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Abstract: - A mathematical model for computing electromagnetic fields inside anechoic chambers of 
rectangular shape with walls covered with impedance coating has been developed for an operating 
frequency range from several kilohertz to tens of gigahertz. Numerical analysis is based on the 
solution of the corresponding difference Helmholtz problem. In the region of lower and medium 
frequencies, the solution is carried out using the method of variable directions, and, in the region of 
higher frequencies, this method uses multiprocessor systems with distributed memory for parallel 
computations. The computing results are given as well. 
 
Key-Words: - Anechoic chamber, impedance coating, homogeneous zone, Helmholtz equation, 
difference approximation, method of variable directions, parallel computations. 
 

1  Introduction 
One of the main features of an anechoic 
chamber is the ability to maintain the level of 
reflected (interfering) signals below a value 
specified for a certain region inside the 
chamber rather than for its entire volume. This 
region is called the homogeneous (or anechoic) 
zone. Geometry of the homogeneous zone (its 
shape and size) depends on the geometry of 
anechoic chamber itself, quality of material 
covering the walls of the chamber, 
arrangement of radiation sources inside the 
chamber, and radiation frequency. Currently, 

both domestic and industrial electronic devices 
are usually capable of operating in a wide 
range of frequencies so anechoic chambers 
must address quite stringent requirements for 
broadband capability (up to 40:1 and more). 

The requirements for operating (or 
designing) an anechoic chamber can be 
securely derived only through the use of 
numerical simulation techniques. Traditionally, 
the numerical simulation of fields inside an 
anechoic chamber is carried out on the basis of 
techniques usually employed in geometrical 
optics [1]. Since current anechoic chambers 



can be operated over a wide range of 
frequencies, in order to analyze the 
characteristics of an anechoic chamber and 
solve the corresponding Helmholtz equation, 
we propose a method based on the standard 
(for lower and medium frequencies) and 
parallel (for higher frequencies) 
implementations of the algorithm realizing the 
method of variable directions. 

 
 

2  Problem Formulation 
Let us consider the case of Å-polarization 
where the vector E

r
 is in parallel with the side 

walls of an anechoic chamber, i.e., the situation 
when the quality of coating material has the 
most pronounced effect. If the floor and the 
ceiling of the chamber are ideal conductors and 
a source generates the z-polarized electric field, 
the problem is reduced to its two dimensional 
version. In this case the source is considered as 
isotropic, which does not impairs the generality 
of the results obtained, since its the directivity 
of the source in the XY-plane can be taken into 
consideration by using the standard principle 
of superposition. The side wall coating is taken 
into account by the impedance boundary 
conditions 
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where jZ  is the impedance of the j -th wall 

and jn
r

 is the outward-directed normal to the  

j -th wall. 
Now consider a rectangular area with 

the sides )3,1(2 =±= jby , 

)4,2(2 =±= jax . The coordinates of the 

source are ( 00 , yx ). Assuming that  

 

0000 , εµ== ZWiZZ jj          (2) 

 
we can rewrite the conditions (1) as 
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The −z component of the electric field 
strength vector satisfies within this area the 
following inhomogeneous Helmholtz equation: 
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where aak εµω=  is the wave number, ω  is 

the radiation frequency of the source, aµ  is the 

absolute permeability of the medium in the 
interior of the anechoic chamber, and aε  is the 

absolute permittivity of the medium in the 
interior of the chamber.  
 
 
3  Problem Solution 
We denote 10)( UUUiE az +≡≡− ωµ , where  
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In accordance with the above physical 
definition, the calculation of the field in the 
interior of the anechoic chamber reduces to 
solving the following equation satisfied with 
the z-component of the secondary electric field 
strength ),(1 yxU :  
 

0121 =+ UkU∆ .                      (4) 
 

Throughout the rest of the paper, we assume 
that 00 , µµεε == aa  (the medium in the 

interior of the chamber is vacuum), i.e., 

000 µεω== kk , where 00 , µε  are the 

permittivity and permeability of vacuum, 
respectively. 

Let us introduce dimensionless 
variables  

 
ykyxkx 00 , ==                            (5) 

 
and a function 1U , such that  
 

11 4iUU = . 
 

