
1

Signal Design for Ultra-Wideband Radar and Wireless

Communications

MALEK G. M. HUSSAIN
Electrical Engineering Department

Kuwait University
P. O. Box 5969; Al-Safat 13060

KUWAIT

Abstract: - The emerging ultra-wideband technology is in demand of extensive theoretical as well as
experimental research to advance the implementation and commercial use of its numerous applications.
Impulse-type signals are characterized by an ultra-wide frequency bandwidth that is desirable for the
applications of high-resolution radar and wireless communications. In this paper, a signal model referred to
as the generalized Gaussian pulse is derived for the analytical representation of electromagnetic impulses
used in the experimentation of ultra-wideband technology. The signal characteristics of the generalized
Gaussian pulse are analyzed. Computer plots of the time variation, autocorrelation function, and energy
spectral density are also presented. The structure of a spread-spectrum signal for the ultra-wideband impulse
technology is described too.
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1 Introduction
The rapid technological advances in microwave-
energy sources and the solid-state electronic and opto-
electronic switching devices have made it possible
to generate and radiate high energy ultra-wideband
(UWB) electromagnetic (impulse-type) signals. The
combined low-frequency components and ultra-wide
frequency bandwidth is an attractive feature of UWB
impuls-type signals. Such signals have found numer-
ous applications for radar and wireless communica-
tions, where significant advantages in performance,
cost, and component size can be achieved over that
offered by the conventional (narrowband) systems
[1]{[3].
The design and modeling of impulse-type signals

are essential for the development of the principles
and applications of UWB impulse technology. In
practice, impulse-type signals should satisfy a set of
essential criteria: (i) the time-function, or model, of
the signal is causal so that a physically-realizable ra-
diator and a \matched filter" (or correlator receiver)
can be implemented; (ii) the signal model has attrac-
tive autocorrelation properties, like a spike with no
time-sidelobes, to yield a high resolution capability;
(iii) the energy spectral density of the signal is free
from a dc-component to allow for its efficient radia-
tion by an impulse antenna; (iv) the time function of
the signal is (mathematically) simple for developing
the signal processing theory for the UWB impulse

technology.
In Section II, we first describe the structure of

spread-spectrum (SS) signals for the applications of
impulse communications and impulse radar. We also
derive a realistic signal model for the analytical rep-
resentation of electromagnetic impulses generated in
the experimentation of UWB impulse technology.
The signal model is referred to as the generalized
Gaussian pulse (GGP). In Section III, the autocorre-
lation function and the energy spectral density of the
GGP model are presented and plotted to show that
they satisfy the above design criteria. Conclusions
are given in Section IV.

2 Signal Models for Impulse Technol-
ogy
The characteristics of different impulse-type wave-
forms are described. The waveforms are useful for
developing the theory and analysis of impulse radar
and radio communications.

2.1 Spread Spectrum Signals
In the applications of impulse technology, the struc-
ture of a transmitted signal x(t) is composed of a
train of N UWB impulses analytically expressed as
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follows [4]{[6],

x(t) =
N−1∑
n=0

qnΩ (t − nTr − cnTc − TdDi) . (1)

In (1), Tr is the pulse repetition interval (PRI),
Ω(t) is the shaping signal, {qn} is a binary psuedo-
random (PN) code of length N and elements +1 or
-1, {cn} is also a PN code referred to as the time-
hopping (TH) code with integer elements in the range
0 ≤ cn ≤ Nh, Tc � Tr is the chip duration of the
TH code, and Td � Tr is the data-modulation time
shift that conveys to the receiver information regard-
ing the symbol Di = i, i = {0, 1}. The symbol du-
ration is Ts = NTr, and the binary symbol rate is
Rs = 1/Ts = 1/NTr. The maximum time-hopping
interval is NhTc ≤ Tr. In this case, information trans-
mission is accomplished via pulse-position modulation
(PPM) while multiple-access capability is achieved
by the PN code qn or the TH code cn depending on
the type of the spread-spectrum-modulaion technique
being used.
For example, digital-impulse-radio communica-

