
* To whom all correspondence should be addressed 

An Intelligent Adaptive Protection System in Complex Power 
Generating Units 

 
ADRIAN HALINKA, PAWEL SOWA, MICHAL SZEWCZYK  

Department of Electrical Engineering 
Technical University of Silesia 

Gliwice, PL 44-101 
POLAND 

 
LES  M. SZTANDERA* 

Department of Computer Science 
Philadelphia University 
Philadelphia, PA 19144 

USA 

 
 

Abstract: - Practical successes have been achieved with neural network models in a variety of domains, 
including energy-related industry. The large, complex design space of electrical power systems (EPS) is only 
minimally explored in current practice. The satisfactory results that nevertheless have been obtained testify that 
neural networks are a robust modeling technology; at the same time, however, the lack of a systematic design 
approach implies that the best neural network models generally remain undiscovered for most applications. 
This paper presents an approach to an adaptive protective systems problem in complex power generating units. 
First, we demonstrate the complex interdependencies between various parameters of EPS protection systems. 
Then, we present an approach, based on protection and adaptation criteria, for designing a neural network 
based adaptive protection system. 

 
 

Key-Words: - Electrical Power Systems, Power Generating Units, Power System Protection, Adaptive 
Systems, Neural Networks, Multi-Layer Perceptron, Supervised Learning 

 
 

1   Introduction 
Electrical Power Systems (EPS) comprise 

units characterized by a complex topology, both in 
respect of the quantity and the variety of electrical 
appliances, which constitute the unit, as well as the 
number of operating modes, which differ as to their 
configurations and functions. 

From the point of view of the EPS 
protection systems, sweeping protection of such 
complex units necessitates the application of 
advanced adaptive protection systems. 

The reliability of protection systems is 
determined mostly by the accuracy of decisions 
classifying the current operating mode of the 
protected unit as one of the two categories of events: 
normal or fault. This reliability is dependent on 
meeting several conditions, first of all on the 
possibility of acquirement and acquisition of a large 
number of data (binary and analog) concerning the 
protected unit, the speed at which data are processed 
and decisions are made, the ability to adapt their 
innate properties to the current operating mode of  

 
the unit, and the immunity to any disturbances and 
faults. 

Digital technology makes it possible to 
adopt a new approach to the issue of identification of 
operating modes in a protected unit as well as the 
issue of correct adaptations of protection functions. 
The benefits of employing digital technology in 
complex protection systems are connected with the 
number and the variety of the acquired data, the 
possibility to process these data by using heuristic 
techniques, the speed at which the data are 
processed, as well as the digital pre-processing of 
the measurement signals, which, for example, 
eliminates disturbance factors. 
Several basic protection functions, which are 
blocked in analog relays, are here activated, 
improving the overall quality and reliability with 
which the unit is protected from the consequences of 
disturbances. This happens because both 
measurement algorithms as well as the algorithms 
realizing particular protection functions are capable 
of adapting to the current frequency (in the operating 



 

modes of the unit which are characterized by the 
frequency of measurement signals, changing within 
a wide range, e.g. frequency start-up) and to the 
operating mode. 
 
 

2   Protection Systems in Complex EPS 
Units 

Taking advantage of the benefits offered by 
digital technology, one can create a concept of 
digital managing systems which are dedicated to 
complex EPS units and which are characterized by 
the following features:1. they are able to identify 
correctly the current operating mode of the unit, i.e. 
the realization of the structure criterium; 2. they 
provide a big accuracy and speed of the protection 
algorithms, both in all possible operating modes of 
the protected unit and in the frequency of the input 
measurement signals which changes within a wide 
range, i.e. the realization of the protection criterium; 
3. the structure of protection system can be adapted 
quickly to the changing conditions and operating 
modes of the protected unit i.e. the realization of the 
adaptation criterium; 4. they are capable of a fast 
analysis of the in-flowing alarm signals and the data 
concerning responses of protection functions, which 
enables one to predict the place of disturbance, and 
to follow any necessary procedure aiming at the 
minimization of the consequences of such 
disturbances, i.e. realization of the prevention-
restitution criterium. 

Reversible hydrogenerators, which operate 
in conjunction with a unit transformer, have been 
here adopted as an example of a complex power 
unit.  An adaptive managing system, that employs 
the above-mentioned criteria, has been proposed. 