Than (4) takes the form  
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The boundary condition (1a) can be 
conveniently rewritten in the following manner  
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where 2
0

2
0 )()( yyxxrs −+−= , and jS  is 

the j -th wall. The point ),( yx  belongs to the 
homogenous zone if, at this point, the 
following relation is correct: 
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where N is the anechoic parameter. 

Numerical solution of the problem (6), 
(7) can be found by using the difference 
communication theory and the method of 
variable directions [2]. The cross-sectional area 

YX  of the chamber is covered by a 

rectangular array with the step size of xh  along 

the X  axis and yh  along the Y  axis. Equation 

(6) is approximated by the difference equation 
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where 
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11,11 −≤≤−≤≤ yx njni ,  xn  is the number 

of partitions along the X  axis, yn  is the 

number of partitions along the Y  axis, and 
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This equation, combined with the difference 
approximation of boundary 

),0;,0( yx njni ==  conditions (7), leads to 

the boundary problem similar to the problem 
(6), (7). The above-mentioned difference 
boundary problem can be solved by the method 
of variable directions (iterative method). In this 
case the equations are to be written for every 
inner node of the array (the procedure in its 
simplest form): 
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where τ  is the iteration parameter, 
)( n
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n tVtVV τ ; nt  is the formal 

parameter whose value 0t  is used to specify the 

initial distribution 0V . Taking in to account the 
boundary conditions and the initial distribution 

0V , the values ,...2,1,0,, 12/1 =++ nVV nn  can be 
found by the standard sweep method. 

Increasing the radiation frequency 
generates a need for employing a more finely 
divided spatial array with a large quantity of 
nodes, which requires much more time for total 
simulation procedure-work beyond the power 
of one-processor PCs. Currently, a widespread 
use has been made of multiprocessor systems 
with distributed memory. Among these are 
simple cluster systems-PCs incorporated into 
Ethernet-type local networks-as well as 
specialized multiprocessor systems such as 
Parsytec CC systems (utilized in our work) 
based on Power PC processors that are 
connected together by HS-Link high 
throughput channels. Unlike common memory 
systems, distributed memory systems can be 
readily scaled, that is, they allow us to increase 
computational power practically without limit, 
with a considerable gain in cost and capacity. 
Widespread use of Message Passing Interface 
(MPI) makes it possible to develop portable 
applications software which can be exploited 
with equal advantage by a wide variety of 
computing systems under the control of 
various operational systems (Windows, UNIX, 
FreeBsd, AIX, Linux). However , gains in 
scaling capability and low cost go along with a 



penalty in terms of complex concurrent 
algorithms. In many cases conventional 
applications software fails when it is adapted to 
distributed memory systems. We are thus led 
to modify the algorithms significantly or to 
develop fundamentally new ones. In 
advantageous situation are algorithms for 
simulating physical process, since these 
algorithms are based on explicit difference 
schemes or simple iteration methods. 
Multisequencing of such algorithms can be 
easy realized by using the domain 
decomposition method. This method involves a 
uniform partitioning of the nodes of 
computation array according to the number of 
processors (see Fig.1). The approach 
automatically ensures that the amount of 
computation involved is uniformly distributed 
among the processors, and the amount of data 
transmitted between processors during 
computation is minimized. In this case the 
algorithms employed are highly effective. 
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Fig.1 
 

Implicit difference equations (11) can be 
solved with vertical sweeps when all 
processors are simultaneously involved 
independently of one another, being practically 
one hundred per cent effective. With horizontal 
sweeps the data are transmitted between 
processors from left to right with the direct 
sweep and from right to left with the reverse 
sweep. In this case the simultaneous operation 
of the processors is not possible when an 
equation is solved. Taking into account the fact 
that the system (11) involves a great number of 
equations we can use the pipelined sweep 
operation. As with any pipeline parallel 
scheme, only the first processor is operated at 
the first stage, performing the direct sweep for 
the first equation (see Fig.2). It determines the 
coefficients of the direct sweep for the points 
of the first equation and transmits the 