tion systems transmit binary data symbols (0 and 1)
by coded sequences of N UWB impulses. The coding
scheme can either be applied to the PRI, or directly
to the amplitude of the individual pulses depending
on the system complexity. The coding (or stagger-
ing) of the PRI is referred to as time-hopping (TH)
SS modulation [5]. The amplitude coding scheme is
the same as the well known direct-sequence (DS) SS
modulation. Also, it is possible to implement a hy-
brid DS-TH coding scheme which yields improved
system capacity and security, but on the account of
a more costly and complex system. The hybrid DS-
TH modulation scheme is analogous to the known
hybrid direct-sequence and frequency-hopping (DS-
FH) spread spectrum technique. The SS signal model
in (1) represents a general DS-TH-SS signal that is
well suited for the applications of impulse technol-
ogy.
The signal structure given in (1), with Td = 0, can

also represent a radar signal having a low probabil-
ity of intercept, and high resistance against jamming
[4]. This \stealthy" feature of impulse-type signals
is one of the potential advantages of UWB impulse
technology [1]{[3].
The energy spectral density of the shaping sig-

nal Ω(t) in (1) must be free from a direct-current
(dc) component, since according to antenna princi-
ples, the presence of a dc component in the spec-
trum of a baseband pulse prevents the radiation of its
electromagnetic field intensity without an appropriate
form of signal modulation using a sinusoidal carrier.
The focus of this paper is on the analytical design
of a suitable shaping signal Ω(t) for the carrier-free
applications of UWB impulse technology.

2.2 Monocycle Gaussian Pulse and Richard
Wavelet
In our experimentation with impulse technology, an
intricate UWB antenna system generates, at a very
high rate, the current pulse shown in Fig. 1(a) and
radiates the signal shown in Fig. 1(b). In principle,
the time variation of the radiated signal in Fig. 1(b)
is directly proportional to the first derivative of the
antenna current in Fig. 1(a) [2]. Based on this funda-
mental relationship, we shall derive theoretical (sig-
nal) models for the measured antenna current and
the radiated impulse-type signal in Fig. 1. The sig-
nal models are essential for developing the signal
processing theory of impulse technology.
Consider the well known Gaussian distribution

function, referred to here as Gaussian pulse g(t), and
its Fourier transform G(f),

g(t) = E◦ exp{−π[(t − t◦)/∆T ]2}, (2)

G(f) =
E◦
∆f

exp{−j2πft◦} exp{−π[f/∆f ]2} (3)

where E◦ is the peak amplitude at the time instance
t = t◦, ∆T the effective duration, and ∆f = 1/∆T
the effective frequency bandwidth.
The Gaussian pulse g(t) given in (2) is very con-

venient mathematically as well as from the practical
point of view for the design and theoretical model-
ing of the impulse-type signals shown in Fig. 1. Ac-
cording to (3), the frequency spectral density G(f)
includes a dc-component at f = 0; |G(0)| 6= 0.
Consequently, an ideal Gaussian pulse g(t) cannot
be emitted by an impulse radiator due to the pres-
ence of the dc-component |G(0)| = E◦/∆f . On the
other hand, the frequency spectrum of the first-order
time-derivative dg(t)/dt and that of the second-order
time-derivative d2g(t)/dt2 of the Gaussian pulse g(t)
given in (2) include no dc component. The deriva-
tive dg(t)/dt is referred to as the monocycle Gaussian
pulse,

dg(t)
dt

= −E◦[2π(t− t◦)/∆T 2] exp{−π[(t− t◦)/∆T ]2}.
(4)

The second derivative d2g(t)/dt2 is the Richard
wavelet,

d2g(t)
dt2

= E◦
[
(2π(t − t◦))2/∆T 4 − 2π/∆T 2

]
× exp{−π[(t − t◦)/∆T ]2}. (5)

If one obtains a plot for the monocycle Gaussian
pulse given in (4), it will look similar in shape to the
transient current shown in Fig. 1(a). A plot for the
Richard wavelet given in (5) will look identical to the
impulse signal shown in Fig. 1(b). Hence, the signal
models in (4) and (5) are good analytical represen-
tations of the experimental signals shown in Fig. 1.
But, the disadvantage of these two signal models is
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Fig. 1. Time variation of a voltage transient that is
directly proportional to a current pulse, i(t), gen-
erated for driving an UWB antenna (a), and the ra-
diated electromagnetic impulse, e(t) = −di(t)/dt,(b).

that they are not mathematically simple for develop-
ing the advanced signal processing theory for UWB
impulse technology. The product of the term (t− t◦)
with the exponential function in (4) and (5) makes the
two functions intricate to work with. Simpler signal
models are derived in the following section.

