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Abstract: -In this paper the concept of synchronous stability is introduced to study the transient 
stability problem of an operating process for a multi-machine power system.  Necessary and 
sufficient conditions for an orbit of the system to be synchronously stable are obtained. Condition 
of non-synchrony and control of the synchronous stability are discussed. 
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1. Introduction 
Power system engineering deals with the 
large-scale production, transmission and 
distribution of electrical energy. Deregulation 
and an increasing exchange of electricity 
between countries has led to greater demands 
being imposed on system stability, system 
protection and security, see for instance [1]. 
The synchronous stability of multi-machine 
systems describes synchronism of an 
operating process for power-angle of a multi-
machine system, which would play an 
important rule in the study of transient 
stability of power systems. Xue in [2] 
proposed a quantification theory in the 
establishment of quantitative criterion which 
can be used to identify and to control the 
synchronous stability of multi machine power 
systems. Zou and Xue in [3] gave a further 
explanation for it. This article will describe a 
simplified mathematical foundation for the 
quantitative criterion.  

Consider the multi-machine system 
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where nTTT Rx 2),( ∈= ωδ  denote the state 
variables consisting of the generalized 
position  nT

n R∈= ),,( 1 δδδ L  and the 

generalized velocity nT
n R∈= ),,( 1 ωωω L , 

ωδ =& ， mT
m Ryyy ∈= ),,( 1 L   are other 

non-motion state variables, pR∈µ  are the 
parameter, nT

nmmm RPPP ∈= ),,( 1 L   the 
generalized drive force , 

nT
enee RPPP ∈= ),,( 1 L  the generalized 

brake force, and T
mggg ),,( 1 L= =0 is the 

algebraic restriction. Moreover, the n by n 
diagonal  matrix M  

,,0),,,( 1 iMMMdiagM in ∀>= L      
is the generalized inertia. Sometimes the 
system (1) can be also written as a general 
differential-algebraic (DAE) in the power 
systems form 
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    In particular, if we ignore the algebraic part 
(1b), the system (1a) is then just a many 
degree of freedom system. 
    In this article first the concept of 
synchronous stability is introduced for the 
study of an operating process in multi-
machine power systems.  Then necessary and 
sufficient conditions for an operating orbit of 
the system to be synchronously stable are 
established. Finally the condition of non-



 

synchrony and the control problem of 
synchronous stability are discussed. 
 
2.  Synchronous Stability 
A (position) orbit of the system (1) 

nT
n Rttt ∈= ))(,),(()( 1 δδδ L  

is called (orbit) synchronously stable, or 
simply called synchronous, if the distances 

,,,|,)()(| jijitt ji ≠∀−δδ  between each 

two components of )}({ tiδ  are uniformly 
bounded for 0≥t , i.e., there exists L > 0 
such that 

;0,,,|)()(| ≥∀∀≤− tjiLtt ji δδ  
if we further consider the generalized 
velocities )},({ tiω  then it can be obtained the 
conception of velocity synchrony. However, 
in the following if no particularly pointed, we 
will always consider the orbit synchrony. 
Note that if all components of an orbit 

)}({ tqi  are uniformly bounded, then the orbit 
is always synchronous. If an orbit is not 
synchronous, i.e., for a sufficient large t, there 
exists a pair of components, say )(tiδ  and 

)(tiδ , such that the difference 
|)()(| tt ji δδ −  can become large enough, 

then the orbit is called non-synchronous. 
 

Proposition 1 A sufficient and necessary 
condition for an orbit )(tδ  to be synchronous 

is that for any vector nT
n Raaa ∈= ),,( 1 L  

satisfying ,0,1 ≥=Σ ii aa  the functions 
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are uniformly bounded. 
Proof Necessary. Let  

.,,|)()(| jiLtt ji ∀≤−δδ  

From 1=Σ ia it follows 
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Sufficiency. For each pair  i, j, taking 
nT

j

j Rea ∈== )0,,0,1,0,,0( LL ,  
then from the necessary condition 

|)()(| tt ji δδ −  is uniformly bounded, which 
means the orbit is synchronous. 
 

Now we consider a complementary 
cluster },{ 21 σσσ =  of the index set 

},,2,1{ nS L= , 
i.e., two disjoint nonempty subsets of S, 1σ  
and 2σ , such that S=∪ 21 σσ . Let 

T
n ttt ))(,),(()( 1 δδδ L=  be an orbit of (1).  

For a complementary cluster },{ 21 σσσ = , 
write 
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Recall that a continuous function Rtc ∈)(  is 
uniformly bounded for ∞→t  means there 
exists a constant 0>η  such that  

.0,|)(| ≥∀≤ ttc η  
Remark 1 Suppose two qualities )(tα  

and )(tβ  approach infinity as ∞→t . They 
called infinitely large of the same order if  

−)(| tα |)(tβ  uniformly bounded. It is easy 
to see that an orbit )(tδ  is synchronous if and 
only if each component )}({ tiδ  is either 
bounded, or infinitely large of the same order.  
 

