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ABSTRACT 

 
 
 
We have designed and implemented a generic discrete event simulation environment in 
Java using Java libraries capable of simulating processes like job shops, production line 
environments, computer hardware/software, and a social system composed of interacting 
individuals.The generic nature of the environment suggested and developed facilitates its 
application in a variety of fields, from traditional traffic control systems to modeling 
mirrors for websites and ecommerce based systems. 
 
Approach used : 
 
The underlying approach used here is the discretisation of seemingly continuous events 
into a series of distinct and discrete ones.Any given process may be broken down into a 
series of discrete events.These events may then be simulated applying the suggested 
techniques,providing a convenient and accurate tool for the analysis of the required 
environment. 
 
The Design allows for: 
 

• A simulation environment to be modeled by specifying the various servers, the 
queue protocols feeding them, and the objects undergoing processing. 

• Two or more objects to combine to form composite objects (modeling assembly 
line processes), and also for situations where objects hitch on to other objects for 
some duration of the processing (passengers alighting a bus and getting down 
later). 

• Specifying the start and end time of a simulation and also the probability 
distribution function that controls the generation of the objects undergoing 
processing. 

• Collection of statistics like queue lengths, delays at various servers, total 
processing time for objects, server idle and decide upon the field strategies. 

 
We envisage that the statistics collected at the end of the simulation will help the 
administrator to study the interplay between different parameters and design the actual 
environment with maximal optimality. 
 
A working prototype of the simulator is also presented herewith . 
 
Keywords: Stochastic complexity, probabilistic models, Generic simulation, 
optimization , discretisation. 
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1. Introduction to the design 
 
1.1 We build the entire simulator with 3 abstract classes as the building blocks. 
 
Define class ABSTRACT_SERVER{ 
 
Fields----- 
 
1) Idle time of the server  
2) Queue (to be served) 
3) Queue length 
4) Constructor 
5) Serving time  
6) Object  (the current object it is servicing) 
} 
 
Define class ABSTRACT_OBJECT{ 
 
Fields------ 
 
1) Path 
2) Time of entering the queue 
3) Time at which the servicing starts 
4) Time of creation 
} 
 
Define ABSTRACT_EVENT_MANAGER { 
 
Fields------ 
 
1) Time (for the next event) \*The policy followed here would be of Next Event Instead 

of Time Slicing*\ 
2) Server (this field will keep the server number which is going to complete the 

servicing at that particular time.  If this number is ” 1 that will mean that it is an object 
generation event./so at that time a new object will be generated and initialized and 
sent to the queue of the 1st server specified in its path) 

} 
 
1.2 Inputs taken from the administrator for simulation 
 

1) The number of servers 
2) The number of  paths required 
3) The number of servers in each path.            
4) The paths that the object is probable to follow (One of these paths would be 

allocated to every object when it is created) 
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5) The mean and the variance of the servicing time (This will help in calling the 
random (Guassian) function.  In case of equal probability analysis, user inputs the 
minimum and maximum time limits for service time. 

6) The Time gap after which new objects will be generated 
7) The Starting and the Termination time of the simulation 

 
 
1.3 Outputs at the end of simulation 
 

• All the fields of every server (viz. idle time, servicing time and others as 
mentioned in the class specification) 

• All the fields of each object that was serviced (viz. idle time, total servicing time 
and others as mentioned in the class specification) 

 
 
The objective of the simulation will be to study the interplay between different 
parameters, which influence design of an environment, and to investigate how optimality 
can be achieved in them. 
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2 An Overview of Environment and Design Requirements 

 
 

2.1 Types of Simulation 

There are three major ways to approach discrete simulation. These are event scheduling, 
activity scanning, and process orientation. Each approach is adopting by some 
programming language, and, more importantly, offers a different way to look at a 
simulation problem. Each, in its own way, suggests mechanisms to model real situations.   
In our prototype we have used ᑺ Event Scheduling„ . 

 

2.2 Comparing two systems 

Suppose now we have two systems and we wish to determine which is better, based on 
some statistic. The simplest way to analyze these systems is to ensure (or force) the 
number of observations for the two systems to be the same. Suppose we get 

for system 1 and for system 2. Then to see if system 1 is 
better than system 2, we need only determine if x-y > 0. In other words, we can form 

, calculate and and form a confidence interval on Z. If the confidence 
interval in entirely among the positive numbers, then system 1 is better. If it is entirely 
among the negative numbers, system 2 is better. If it includes 0, then it is not possible to 
say.  

