 
most. Since uncertainty can be described as a scalar 
value, it can be used in genetic algorithm. The 
procedure to involve genetic algorithm is introduced 
and algorithm is used in optimisation of a capacitor 
sensor. The optimisation showed parts of a sensor, 
that effect final uncertainty the most. 
 

 

2 Measurement Uncertainties 
Computing model of a measurement is based on a 
general Gaussian procedure for calculating the 
measurement results and their covariance matrix, 
which serves as a measure of the uncertainties. 
Model is  given in terms of a system of m equations 
like 
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Here, the n physical quantities are called input 
quantities and represent all the quantities for which 
data from measurement and other information are 
directly used in the evaluation. The m physical 
quantities are related to the input quantities by the 
functions Fk and are called output quantities. These 
are the measurands of interest which are to be 
determined with covariance matrix 
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where Fx and Fy are partial derivatives of Fk: ∂Fk/∂xn 
and ∂Fk/∂ym . 
 
 
3   Basics of optimisation 
It seems plausible that an experiment for certain 
measurands resulting in small individual and mutual 
uncertainties should be regarded as a good 
experiment. The quality measure of an experiment 



can therefore be found on the covariance matrix, 
which expresses the uncertainties of the 
measurements. Optimisation used in genetic 
algorithm seek for a best final uncertainty. That 
value is presented with a last diagonal element of a 
covariance matrix. 
In optimisation procedure parts of a measurement 
system that will act as a chromosomes in a genetic 
algorithm must be defined. In a measurement system 
the parts of interest are uncertainties and values of 
all input quantities in a mathematical model. One 
can also use basic properties of measurement system 
(change of a measurement instrument). After each 
modification new covariance matrix must be 
calculated.  
 
 

4   Optimisation Procedure 
Optimisation is made with basic procedures of 
genetic algorithm: mutation, crossover and 
evaluation. To define an initial population for a 
measurement system a Gaussian procedure is used. 
As chromosomes are defined uncertainties and 
values of all input quantities. With calculated 
covariance matrix evaluation can be performed. 
Defined number of parents is developed from initial 
population with mutation. In mutation chromosomes 
are randomly changed in defined limits. In 
measurement systems chromosomes must not have 
negative value and must not be doubled.  
Limits for chromosome i are defined as 
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In these limits is randomly defined new value for 
uniformed distribution: 
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and for normal distribution: 
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A rnd(1) is random number generator with values 
from 0 to 1. 
With parent's population an optimisation loop is 
started. Loop is calculated in predefined number of 
iterations. Genetic algorithm must only show parts 
of highest influence on final uncertainty. At start of 
algorithm chromosomes are too mixed. If there is 
too many iterations, optimum can not be designed in 
reality.  

In optimisation loop parents are recombined. 
Randomly defined pair of parents changed randomly 
defined chromosomes. Recombined parents are 
mutated into children. Evaluation of best individuals 
is than made with sorting of  last part in diagonal of 
covariance matrix - output uncertainties of 
measurement system. At the end of the loop best 
individuals become parents. 
 
 
5   Example Of Optimisation 
Optimisation was made on measurement system for 
gas flow in chimneystacks. System uses input values 
presented in table 1. 
 

value description 
H=0.028 vapour concentration 
N2=78 nitrogen concentration 
O2=15.8 oxygen concentration 
CO2=2 carbon dioxide concentration
d1=1100 chimney diameter 
d=8 tube diameter 
Pb=993 outside pressure 
Tc1=22 outside temperature 
dP=24.6 differential pressure 
Ps=989 static pressure in chimney 
Tc=180.4 temperature in chimney 
t=28.49 measuring time 

table 1 : input values 
 
Sensor can be described with system of equations: 
 
absolute pressure in chimney: 
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partial vapour pressure: 
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vapour concentration at work conditions: 
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normal dry air concentration: 
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dry air concentration at work conditions: 
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air mass at work conditions: 
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gas velocity: 
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chimney area: 
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real gas flow: 
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normal flow at Tc: 
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normal dry flow: 
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izokinetic flow in tube: 
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measured gas: 
 
Qt Qf t= ⋅ .               (19) 
 
In initial population are defined all input values and 
their measurement uncertainties as chromosomes in 
genetic algorithm. Optimisation criterion is 
measurement uncertainty of a measured gas. 
   Population of 100 parents and children were 
evaluated in genetic algorithm. Optimisation loop 
was calculated in 100 iterations. Best results were 
calculated with uniformly distributed mutations. 

Limits of mutation were narrowed with each 
iteration: 
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with i as number of iterations. 
   After optimisation chromosomes were changed as 
shown on figure 1. 
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figure 1 : changed chromosomes 

 
All changes are normalised to initial values. On 
figure 1 some lines are clearly shown in upper and 
lower part. Upper lines indicate that chromosomes 
must be smaller in optimum case and lower indicate 
that chromosomes must be bigger. In upper part are 
input values d, t, Ps, dP and measurement 
uncertainties of N2, d and dP. In lower part are input 
values Tc, O2 and N2. 
   Since genetic algorithm is a random process, 
algorithm was repeated ten times with same initial 
values to confirm results. Changes of final 
chromosome values are shown on figure 2. 
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figure 2 :  changes of final chromosome values 

 
Chromosomes with no influence to optimum 
uncertainty of a Qt are randomly changed in central 
part. All chromosomes of interest are in start 
positions with small deviations. Deviations indicate 
optimum solutions different from solutions obtained 
with analytical calculations of a measurement 
system. 
 



6   Conclusion 
Genetic algorithm is effective in optimisation of 
complex measurement systems. Since the similar 
results can be calculated with analytical procedure 
one must define advantages and disadvantages of 
each procedure. In Gaussian procedure all input 
quantities must not be correlated. Correlation is not 
observed in analytical procedure. With random 
genetic algorithm correlation and new optimum 
solutions can be found. 
  Advantage of an analytical procedure is that is 
quick and has a clear solution. Genetic algorithm on 
the other hand needs a lot of computer memory and 
calculation takes a lot of time. So the best idea of 
using genetic algorithm is in combination with 
analytical procedure, when correlations are not 
clearly defined. 
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