In an example of an adaptive managing 
system each of the modules realises the protection 
and the adaptation criteria and the digital protection 
systems with the open configuration, regularly 
equipped with nine input measurement channels, are 
used as the systems realising these criteria.  The 
system is equipped with three basic modules (ID1, 
ID2, ID3) and one master system (GID), which 
realize the structure criterium. Four systems 
analysing alarm signals and predicting the place of 
disturbance (FID) have been employed to realize the 
prevention-restitution criterium.. 

Because of the complexity of the unit, the 
adaptive managing system has been split into 
modules dedicated to particular components of the 
unit. Decentralizing operation of the system into 
particular modules makes it possible to separate 
functions responsible for particular criteria, which 

increases the number of indispensable processors, 
but which also significantly decreases the load and 
the time in which the whole system responds to 
changes in the protected unit. 

Placing the dedicated modules nearer the 
chosen components of the protected unit increases 
the accuracy and reliability of the data acquisition. 
Particular modules exchange information that has 
already been processed (for example, identification 
of the operating mode of the protected unit's 
component). That makes possible a prediction-based 
initial analysis of the protected unit's operating 
mode. The decrease in the number of operations 
realized by processors is also achieved through the 
division of the identified operating modes into 
groups and subgroups of active protection functions.  
Taking into consideration the level of complexity of 
a given operating mode, there is also a possibility of 
combining a particular group of protection functions 
into sets. 
 
 
3 Digital System Responsible for 
Identification of Current Operating 
Mode 

An accurate identification of operating 
modes in the protected unit on the basis of the data 
entering the system (the structure criterium) is the 
basic condition for correct functioning of the system. 
Three types of data acquirement are proposed [1] for 
identification purposes: 1. Using binary inputs 
representing the position of connectors in the 
protected unit (their quantity should be sufficient for 
an unequivocal identification of the current 
configuration of the protected unit); 2. Utilizing the 
output of measurement algorithms, for example the 
voltage measurement algorithm, frequency 
measurement algorithm (in the chosen places within 
the unit); and 3. Exchanging of binary data between 
the modules that constitute the protection system. 

Each module identifies (by binary or binary-
analog data concerning the position of the switches) 
the current configuration of the nearest component 
of the protected unit. That makes it possible to 
subdivide the identification of the operating mode of 
the whole of the unit into modules dedicated to a 
given function, which, in turn, depending on the 
situation exchange data among themselves. 

Next, a sample module responsible for the 
identification of the operating mode of the protected 
unit will be presented. This module employs 
Artificial Neural Network (ANN) structures. 

The reversible hydrogenerator with the 
configuration presented above is proposed as the 



 

protected unit. The protected unit has been divided 
into three parts for which ANN structures 
responsible for the initial identification of the global 
operating mode have been determined. This was 
done on the basis of the operating modes of its 
constituent parts.  Input signals comprise of: binary 
and the binary-analog signals, exchange of data 
among given networks, as well as the information 
from the measurement algorithms. 

The structure of the system responsible for 
the identification of the operating mode is based on 
ANNs. This is the structure of a feed-forward 
network of the multilayer perceptron  (MLP) type, 
with three layers. The main advantage of such a 
solution is that in this case there is no explicit need 
to define relations between particular pieces of 
information (signals). 

During the teaching process, the network 
optimizes its structure by choosing the number of 
neurons and appropriate weights and biases 
between them [2]. The process of adding neurons is 
explained in Section 6. This is done in such a way 
as to be able to identify and classify situations by 
which the network was taught, as well as situations 
that are their generalizations. They are different in 
respect of certain input signals, which, however, 
does not result in classifying them as a different 
category of events. 

   The main advantage of such a structure is 
the fact that it eliminates certain situations, such as 
incompatibility of binary signals or the case of 
missing signals, which are the primary source of the 
"error" signal generated by the identification 
system in binary logic. When we adopt the above 
mentioned structure of the identification system, the 
proper determination of the teaching base becomes 
the issue of paramount importance. The network 
must be taught by the greatest possible number of 
events that belong to all possible categories of 
events, i.e., operating modes of the unit. 

