
Generic Discrete Event Simulator

1

Generic Discrete Event Simulation
Environment

Nagender Parimi

 Computer Science and Engineering,

Netaji Subhas Institute of Technology (formerly Delhi Institute of Technology),
 Delhi University

Generic Discrete Event Simulator

2

ABSTRACT

We have designed and implemented a generic discrete event simulation environment in
Java using Java libraries capable of simulating processes like job shops, production line
environments, computer hardware/software, and a social system composed of interacting
individuals.The generic nature of the environment suggested and developed facilitates its
application in a variety of fields, from traditional traffic control systems to modeling
mirrors for websites and ecommerce based systems.

Approach used :

The underlying approach used here is the discretisation of seemingly continuous events
into a series of distinct and discrete ones.Any given process may be broken down into a
series of discrete events.These events may then be simulated applying the suggested
techniques,providing a convenient and accurate tool for the analysis of the required
environment.

The Design allows for:

• A simulation environment to be modeled by specifying the various servers, the
queue protocols feeding them, and the objects undergoing processing.

• Two or more objects to combine to form composite objects (modeling assembly
line processes), and also for situations where objects hitch on to other objects for
some duration of the processing (passengers alighting a bus and getting down
later).

• Specifying the start and end time of a simulation and also the probability
distribution function that controls the generation of the objects undergoing
processing.

• Collection of statistics like queue lengths, delays at various servers, total
processing time for objects, server idle and decide upon the field strategies.

We envisage that the statistics collected at the end of the simulation will help the
administrator to study the interplay between different parameters and design the actual
environment with maximal optimality.

A working prototype of the simulator is also presented herewith .

Keywords: Stochastic complexity, probabilistic models, Generic simulation,
optimization , discretisation.

Generic Discrete Event Simulator

3

1. Introduction to the design

1.1 We build the entire simulator with 3 abstract classes as the building blocks.

Define class ABSTRACT_SERVER{

Fields-----

1) Idle time of the server
2) Queue (to be served)
3) Queue length
4) Constructor
5) Serving time
6) Object (the current object it is servicing)
}

Define class ABSTRACT_OBJECT{

Fields------

1) Path
2) Time of entering the queue
3) Time at which the servicing starts
4) Time of creation
}

Define ABSTRACT_EVENT_MANAGER {

Fields------

1) Time (for the next event) *The policy followed here would be of Next Event Instead

of Time Slicing*\
2) Server (this field will keep the server number which is going to complete the

servicing at that particular time. If this number is ” 1 that will mean that it is an object
generation event./so at that time a new object will be generated and initialized and
sent to the queue of the 1st server specified in its path)

}

1.2 Inputs taken from the administrator for simulation

1) The number of servers
2) The number of paths required
3) The number of servers in each path.
4) The paths that the object is probable to follow (One of these paths would be

allocated to every object when it is created)

Generic Discrete Event Simulator

4

5) The mean and the variance of the servicing time (This will help in calling the
random (Guassian) function. In case of equal probability analysis, user inputs the
minimum and maximum time limits for service time.

6) The Time gap after which new objects will be generated
7) The Starting and the Termination time of the simulation

1.3 Outputs at the end of simulation

• All the fields of every server (viz. idle time, servicing time and others as
mentioned in the class specification)

• All the fields of each object that was serviced (viz. idle time, total servicing time
and others as mentioned in the class specification)

The objective of the simulation will be to study the interplay between different
parameters, which influence design of an environment, and to investigate how optimality
can be achieved in them.

Generic Discrete Event Simulator

5

2 An Overview of Environment and Design Requirements

2.1 Types of Simulation

There are three major ways to approach discrete simulation. These are event scheduling,
activity scanning, and process orientation. Each approach is adopting by some
programming language, and, more importantly, offers a different way to look at a
simulation problem. Each, in its own way, suggests mechanisms to model real situations.
In our prototype we have used ᑺ Event Scheduling„ .

2.2 Comparing two systems

Suppose now we have two systems and we wish to determine which is better, based on
some statistic. The simplest way to analyze these systems is to ensure (or force) the
number of observations for the two systems to be the same. Suppose we get

for system 1 and for system 2. Then to see if system 1 is
better than system 2, we need only determine if x-y > 0. In other words, we can form

, calculate and and form a confidence interval on Z. If the confidence
interval in entirely among the positive numbers, then system 1 is better. If it is entirely
among the negative numbers, system 2 is better. If it includes 0, then it is not possible to
say.