This analysis holds as long as the are independent; it is not necessary for and to be 
indepedent from one another. In fact, if is positively correlated with then the variance 
on z decreases. One standard simulation technique is to force positive correlation by 
using the same input random numbers in the run of the two systems. If a system has 
higher than normal wait time (due perhaps to a large number of arrivals in a short period) 
then an alternative will also likely be higher than normal.  

There are standard statistical methods in the case that the number of observations are not 
the same (and assuming you are not willing to throw away data). Since there is nothing 
special about simulation here, I will simply refer you back to your statistics notes.  

 
2.3 The Role Of Random Numbers 

One aspect of simulation that is often confusing is the role of random numbers. How can 
the computer generate randomness? And how can ``random'' simulations be repeated over 
and over again. In some sense, the confusion is justified, for a computer cannot generate 
true randomness. It can only generate pseudo--randomness.  
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Pseudo--random numbers can be generated many ways.   We approach the problem in 
two ways.  We suggest 2 naıve models for generating the random numbers. 

2.3.1) Equal Probability 

The most common is by a linear congruential method, a complicated word for a simple 
concept. Let's suppose I want to generate random numbers betwee 0 and 15 (integers 
only). We will need to begin with a single number, perhaps created by rolling a 16 sided 
die.  

2.3.2) Gaussian function 
 
The formula for generation of random numbers in this scheme is:- 
 
F(Y)= 1/(1.414*3.1416*V) *  exp[-(Y-M)*(Y-M)/2*V*V] 
 
Where 
M=mean of given input, 
V=variance of given input 
Y=input(generated random number) 
F(Y)=probability density function 
 
A good method for calculating the mean and variance for the analyses is falling back to 
the fundamentals of statistics.  
 

 
 
The first goal is to identify the transient period so we can throw it away. There is no good 
statistical test to positively identify transient periods, so this act is really a judgement call. 
Graphing the data is one good way to see the transient period, but people often mistake 
extreme, but valid, values for the transient period. The steady state period need not be one 
where the system has ``settled down''. In fact, typically the variance of the readings is 
higher in steady state than in the trasient period! Steady state is defined by having the 
mean value be independent of time. If we draw some lines to denote the variance, we 
might see something like that in figure.  Once we have thrown out the transient period, 
we are left with trying to analyze the steady state. 
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3. ALGORITHM 
 
What follows in this sub-section is the algorithm in its entirety, which goes into the 
design and simulation of a discrete event environment. 
 
//Read input from user  
 
Define class ABSTRACT_SERVER{ 
 
Fields----- 
 

1) Idle time of the server  
2) Queue (to be served) 
3) Queue length 
4) Constructor 
5) Serving time  
6) Object  (the current object it is servicing) 

} 
 
Define class ABSTRACT_OBJECT{ 
 
Fields------ 
 

1) Path 
2) Time of entering the queue 
3) Time at which the servicing starts 
4) Time of creation 

} 
 
Define ABSTRACT_EVENT_MANAGER { 
 
Fields------ 
 

1) Time (for the next event) \*The policy followed here would be of Next Event 
Instead of Time Slicing*\ 

2) Server (this field will keep the server number which is going to complete the 
servicing at that particular time.  If this number is ” 1 that will mean that it is an 
object generation event./so at that time a new object will be generated and 
initialized and sent to the queue of the 1st server specified in its path) 

} 
 
 
//Initialize AEM Vector  
 
for (Iß1 to (number of objects to be created) ){ 
AEM[I].server ß -1; 
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AEM[I].timeßT1+it; 
} 
 
While (present_time< (Simulation end time) ){ 
 aemßNext AEM in AEM Vector; 
 //aem keeps track of present AEM 
 
 
 
//START SIMULATION 
 
If (aem.server = -1) { 
//Initialize new object 
obj.path ß Randompath; 
obj.tcreated ß Present time; 
ser ß obj.path[0]; 
Insert object in Q of server; 
 
//Create new aem 
new_aem.serverßser; 
new_aem.timeßpresent_time; 
Insert new_aem in AEM[] such that  
Next_AEM[]ßnew_aem;       }//end if 
 
Else  
{  

//if aem.server != -1  
 sever_time ß random(); 
  
 //server changes 
 aem.server.stime += service_time; 
 present_object ß aem.server.Q[front]; 
 
 //Delete Q[front] 
 frontßfront + 1; 
 