In the case of the unit under consideration, 
any subsequent identification of the protected unit's 
operating mode is performed every second or every 
third period of the basic component of the current 
frequency. This occurs in the main identification 
unit in the case of all types, or stages, of start-up.  It 
is necessitated by the need for the activation of the 
correct sets of protection functions, depending on 
the current frequency and the unit's operating mode. 
The protection system must be equipped with 
separate identification components that contain 
their own fast processors and memory buffers 
because of a high repeatability and complexity of 
the identification process. 

 

In modes such as the generator mode, motor 
mode and stand-by (out-of-service) unit, 
identification can be repeated in much longer 
intervals, for example every five minutes. 
Identification is repeated in all components of the 
system, and it is synchronized both by the master 
identification output module and the 
communication system of the main machine 
protection. 

The identification system is restarted 
immediately in the following situations: Activation 
or operation of the active protection function; 
Recognition of error by the main identification unit 
(GID).There is information about opening of the 
main circuit breaker of the system CB2, if the 
circuit breaker was previously switched on. 

 
 

4   Adaptive Protection Systems 
Adaptive protection systems that realize the 

protection and adaptation criteria, dedicated to 
complex EPS units, usually have a diffused 
structure. Such a structure is achieved through the 
subdivision of the unit into smaller protected 
fragments - similarly as in the case of the system 
responsible for the identification of operating 
modes in the protected unit. Making such an 
assumption makes it possible to establish protection 
systems that perform protection functions (with 
adaptive properties) and measurement functions.  
They also perform functions responsible for 
communication with adjacent systems, that is, with 
systems responsible for the identification of the 
operating mode (ID, GID), with systems 
responsible for the prediction of the place and type 
of disturbance (FID), or with the master system.  In 
this system, a very important role is played by the 
module responsible for the adaptation of the digital 
protection system to the current operating mode of 
the protected unit. The protected mode is placed in 
the fragment of the protection unit dedicated to the 
synchronous machine.  This module is the central 
managing system that controls protection systems 
dedicated to particular fragments of the unit.  It also 
activates and oversees functioning of the 
measurement and protection algorithms established 
for the synchronous machine unit.  The accuracy 
and reliability of the functioning of the module 
responsible for the adaptation of the digital 
protection system, that guarantees that protection 
functions are appropriately realized, are determined 
by the quality of the signals generated in the system 
responsible for the identification of the operating 
mode of the protected unit. 



 

The adaptive criterium subdivides the set of 
active protective algorithms into four main groups: 
1. A set of algorithms that are active in the 
generator-operating mode; 2. A set of algorithms 
that are active in the motor operating mode; 3. A set 
of algorithms  that are active in the frequency start-
up; 4. A set of algorithms that are active in the 
asynchronous start-up. 

Due to the above setup, it is easy to choose a 
set of active algorithms dedicated to a given 
operating mode of the unit. It is achieved by using 
one control binary signal that activates an 
appropriately programmed unit of the protection 
system.   

 
 

5  An Analysis of Alarm Signals and 
the Localization of the Place of 
Disturbance 

The managing system's ability to undertake 
preventive actions (prevention criterium) is of 
paramount importance from the point of view of the 
correct functioning of the protected unit.  It is 
especially useful in situations when alarm signals are 
received. This would indicate the occurrence of 
disturbances in the protected unit or in the systems 
co-operating with it, for example, a loss of 
synchronicity, a fluctuation of frequency, a current 
overloading, an asymmetrical load, or a damage of 
the cooling system of transformers. Procedures of 
this kind attempt to maintain functioning of the unit 
in disturbance conditions by influencing the control 
systems.  Procedures of this kind comprise, among 
other: 1. the reduction of the generator’s load; 2. 
shifting from the automatic to manual voltage 
control in case when there are alarm signals about 
the loss of excitation (e.g., when the excitation 
circuit-breaker is closed). This would indicate a 
significant danger of a damage in the Automatic 
Voltage Regulation (AVR) unit; 3. shifting to 
manual voltage control when there are data 
indicating current overload of rotor, e.g., over-
excitation. This could indicate a possible breakdown 
of the voltage limiters in the AVR unit. 