Proposition 2  An orbit )(tδ  is 
synchronous if and only if for each 
complementary cluster σ  of S,  )(tσδ  is 
uniformly bounded. 

Proof  Necessary.  Suppose )(tδ  is 
synchronous.  For any  complementary cluster 

},{ 21 σσσ =  of  S, write  
},,,{ 11 kii L=σ },,,{ 12 ljj L=σ  

).( nlk =+  Then from Proposition 1 



 

.||||

||

|)(|

111

1

2

1

2

1

1

1

1

1

jijj
l

m l

r j

j

ii
k

m k

r i

i

j
l

m l

r j

j
i

k

m k

r i

i

m

r

m

m

r

m

m

r

m

m

r

m

M

M

M

M

M

M

M

M

t

δδδδ

δδ

δδ

δσ

−+−+

−≤

−=

∑
∑

∑
∑

∑
∑

∑
∑

=

=

=

=

=

=

=

=

 
So )(tσδ  is uniformly bounded. 

Sufficiency. Suppose 
T

n ttt ))(,),(()( 1 δδδ L=  is not synchronous. 
Then there exist two components of  )(tδ ,  
say )(1 tδ  and ),(2 tδ   such that  

.|)()(|sup 12
0

+∞=−
≥

tt
tt

δδ  

Consider a complementary cluster 
},{ 21 σσσ =  of  S,  such that 1σ∈i  if and 

only if .)]()([sup 1
0

+∞<−
≥
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δδ   It is easy to 

see .2,1 21 σσ ∈∈   Only need to prove 
)(tσδ  is not uniformly bounded. If not,  

)(tσδ  is uniformly bounded. Then from  (3), 
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of which the right hand side is uniformly 
bounded. But for the left hand side for each 

2σ∈j , one has +∞=−
≥

)]()([sup 1
0

ttj
tt

δδ , 

which induce a contradiction. The proposition 
is now proved. 
 
3. Condition of Non-Synchrony 
For simplicity we consider a “pure” multi-
machine system  without the algebraic 
restriction (1b).  Consider an orbit  )(tδ  of 
the multi-machine system. Based on the 
condition of synchrony in Proposition 2 it is 
easy to see that the orbit )(tδ  is non-

synchronous if and only if there exists a 
complementary cluster  σ  such that the 
single orbit determined by (3) is not uniformly 
bounded. Since 
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        ),,,( µσ txF≡  
the non-uniform boundedness of the single 
orbit σδ  then can be discussed through 
solutions for the single machine system which 
satisfies 
                  σσδ F=&& .                          (4) 
Although the system (4) is different from a 
general single machine system due to its 
acting force depend on the whole orbit )(tδ , 
however, this trouble can be removed by 
introducing numerical integration. 

Let the orbit )(tδ  take the value 

00 )( δδ =t  and 00 )( ωδ =t&  at time 0t . From 

this it naturally follows  00 )( σσ δδ =t ,  

00 )( σσ ωδ =t& , and a curve on the plan 

),( σσδ F  with parameter )( 0tt ≥ , 

.)),),((),(()( 2RttxFtt ∈= µδγ σσ  
Since 
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))((  is just the 

(direction) area between the curve )(tγ  and 
the axis σδ . 



 

Noticing =σω σδ& , the positive or 
negative area would result in non-uniformly 
bounded for the system (4). Thus in order to 
preserve the original system in synchrony, the 
total area should be zero, which may realize 
by introducing certain control factor. 
 
4.  Control to the Synchronous   
     Stability 
In the above we reduced the synchronous 
stability into the uniform boundedness of  the 
solution of the corresponding one  machine 
system as (4). Moreover, the latter may be 
evaluated by observing whether the area or 
integration of the corresponding force with 
respect to the generalized coordinates 
approach to zero. For the control problem of 
synchronous stability it is then necessary to 
control the parameter such that the area 
become zero. Let us now  analyze this 
problem. 

Consider the plane 2),( RF ∈δ  
described by the (generalized) position δ  
and the force F,  from which we may obtain 
the γ  curve determined by F.  Based on the 
above result to preserve synchronous stability 
of the system operating the (algebraic) sum of 
the area between the curve and the δ  axes 
should become zero. By using the equal area 
criterion (EAC), if the area is positive 
(negative) then we may adjust with a negative 
(positive) control such that the sum become 
zero, which is just the clearance process of  
the fault.  

After the clearance of fault there may be 
two cases: when the (positive) area is too 
small one need increase a brake force, on the 
other hand, if the area is too large, then one 
need decrease the drive force. By this way the 
fault may effectively cleared so that the 
system preserve synchronous stability. 
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