This analysis holds as long as the are independent; it is not necessary for and to be
indepedent from one another. In fact, if is positively correlated with then the variance
on z decreases. One standard simulation technique is to force positive correlation by
using the same input random numbers in the run of the two systems. If a system has
higher than normal wait time (due perhaps to a large number of arrivals in a short period)
then an alternative will also likely be higher than normal.

There are standard statistical methods in the case that the number of observations are not
the same (and assuming you are not willing to throw away data). Since there is nothing
special about simulation here, I will simply refer you back to your statistics notes.

2.3 The Role Of Random Numbers

One aspect of simulation that is often confusing is the role of random numbers. How can
the computer generate randomness? And how can ``random'' simulations be repeated over
and over again. In some sense, the confusion is justified, for a computer cannot generate
true randomness. It can only generate pseudo--randomness.

Generic Discrete Event Simulator

6

Pseudo--random numbers can be generated many ways. We approach the problem in
two ways. We suggest 2 naıve models for generating the random numbers.

2.3.1) Equal Probability

The most common is by a linear congruential method, a complicated word for a simple
concept. Let's suppose I want to generate random numbers betwee 0 and 15 (integers
only). We will need to begin with a single number, perhaps created by rolling a 16 sided
die.

2.3.2) Gaussian function

The formula for generation of random numbers in this scheme is:-

F(Y)= 1/(1.414*3.1416*V) * exp[-(Y-M)*(Y-M)/2*V*V]

Where
M=mean of given input,
V=variance of given input
Y=input(generated random number)
F(Y)=probability density function

A good method for calculating the mean and variance for the analyses is falling back to
the fundamentals of statistics.

The first goal is to identify the transient period so we can throw it away. There is no good
statistical test to positively identify transient periods, so this act is really a judgement call.
Graphing the data is one good way to see the transient period, but people often mistake
extreme, but valid, values for the transient period. The steady state period need not be one
where the system has ``settled down''. In fact, typically the variance of the readings is
higher in steady state than in the trasient period! Steady state is defined by having the
mean value be independent of time. If we draw some lines to denote the variance, we
might see something like that in figure. Once we have thrown out the transient period,
we are left with trying to analyze the steady state.

Generic Discrete Event Simulator

7

3. ALGORITHM

What follows in this sub-section is the algorithm in its entirety, which goes into the
design and simulation of a discrete event environment.

//Read input from user

Define class ABSTRACT_SERVER{

Fields-----

1) Idle time of the server
2) Queue (to be served)
3) Queue length
4) Constructor
5) Serving time
6) Object (the current object it is servicing)

}

Define class ABSTRACT_OBJECT{

Fields------

1) Path
2) Time of entering the queue
3) Time at which the servicing starts
4) Time of creation

}

Define ABSTRACT_EVENT_MANAGER {

Fields------

1) Time (for the next event) *The policy followed here would be of Next Event
Instead of Time Slicing*\

2) Server (this field will keep the server number which is going to complete the
servicing at that particular time. If this number is ” 1 that will mean that it is an
object generation event./so at that time a new object will be generated and
initialized and sent to the queue of the 1st server specified in its path)

}

//Initialize AEM Vector

for (Iß1 to (number of objects to be created)){
AEM[I].server ß -1;

Generic Discrete Event Simulator

8

AEM[I].timeßT1+it;
}

While (present_time< (Simulation end time)){
 aemßNext AEM in AEM Vector;
 //aem keeps track of present AEM

//START SIMULATION

If (aem.server = -1) {
//Initialize new object
obj.path ß Randompath;
obj.tcreated ß Present time;
ser ß obj.path[0];
Insert object in Q of server;

//Create new aem
new_aem.serverßser;
new_aem.timeßpresent_time;
Insert new_aem in AEM[] such that
Next_AEM[]ßnew_aem; }//end if

Else
{

//if aem.server != -1
 sever_time ß random();

 //server changes
 aem.server.stime += service_time;
 present_object ß aem.server.Q[front];

 //Delete Q[front]
 frontßfront + 1;