In the situation when functioning of a given 
unit or one of its components cannot be maintained, 
and consequently, it must be switched off, it is 
possible to create an algorithm of a fast restitution of 
the unit after the disturbance has been dealt with (the 
restitution criterium). The following applies 
especially to generating sets such as plants with gas-
driven turbines [3, 4] and pump-storage plants with 
reversible hydrogenerators, or to the plants where 
there is a high degree of redundancy of components 

(e.g., so it is possible to use start-up units from 
another machine, or having two hydrogenerators 
operating with only one unit transformer). 

 
 

6  Teaching and Testing of the ANN-
Based System  
  Artificial neural network models offer an 
attractive paradigm: they learn to solve problems 
from examples. These models achieve good 
performance via massively parallel nets composed 
of non-linear computational elements, sometimes 
referred to as units or neurons.  

In this research one of the most popular and 
successful neural network architectures, a Multi-
Layer Perceptron (MLP) was used. An MLP 
network comprises a number of identical units 
organized in layers, with those on one layer 
connected to those on the next layer so that the 
outputs of one layer are fed-forward as inputs to the 
next layer. MLP neural networks are typically 
trained using a supervised training algorithm known 
as "back propagation".  

Typically, an MLP is used to classify 
patterns based on input vectors (a set of features 
taken from an example of the problem) presented to 
the network. An MLP network designed to 
discriminate between n classes would have n 
outputs. The network is trained with training cases 
such that a "one" on a particular output unit 
corresponds to a particular input class, while all 
other output units are "zeros". When used in recall 
mode, features are presented to the neural network 
and the output unit with the most significant output 
indicates the class of the input pattern.  

The MLP architecture can be extended to 
produce a continuous-valued output that is a 
function of its inputs, resulting in a trainable 
function generator. If this configuration were used to 
model a process that is known to evolve with time, 
time would be one of the neural network inputs. 
However, a limitation of an MLP in recall mode is 
that it has no "memory" of previous inputs. Hence, 
to model a system that depends upon the time 
history of input variables, it is necessary to include 
the time history in the neural network input vector.  

For example, an MLP network can be used 
as a predictor for time series data. For many time 
series, the value of the next sample in the series can 
be predicted as a function of a number of previous 
samples. To use an MLP to predict a value xt in a 
time series, the values xt-1, xt-2 ... xt-n form the 
input to the neural network. Existing time series data 
is used to train the neural network. In some cases, 



 

the network predictions are improved by including 
long-term running averages in the neural network 
input vector. An MLP neural network may be trained 
on data originating either from a real world system 
or from a sophisticated model of the process. In the 
latter case, the neural network learns to "model" the 
model. While a neural network is unlikely to provide 
a sophisticated model, it can often provide outputs of 
adequate accuracy over a limited range of input 
conditions, with the advantage of requiring far less 
computation than other modeling methods. It is also 
capable of modeling processes where the underlying 
principles are not fully understood.  

It is generally accepted that the performance 
of a well-designed MLP neural network is 
comparable with, but generally no better than can be 
obtained using good classical statistical techniques. 
MLP networks score over classical techniques in 
their much reduced development time, their ability 
to adapt to changing situations, and their ability to 
make use of related information.  

The process of teaching neural networks 
aims at finding a proper correlation between input 
signals and the target response of the network. The 
teaching process results in the correction of weights 
and biases of particular neurones of the network in 
relation to their initial values. 

In our simulation tests, which have been 
carried out, the method of teaching with a teacher 
has been used. Systems responsible for the 
identification of the operating mode were made on 
the basis of the Multi Layer Perceptron (MLP) 
structures, and the algorithm of error back 
propagation was used as the algorithm responsible 
for updating weights. 