corresponding data to the second processor. At 
the second stage, the first processor performs 
the direct sweep for the second equation and, 
simultaneously, the second processor performs 
the direct sweep for the first equation.  The 
third step introduces the third processor and so 
on. Therefore, beginning with a certain step, all 
processors simultaneously process "their own" 
parts of different equations. The method 
described is effective when the number of 
processors is small compared with the total 
number of equations. Taking into consideration 
the fact that the data time includes a significant 
initial delay independent of the amount of 
transmitted data, a number of equations are 
processed simultaneously and information 
about them is transferred in a single block, 
which results in a decrease in both the number 
and the time of exchanges. This allows us to 
increase the total effectiveness in spite of some 
increase in down time for certain processors at 
the first and the conclusive stages of 
computations. 

 

 
Fig.2. 

 
When the number of processors is 

great, the other approach is effective. It is 
based on the use of an "α-β"- iteration method 
[4] for solving five-point difference equations 
(12). Equations (12) correspond to the 
difference approximation of elliptical-type 
equations (6). 
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Assuming that the solution of the system 

(12) satisfies the relations: 
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where δβδβγαγα ,,,,,,,  are unknown sweep 
coefficients, these coefficients can be 
determined by creating a parallel algorithm 
(see, for example, [5]) whose effectiveness is 
~60% ÷ 65% when 40 processors are 
employed. 

Mathematical simulation was carried 
out for an anechoic chamber whose metal walls 
were covered with ferrite absorbing plates. The 
walls  had identical coating, that is,  

4,...1, == jWW j , with 
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where 11 ,εµ  are the relative permeability and 
permittivity of the covering material, 

respectively 1101 µεkk = , λπ /20 =k ; and d 

is the thickness of the coating. 
Fig.3 shows the results of computing the 

ratio |/| 0UU  at a point separated from the 
radiation source by 3 m. Both methods 
described above were used for a chamber 
whose dimensions were 295.12 mba ×=× . 
Cover thickness was 0.0075 m . Operating 
frequency range was from 30 to 100 MHz. 
Coordinates of the point were 0x =1.75 m and 

0y =0 m. The values of W for these frequencies 

were obtained according to [3].  

                   Fig.3 
 

Fig.4 shows the results of numerical 
evaluation of field nonuniformity 
( |/| 0UU )over the cross-sectional area of a 
chamber (along the Y-axis) at a distance of 3 m 

from the source. The dimensions of the 
chamber were 22.74.8 mba ×=× ; cover 
thickness 0.05 m; operating frequency f = 200 
MHz ( 6412.01747.0 -iW -= ). Taking into 
account the symmetry (coordinates of the 
source are 6.00 −=x m, 00 =y m), we 

reproduced here only a portion of the curve for 
4.30 ≤≤ y m. 

 

 
                  Fig.4 
 
Fig.5 shows the results of field 

simulation inside the anechoic chamber having 
dimensions 295.12 mba ×=× , cover thickness 
0. 0065 m, over a frequency range from 0,1 to 
1.2 GHz in a  0.1 GHz  increments. The point 
was taken on the X-axis at a distance of 2 m 
from the source ( mx 25.10 = , my 00 = ). 

                       Fig.5 
 

Fig.6 shows the results of simulating the 
dependance of homogeneous zone geometry on 
the values of N for à) N = 3 dB and b) N = 4 dB 
( ,4.8 ma =  ,7.2 mb =  ,6.00 mx −=  



,0y 0 m=  ,MHzf 100=  ,005.0 md =  

668.0071.0 -iW = ). The points belonging to 
the homogeneous zone are in the hatched 
region. 

   
Fig.6 (a) 

 

 
Fig.6 (b) 

 
 
4  Conclusions 
A software complex for numerical simulation 
of Å-polarized electromagnetic field 
characteristics inside an anechoic chamber of 
rectangular shape with walls covered with 
impedance coating has been developed. The 
complex can be used for a frequency range  
 
 
 
 
 
 
 
 
 
 

from several kilohertz to tens of gigahertz. The 
computational error does not exceed 0.5...1.0 
dB (depending on the quality of coating). The 
mathematical model can be modified for the 
cases of H-polarization and thee-dimensional 
representation as well as for anechoic 
chambers with piecewise homogeneous 
coating. 
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