 //object changes
 present_object.stime += service_time;
 new_server ß present_object.path[index];
 index ++;
 new_server.Q[rear +1]ßpresent_object;

 If (rear = front) //new server.Q was empty
 {
 //Create new_aem
 new_aem.server ß new_server;

Generic Discrete Event Simulator

9

 new_aem.time ß present_time + service_time + 1;
 Insert new_aem in AEM[];
 }

 If present_object.path[index] = 0 //next server in object path is zero
 {
 output(present_object);
 }

 }

 //Create new_aem
 new_aem.server ß present_server;
 new_aem.time ß present_time + service_time + 1;
 Insert new_aem in AEM[];
 Remove aem from AEM[];
} //end while

//Output Object Details
for (Iß1 to (number of objects)){
print (objectßnumber);
print (objectßstime);
print (objectßpath);
print (objectßt_created);
}

//Output Server Details
for (Iß1 to (number of servers)){
print (serverßnumber);
print (serverßstime);
print (serverßQ);
print (serverßt_created);
}

//END OF SIMULATION

Generic Discrete Event Simulator

10

4. Applications

The scope of the presented simulation environment is unlimited. It can be used to model
any environment that can be discretized into a series of events. The following few high
level applications should be able to demonstrate the usefulness of the Generic Discrete
Event Simulator.

4.1 Modeling of Traditional Traffic Control Systems
Eg. Control of trains arriving at the New Delhi junction. The server class is
now inherited by various platforms. The queuing objects in the plan would be
the trains arriving at the platforms.

4.2 Modeling mirrors for websites, for better NET-traffic control
Mechanized modeling (division) of Internet traffic over a group of mirrors for
the same site can be optimized for better results in terms of managing net
traffic, reducing idle time (and overload) of any particular mirror server etc.
Further, the simulator can be used to decide the world wide location of the
mirrors for minimum Bandwidth usage. In this case, the mirrors would be
instances of the server class and the individual HTTP requests would be the
instances of the Abstract object.

4.3 E-commerce based applications
The simulator can be used in determining the strategic locations for
distribution outlets of B2B/B2C web sites. Here, the outlets would be the
instances of the Abstract Server and the individual online orders would be the
instances of the abstract object.

Generic Discrete Event Simulator

11

5. Some Working Examples

We present the implementation of two real-life problems that were simulated on the
simulator. Optimality is evidently achievable through such simulations.

5.1 A Bank Teller Machine

A bank is planning on installing an automated teller machine and must choose between
buying one Zippy machine or two Klunky machines. A Zippy costs exactly twice one
Klunky to buy and operate, so the goal of the bank is simply to provide the best service.

From the data available, it appears that customers arrive according to a Poisson process at
the rate of 1 per minute. Zippy provides service that is exponential with mean .9 minutes.
Each Klunky provides service that is exponential with mean 1.8 minutes. We will assume
that customers lined up for the the two Klunkies will form a single queue. The
performance measure we will use is the average time waiting in the queue for the first
100 customers (the bank has decided it is most irritating to wait and customers are
pacified if they are being served). Should the bank buy one Zippy or two Klunkies?

One method would be to install one Zippy for a few weeks, measure the average wait,
and then rip it out and install two Klunkies and measure their wait. If necessary, then, the
Klunkies could be ripped out, and the Zippy reinstalled.

Simulation, of course, gives a much more appealing solution. We can simply create a
computer simulation of the above experiment. To do this by hand, we would generate
(perhaps by using a table of random numbers) a series of arrival times and service times
and determine how long the wait was. For instance, we might end up with arrival times of
.2, .7, 1.6, 2.3, 3.4, 5.6, and so on and service times for Zippy of .9, .7, 2.3, 1.6, .1, .6, and
so on (and double that amount for Klunkies). The simulation for one Zippy would then
have a customer arrive at time .2 and go right to the machine. At time .7 a customer
arrives and waits in line. At time 1.1, customer 1 leaves, and customer 2 uses the machine
(having waited .4). Customer 3 arrives at 1.6, customer 2 leaves at 1.8, allowing customer
3 (after having waited .2) to use the machine (total wait so far is .6). And so on. Similar
analysis could be done with the two Klunky system. Fortunately, we can have this
simulator do all of the work for us.