 //object changes 
  present_object.stime += service_time; 
 new_server ß present_object.path[index]; 
 index ++; 
 new_server.Q[rear +1]ßpresent_object; 
 
 If (rear = front) //new server.Q was empty 
 { 
  //Create new_aem 
  new_aem.server ß new_server; 
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  new_aem.time ß present_time + service_time + 1; 
  Insert new_aem in AEM[]; 
 } 
  
 If present_object.path[index] = 0  //next server in object path is zero 
  { 
   output(present_object); 
  } 
  
         } 
 
 //Create new_aem 
 new_aem.server ß present_server; 
 new_aem.time ß present_time + service_time + 1; 
 Insert new_aem in AEM[]; 
 Remove aem from AEM[]; 
} //end while 
 
//Output Object Details  
for (Iß1 to (number of objects) ){ 
print (objectßnumber); 
print (objectßstime); 
print (objectßpath); 
print (objectßt_created); 
} 
 
//Output Server Details 
for (Iß1 to (number of servers) ){ 
print (serverßnumber); 
print (serverßstime); 
print (serverßQ); 
print (serverßt_created); 
} 
 
//END OF SIMULATION 
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4. Applications 
 
The scope of the presented simulation environment is unlimited.  It can be used to model 
any environment that can be discretized into a series of events. The following few high 
level applications should be able to demonstrate the usefulness of the Generic Discrete 
Event Simulator.   
 

4.1 Modeling of Traditional Traffic Control Systems 
Eg.  Control of trains arriving at the New Delhi junction.  The server class is 
now inherited by various platforms.  The queuing objects in the plan would be 
the trains arriving at the platforms. 
 

4.2 Modeling mirrors for websites, for better NET-traffic control 
Mechanized modeling (division) of Internet traffic over a group of mirrors for 
the same site can be optimized for better results in terms of managing net 
traffic, reducing idle time (and overload) of any particular mirror server etc.  
Further, the simulator can be used to decide the world wide location of the 
mirrors for minimum Bandwidth usage.  In this case, the mirrors would be 
instances of the server class and the individual HTTP requests would be the 
instances of the Abstract object. 
 

4.3 E-commerce based applications 
The simulator can be used in determining the strategic locations for 
distribution outlets of B2B/B2C web sites.  Here, the outlets would be the 
instances of the Abstract Server and the individual online orders would be the 
instances of the abstract object.
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5. Some Working Examples 

We present the implementation of two real-life problems that were simulated on the 
simulator.  Optimality is evidently achievable through such simulations. 

5.1 A Bank Teller Machine 

A bank is planning on installing an automated teller machine and must choose between 
buying one Zippy machine or two Klunky machines. A Zippy costs exactly twice one 
Klunky to buy and operate, so the goal of the bank is simply to provide the best service.  

From the data available, it appears that customers arrive according to a Poisson process at 
the rate of 1 per minute. Zippy provides service that is exponential with mean .9 minutes. 
Each Klunky provides service that is exponential with mean 1.8 minutes. We will assume 
that customers lined up for the the two Klunkies will form a single queue. The 
performance measure we will use is the average time waiting in the queue for the first 
100 customers (the bank has decided it is most irritating to wait and customers are 
pacified if they are being served). Should the bank buy one Zippy or two Klunkies?  

One method would be to install one Zippy for a few weeks, measure the average wait, 
and then rip it out and install two Klunkies and measure their wait. If necessary, then, the 
Klunkies could be ripped out, and the Zippy reinstalled.  

Simulation, of course, gives a much more appealing solution. We can simply create a 
computer simulation of the above experiment. To do this by hand, we would generate 
(perhaps by using a table of random numbers) a series of arrival times and service times 
and determine how long the wait was. For instance, we might end up with arrival times of 
.2, .7, 1.6, 2.3, 3.4, 5.6, and so on and service times for Zippy of .9, .7, 2.3, 1.6, .1, .6, and 
so on (and double that amount for Klunkies). The simulation for one Zippy would then 
have a customer arrive at time .2 and go right to the machine. At time .7 a customer 
arrives and waits in line. At time 1.1, customer 1 leaves, and customer 2 uses the machine 
(having waited .4). Customer 3 arrives at 1.6, customer 2 leaves at 1.8, allowing customer 
3 (after having waited .2) to use the machine (total wait so far is .6). And so on. Similar 
analysis could be done with the two Klunky system. Fortunately, we can have this 
simulator do all of the work for us.  

