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Abstract: - In permanent-magnet devices operating at sufficiently low saturation, torque can be calculated by 
reformulating the vector potential problem so as to perform subtraction of energies analytically, before 
problem discretization. One such a technique, known as the mean and deviation potentials method, has been 
experimentally evaluated elsewhere [1]. This paper presents a mathematical evaluation of the error behavior of 
the method. 
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1 Introduction 
Cogging torque is a saliency effect that arises from 
the interaction between a salient pole on one 
member of an electric machine (rotor or stator) and 
the teeth on the other member. The interaction 
implies a magnetic field distribution that is a 
function of rotor position. Cogging torque is thus 
defined as the non-uniform torque, function of rotor 
position, which arises when only an excitation field 
is present [2]. 

The calculation of cogging torque in electro-
mechanical devices is a difficult task because the 
effects sought are dependent on small changes in the 
magnetic fields in the machine. Two problems arise: 
mesh artifact and modeling precision. Mesh artifact 
can often be minimized by enforcing symmetry on 
the finite element mesh either explicitly or by 
averaging complementary meshes. 

Difficulties arising from modeling precision 
can usually be traced to subtraction of nearly equal 
quantities. These can at times be eliminated by 
reformulating the problem in such a way that the 
critical subtractions are performed in preliminary 
analytic development, where only exact quantities 
arise, leaving comparatively stable (though 
sometimes more time-consuming) operations to be 
carried out in subsequent numerical approximation. 

The conventional torque calculation based on 
virtual work method can be reformulated. Instead of 
explicitly subtracting two separately calculated 
system energies, the problem is stated with 
subtraction performed analytically. One such a 
treatment is discussed below [1,3]. 

2 Mean and Deviation Potentials 
This method was initially developed with specific 
reference to a class of permanent-magnet electric 
motors [1]. Were the conventional virtual work 
method to be used, there will be two boundary-value 
problems corresponding to two rotor positions as 
illustrated in Fig. 1. 
 

 

Figure 1: Cogging torque boundary-
value problems. 



It is seen that the two boundary-value 
problems differ only in the placement of the 
permanent magnetization. To facilitate development 
of the theory the remanence was replaced by 
equivalent current distributions J1 and J2 for rotor 
positions 1 and 2 respectively [1]. Furthermore, to 
allow a 2-dimensional analysis, the motor was 
assumed to be infinitely long and the permeability of 
the magnet material is assumed to be µ (ν= 1/µ). 
This yields the following two boundary-value 
problems: 
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and 
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Both partial differential equations above are 

subject to similar boundary conditions. The problem 
region Ω (in the x-y plane) may be considered to 
have a boundary ∂Ω which may be partitioned into 
two portions ∂ΩD and ∂ΩN: 
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where 
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Rather than work with the two boundary-value 

problems in A1 and A2, two new problems are 
defined. The first is obtained by taking the 
difference of the two problems above. Define: 
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subject to the homogeneous boundary conditions: 

03 =A   on ∂ΩD 

and, 
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The second problem is obtained by averaging 

the two original problems, setting: 
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where the boundary conditions are similar to those 
of the original problems, 
 

AA =4  on ∂ΩD 

 

A
n

A r
′=

∂
∂ 4  on ∂ΩN 

 
 
2.1 Virtual work 
Let the total energy for each of the original rotor 
position be evaluated and subtracted, so that: 
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Rewriting in terms of A3 and A4, on collecting terms 
we get: 
 

.dJA+dJA=W ΩΩ ∫∫
ΩΩ

3443δ  

 
In other words the energy difference is evaluated by 
solving the averaged and the deviation boundary 
value problems then combining the potential of each 
with the current density of the other. It is noted that 
if the two rotor positions are in fact the same 
position, A3 and J3 both vanish. Then δW vanishes 
also – which is just as it should be. 

 
 

2.2 Experimental evaluation 
The mean and deviation potential method was 
experimentally evaluated elsewhere for the specific 
case of cogging torque in small permanent-magnet 



motors [1,4]. Instead of working with the two original 
boundary value problems, whose solutions are very 
similar, and then attempting to determine their small 
difference by subtraction, the energy difference is 
evaluated by solving the boundary value problems for 
the mean and deviation potentials. The latter two 
problems are quite different from each other, their 
solutions are nearly orthogonal to each other, as is 
illustrated in Fig. 2. [1]. 
 

  

Figure 2: Flux plots for mean (right) and 
deviation potential problems [1]. 

 
Cogging torque characteristics obtained from the 

mean and deviation potentials method, and computed 
on a coarse mesh (1546 elements, 808 nodes) and on a 
fine mesh (1834 elements, 952 nodes) are presented in 
Fig. 3, together with measurements. The solid curve 
represents a least-square quintic polynomial fit to the 
measured values. It is seen that the error here is very 
small. Lowther and Forghani [5] suggest in their 
comparison study that this error level should be 
considered excellent for a two-dimensional analysis. 
Ferreira and Vaidya [6] corroborate this view, 
particularly for machines with large air gaps. The 
relative error here is not very far from the accuracy 
to be expected from the experimental results. 

 

 
Figure 3: Cogging torque computed by mean and 
deviation potential method [1]. 

 

3 Error Analysis 
While the method has been verified experimentally 
elsewhere, it is the purpose of this paper to present a 
mathematical formulation of its numerical errors. 
This of particular importance as it provides a general 
evaluation of the mathematical formulation. 

The boundary-value problems (described by 
equations 1 to 4 above) in each of the potentials Ai 
(i= 1,  ..4) may be described in terms of a linear 
operator D so that: 
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means 
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All four boundary-value problems are described by 
the same operator D, so all four will have the same 
discrete representation in matrix form. These will 
appear as: 

∆∆ai = ji 
 
Where ∆∆ is a matrix, ai and Ji are column vectors. ∆∆ 
is of course subject to a discretisation error, it does 
not represent and exact discrete model of the 
operator D. Instead, it is an exact model of some 
other operator (D - E), where E accounts for the 
difference: 
 

(D - E) (Ai – ei) = Ji 

 

Here, ei represents the error in the solution. 
Expanding: 
 

D Ai – E Ai – D ei  + E ei = Ji 

 
The first term on the left, however, is exactly the 
solution of the boundary-value problem in Ai, so 
 

(D - E) ei = – E Ai 

 
ei = – (D- E)-1  E Ai 

 
Clearly, one cannot usefully estimate the error 

ei from this result, for the error operator E cannot 



ordinarily be known. However, one can bound the 
error in some convenient norm: 
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The error in the energy increment δW, say εW, can 
be expressed as: 
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and it can now be bounded. First, 
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and then, making use of the bounds on the ei terms, 
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This analysis does indicate that the error in torque 
can be expected to behave no worse than the error in 
energy itself – which is generally quite good enough 
for most practical purposes. 
 
 
4 Conclusion 
The mean and deviation potential approach to torque 
computation yields good results, even for the very 
difficult problem of cogging torques where neither 
the Maxwell stress nor the virtual work method 
appear to be sufficiently robust to be useful. This 
paper shows that the method is numerically stable 
and demonstrates that the errors in torque are no 
worse than the errors in the computed energies. 
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