2.3 Generalized Gaussian Pulse
Let the Gaussian pulse g(t) given in (2) be scaled in
time duration by the scale parameter α to obtain,

g(αt) = E◦ exp{−π[α(t − t◦)/∆T ]2}. (6)

The difference between the integral of the Gaussian
pulse g(t) and that of the pulse g(αt) yields a time
function, s(t), that is a suitable analytical represen-
tation for the experimental antenna current shown in
Fig. 1(a). This time function is expressed as follows,

s(t) =
1

1 − α

(∫ t

0

g(t′) dt′ −
∫ t

0

g(αt′) dt′
)
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Fig. 2. The normalized time variation of −s(t)/E◦∆T

(a), and that of the generalized Gaussian pulse
Ω(t) = ds(t)/dt (b), as functions of relative time
t/∆T , for t◦/∆T = 3, and the values of the scale pa-
rameter α = 0 (dotted-line), α = 0.3 (dashed-line),
α = 0.6 (dashed-dotted-line), and α = 1.2 (solid-
line).

=
E◦∆T√
π(1 − α)

(∫ √
π(t−t◦)/∆T

0

exp{−u2} du

−
∫ √

πα(t−t◦)/∆T

0

exp{−u2} du

)
. (7)

Each one of the two integrals in (7) has the
form of the well known error function: erf(t) =
(2/

√
π)
∫ t

0 e−u2
du. Hence, the two integrals in (7)

result in the signal

s(t) =
E◦∆T

2(1 − α)
× Erf

[{√πα(t − t◦)/∆T } ,

{√π(t − t◦)/∆T }] , (8)

where the function Erf[t1, t2] is the generalized error
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function,

Erf[t1, t2] =
2√
π

∫ t2

t1

exp{−u2} du = erf[t2] − erf[t1].
(9)

The derivative ds(t)/dt results in the signal

Ω(t) =
ds(t)
dt

=
E◦

1 − α

(
exp{−π[(t − t◦)/∆T ]2}

− α exp{−π[α(t − t◦)/∆T ]2}) , α 6= 1.(10)

The factors α and 1/(1 − α) in (10) suppress the dc-
component from the frequency spectrum of the signal
Ω(t); the energy density spectrum of Ω(t) will be
presented in Section III.
The function Ω(t) is referred to as the generalized

Gaussian pulse (GGP). Computer plots of the normal-
ized signals −s(t)/E◦∆T given in (8) and Ω(t)/E◦
given in (10) are shown in Fig. 2 (a) and (b), re-
spectively. The signals are plotted as functions of
the relative time t/∆T , for t◦/∆T = 3, and different
values of the scale parameter α = 0, 0.3, 0.6, and
1.2.
According to Fig. 2, as the value of α is increased

the GGP waveform becomes more compressed in
time, which results in spreading of its frequency spec-
trum. For α = 0, the time variation of the GGP
Ω(t) reduces to that of the ideal Gaussian pulse g(t)
given in (2). Therefore we used the name generalized
Gaussian pulse for Ω(t). A comparison between the
experimental impulse-type signal in Fig. 1(b) and the
theoretical signal Ω(t) in Fig. 2(b) shows that the two
signals are identical in shape for α > 0; the secondary
positive lobe in Fig. 1(b) is an echo. The same com-
parison holds for the measured transient in Fig. 1(a)
and the theoretical signal −s(t) shown in Fig. 2(a).
Hence, for α > 0 the signal model s(t) given in (9)
and the GGP model, Ω(t) given in (10) are appro-
priate analytical representations for the experimental
signals in Fig. 1(a) and (b), respectively.
The time function Ω(t) given in (10) is purely an

exponential function of relative time (t/∆T ). This
is a much simpler function, from mathematical and
signal analysis points of view, than the function
d2g(t)/dt2 defined in (5).