6. Designing simulation experiments

The final stage in analyzing a system with simulation is to optimize over the system
parameters in such a way as to optimize performance. As stated earlier, simulations is
fundamentally a descriptive tool, not a prescriptive tool. With care and a lot of computer
time, it is possible to optimize with simulation. In many ways, optimizing with simulation
is very similar to nonlinear optimization.

Generic Discrete Event Simulator

12

First, let's suppose we have a single quantity to optimize over. This might be the number
of machines to place in a plant, the number of units at which to reorder in an inventory
system, or the number of dollars to put into a particular portfolio. Let this quantity be
denoted x. Suppose you have a simulation that will determine the performance given x,
denoted (f(x1) is better than f(x2)) are made correctly. Because these tests must be made
repeatedly, either the allowance for error must be very, very small, or some allowance for
making an error must devised.

This is particularly true when working with more than one parameter. In this case, it is
not even clear how to use nonlinear algorithms. After all, such things as derivatives are
not available. In this case, you begin at a particular point. For each parameter, you look at
increasing it a bit and decreasing it a bit. If there are n parameters, there are 2n
possibilities so you get 2n. You then choose the best and that is the next point you
examine. This is continued until you reach a point where no increase or decrease
improves your solution. This can be sped up somewhat by using factor analysis, and
factorial design, which reduces the 2n possibilities. to a more manageable number.

Consider the following data points, giving the simulation results of two different systems
(each data point is the aggregation of the results of a single run):

X: 10 16 22 2 46 23 14 89 32 12

Y: 11 33 83 12 21 41 3 19 15 8

Analyze the above data to determine if the expected value of X is greater than the
expected value of Y by subtracting each X value from the corresponding Y value. Can
you distinguish the systems?

Do the same for the following sets of data. Now can you distinguish the data? Note that
the numbers are the same: why does this lead to a different conclusion?

X: 10 16 22 2 46 23 14 89 32 12

Y: 8 15 19 3 41 21 12 83 33 11

At the beginning of each week, a machine is either running or broken down. If a machine
is running throughout a week, it earns revenue of $100. If it breaks at any time in a week,
the revenue for that week is $0. At the beginning of any week that the machine is
running, it is possible to perform preventive maintenance. If such maintenance is
performed, the probability of the machine failing is .4; otherwise, the probability of
failing is .7. Maintenance costs $20. If the machine is broken at the beginning of a week,
it must be fixed at a cost of $40. Such a machine will then work for that entire week with
probability .6 and will fail with probability .4.

Generic Discrete Event Simulator

13

Assuming the machine is working at the beginning of week 1, determine an optimal
maintenance policy over a four--week period. What is the expected profit over that
period?

A company has $1 million on hand. In four weeks, a note is due for $5 million. The firm
wishes to maximize its probability of having the money on hand. Each week, the
company can place any amount of money it wishes into a market. If it places money in
the market, it loses the money with probability .4 and doubles it with probability .3 and
gets its money back with probability .3. The firm can only enter the market with the
money it has on hand. Assuming it is only possible to enter the market in ``millions'' (i.e.
1.23 million is not possible), and the firm has the choice not to enter the market during a
week, how can the firm maximize its probability of having $5 million at the end of four
weeks.

Generic Discrete Event Simulator

14

8. Conclusion

Probabilistic models of the real world can seldom be solved and optimized using a pure
mathematical approach. We have suggested a structure of a generic discrete event
simulator that can be used very effectively to model and optimize environments that can
be discretized into events. We have discussed some selected scenarios that can be
modeled using our simulator. The objective of the simulation will be to study the
interplay between different parameters, which influence design of an environment, and to
investigate how optimality can be achieved in them.

The simulation results can be used to achieve optimality in a scientific manner using
stochastic models of the real world environments.

9. Acknowledgements

We are grateful to Prof. SN Maheshwari, Dept of Computer Science and Engineering, IIT
Delhi for his guidance and support during the design and implementation of the
simulator.

10. Bibliography and References

a) P. Bratley, B. L. Fox and L. E. Schrage, A Guide to Simulation.
b) A. Law and D. Kelton, Simulation Modeling and Analysis.
c) P. Fishwick, Simulation Model Design and Execution.
d) B. Khoshnevis, Discrete Systems Simulation.
e) B. Ziegler, Theory of Modeling and Simulation.
f) L. Devroye, Nonuniform Random Variate Generation.