 
6. Designing simulation experiments 

The final stage in analyzing a system with simulation is to optimize over the system 
parameters in such a way as to optimize performance. As stated earlier, simulations is 
fundamentally a descriptive tool, not a prescriptive tool. With care and a lot of computer 
time, it is possible to optimize with simulation. In many ways, optimizing with simulation 
is very similar to nonlinear optimization.  
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First, let's suppose we have a single quantity to optimize over. This might be the number 
of machines to place in a plant, the number of units at which to reorder in an inventory 
system, or the number of dollars to put into a particular portfolio. Let this quantity be 
denoted x. Suppose you have a simulation that will determine the performance given x, 
denoted (f(x1) is better than f(x2)) are made correctly. Because these tests must be made 
repeatedly, either the allowance for error must be very, very small, or some allowance for 
making an error must devised.  

This is particularly true when working with more than one parameter. In this case, it is 
not even clear how to use nonlinear algorithms. After all, such things as derivatives are 
not available. In this case, you begin at a particular point. For each parameter, you look at 
increasing it a bit and decreasing it a bit. If there are n parameters, there are 2n 
possibilities so you get 2n.  You then choose the best and that is the next point you 
examine. This is continued until you reach a point where no increase or decrease 
improves your solution. This can be sped up somewhat by using factor analysis, and 
factorial design, which reduces the 2n possibilities.  to a more manageable number.  

Consider the following data points, giving the simulation results of two different systems 
(each data point is the aggregation of the results of a single run):  

X: 10 16 22 2 46 23 14 89 32 12  

Y: 11 33 83 12 21 41 3 19 15 8  

Analyze the above data to determine if the expected value of X is greater than the 
expected value of Y by subtracting each X value from the corresponding Y value. Can 
you distinguish the systems?  

Do the same for the following sets of data. Now can you distinguish the data? Note that 
the numbers are the same: why does this lead to a different conclusion?  

X: 10 16 22 2 46 23 14 89 32 12  

Y: 8 15 19 3 41 21 12 83 33 11  

At the beginning of each week, a machine is either running or broken down. If a machine 
is running throughout a week, it earns revenue of $100. If it breaks at any time in a week, 
the revenue for that week is $0. At the beginning of any week that the machine is 
running, it is possible to perform preventive maintenance. If such maintenance is 
performed, the probability of the machine failing is .4; otherwise, the probability of 
failing is .7. Maintenance costs $20. If the machine is broken at the beginning of a week, 
it must be fixed at a cost of $40. Such a machine will then work for that entire week with 
probability .6 and will fail with probability .4.  
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Assuming the machine is working at the beginning of week 1, determine an optimal 
maintenance policy over a four--week period. What is the expected profit over that 
period?  

A company has $1 million on hand. In four weeks, a note is due for $5 million. The firm 
wishes to maximize its probability of having the money on hand. Each week, the 
company can place any amount of money it wishes into a market. If it places money in 
the market, it loses the money with probability .4 and doubles it with probability .3 and 
gets its money back with probability .3. The firm can only enter the market with the 
money it has on hand. Assuming it is only possible to enter the market in ``millions'' (i.e. 
1.23 million is not possible), and the firm has the choice not to enter the market during a 
week, how can the firm maximize its probability of having $5 million at the end of four 
weeks.  
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8. Conclusion 

Probabilistic models of the real world can seldom be solved and optimized using a pure 
mathematical approach.  We have suggested a structure of a generic discrete event 
simulator that can be used very effectively to model and optimize environments that can 
be discretized into events.  We have discussed some selected scenarios that can be 
modeled using our simulator.  The objective of the simulation will be to study the 
interplay between different parameters, which influence design of an environment, and to 
investigate how optimality can be achieved in them.   
 
The simulation results can be used to achieve optimality in a scientific manner using 
stochastic models of the real world environments. 

 

9. Acknowledgements 

We are grateful to Prof. SN Maheshwari, Dept of Computer Science and Engineering, IIT 
Delhi for his guidance and support during the design and implementation of the 
simulator. 

 

10. Bibliography and References 
 

a) P. Bratley, B. L. Fox and L. E. Schrage, A Guide to Simulation.  
b) A. Law and D. Kelton, Simulation Modeling and Analysis. 
c) P. Fishwick, Simulation Model Design and Execution. 
d) B. Khoshnevis, Discrete Systems Simulation. 
e) B. Ziegler, Theory of Modeling and Simulation.  
f) L. Devroye, Nonuniform Random Variate Generation. 