3 Autocorrelation Function and Energy Den-
sity Spectrum
The autocorrelation function and the energy den-
sity spectrum of a signal play an important role
in the design and the performance evaluation of
radar and radio communication systems. For the
GGP signal Ω(t), the auocorrelation function Υ(t) =∫∞
−∞ Ω(λ)Ω(λ + t) dt yields, for the time t◦ = 0,

Υ(t) =
(

E◦
1 − α

)2 ∆T√
2

× (
exp{−[π/2][t/∆T ]2}

+ α exp{−[πα2/2][t/∆T ]2}
− [8α2/(1 + α2)]1/2

× exp{−[πα2/(1 + α2)][t/∆T ]2}) . (11)

The normalized autocorrelation function Υ(t)/Υ(0)
is plotted in Fig. 3(a), as a function of relative time
t/∆T , for different values of the scale parameter α =
0, 0.3, 0.6, and 1.2. The energy E of the GGP signal
Ω(t) can be determined from the peak value of its
autocorrelation function at t = 0,

E = Υ(0) =
E2

◦∆T√
2(1 − α2)

[
1 + α −

(
8α2

1 + α2

)1/2
]

.

(12)
According to Fig. 3(a), the autocorrelation func-

tion Υ(t) is comprised of a distinguishable main-
lobe centered at t/∆T = 0, and time-sidelobes with
positive as well as negative amplitudes distributed
along each side of the mainlobe. The duration of the
mainlobe becomes narrow and the levels of the time-
sidelobes increase for the increasing values of the
scale parameter α. For α = 0, Υ(t) has a Gaussain
time variaton with no sidelobes; this case corresponds
to the autocorrelation function of the ideal Guassian
pulse g(t) given in (2) with t◦ = 0.
The energy density spectrum Ψ(f) of the GGP

signal Ω(t) is determined by the Fourier transform of
its autocorrealtion function Υ(t),

Ψ(f) =
∫ ∞

−∞
Υ(t) exp{−j2πft} dt. (13)

Insertion of (11) into (13) results in the energy density
spectrum

Ψ(f) =
[

E◦
(1 − α)∆f

]2 (
exp{−2π[f/∆f ]2}

+ exp{−[2π/α2][f/∆f ]2}
− 2 exp{−[π(1 + α2)/α2][f/∆f ]2}) . (14)

The energy density spectrum Ψ(f)/(E◦/∆f)2 is
shown in Fig. 3(b), as a function of the relative fre-
quency f/∆f , for different values of the scale pa-
rameter α = 0, 0.3, 0.6, and 1.2. For α > 0, the
energy density specrum Ψ(f) does not include a dc-
component at f/∆f = 0; Ψ(0) = 0. Hence, the GGP
signal Ω(t) given in (10), the signal s(t) given in
(8), the autocorrelation function Υ(t) given in (11),
and the energy density spectrum Ψ(f) given in (14),
satisfy all the signal characteristics required for the
operation of UWB impulse technology. According
to Fig. 3(b), the peak amplitude of the energy density
spectrum Ψ(f) decreases and shifts to a higher center
frequency as the value of α is increased. This feature
is a useful modulation tool for the design of UWB
impulse type waveforms used in the applications of
radar and aradio communications.
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Fig. 3. The normalized autocorrelation function Υ(t)/Υ(0) (a), and the normalized energy spectral density
Ψ(f)[∆f/E◦]2 (b), plotted for the values of the scale parameter α = 0 (dotted-line), α = 0.3 (dashed-line),
α = 0.6 (dashed-dotted-line), and α = 1.2 (solid-line).

4 Conclusions
An analytical signal model is derived for the repre-
sentation of UWB electromagnetic impulses gener-
ated for the applications of radar and wireless com-
munications. The signal model is referred to as the
generalized Gaussian pulse, GGP. The signal char-
acteristics of the GGP model are attractive for the
development of the signal processing theory for the
emerging UWB impulse technology.
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