The most important questions in determining 
a feedforward neural network architecture are how to 
calculate the number of nodes in hidden layers, and 
how to calculate the number of hidden layers. 
Lippmann [5] argued that a network with two hidden 
layers could solve arbitrary classification problem. 
Irie and Miyake [6] showed that a one hidden layer 
back propagation network with an infinite number of 
nodes in the hidden layer could also solve arbitrary 
mapping problems. However, these results have little 
practical value. Lippmann [5] also argued that the 
nodes in a hidden layer corresponded to separate 
decision regions into which training examples were 
mapped. Kung and Hwang [7] used the algebraic 
projection approach to specify how each node should 
be created. In those approaches, however, we have to 
know the properties of the training data, such as 
decision regions or pattern properties, thus their 
applications are limited. The determination of 
feedforward neural network architectures has been 

an important area in neuroengineering research.  
Practical approaches for dynamic neural 

network architecture generation have been sought by 
Sirat and Nadal [8], and Bichsel and Seitz [9]. In 
those architectures, at the end of a training process, 
all training examples are recognized and a neural 
network architecture is generated. In particular, the 
“tiling” algorithm of Sirat and Nadal [8] generates a 
feedforward network architecture by adding nodes 
and layers in a sequential manner. However, the 
algorithm does not give us the exact sequence in 
which a node is added to achieve the optimal 
classification of training examples. A similar 
algorithm of Bichsel and Seitz [9] uses information 
entropy to determine generation of nodes and hidden 
layers.  Other algorithm of a special interest, the ID3 
algorithm of Quinlan [10] dynamically generates a 
decision tree using information entropy functions. 
Studies by Dietterich et. al. [11] and Fisher and 
Mckusick [12] revealed strong evidence that 
information entropy could be used as a criterion for 
determining the number of hidden layers in 
feedforward neural network architectures. Sztandera 
and Cios  [13] also addressed the problem of a 
dynamic generation of neural network architectures.  
The results presented here are based on outcomes 
obtained by Sztandera [2], Sirat and Nadal [8], 
Bichsel and Seitz [9] and Sztandera and Cios [13].  
The algorithm used generates nodes and hidden 
layers until a learning task is accomplished. The 
algorithm operates on continuous data and equates a 
decision tree with a hidden layer of a neural 
network.  A learning strategy used in this approach 
is based on minimization of the entropy function.  
This minimization of entropy translates into adding 
new nodes  to the network  until the entropy is 
reduced to zero.  When the entropy is  zero then all 
training examples are regarded as correctly 
recognized. 
  After applying the above described approach 
it was established that the first layer would contain 
15 neurones, the second one 10, and the number of 
neurones in the third layer would be equal to the 
number of outputs of a given module in the 
identification system.  Hyperbolic tangent was used 
as the function activating the first and the second 
layer. The linear function, on the other hand, is the 
activating function for the third layer. 

In the process of teaching neural networks, 
the order in which teaching patterns are presented is 
the issue of great importance. Situations wherein all 
patterns belonging to one class, and then patterns 
belonging to the next class, etc. are presented, are 
to be avoided because the network forgets the 
patterns it has previously learnt. 



 

Generally, patterns belonging to the teaching 
base have been divided into two groups: the group 
that contains signals carrying information about the 
operating mode of the unit; and the group that 
carries erroneous signals. 

In the teaching process, the principle of turn-
taking teaching was adopted (first the pattern 
carrying information about a given operating mode, 
then the pattern carrying error information). A 
variety of operating modes have been taken into 
consideration, i.e. generator, motor, and 
asynchronous start-up. However, it was assumed 
that some of the patterns would not be provided at 
the input of the neural network in order to check the 
neural network’s ability to generalize events. 

Establishing initial weights is also a very 
important issue in the teaching process. In the case 
of MATLAB program with the Neural Network 
toolbox, the initff command is responsible for 
establishing initial weights. This command 
generates initial weights and biases of the network, 
making use of the first pattern in the teaching base. 
Taking into consideration the fact that the algorithm 
of back propagation does not guarantee that a 
global minimum of a function will be found, it was 
necessary to provide random input signals, 
belonging, however, to the range, which they really 
assume. The user of the program introduces the 
initial input vector. In the situation when we 
suspect that the local minimum was achieved, the 
teaching process must be repeated.  

 
 

7. Conclusions 
The managing system presented in this paper 

performs protection, measurement, adaptation and 
identifying functions, using the network of relations 
among the constituent modules. Establishing the 
four basic criteria for such systems, that is the 
protection criterium, the adaptation criterium, the 
structure criterium, and the prevention-restitution 
criterium, significantly increases the range of their 
possibilities. The systems of this kind, based on the 
intelligent identification systems, are capable of an 
automatic adaptation of their measurement and 
protective functions to the variable working 
conditions of the protected unit. Those conditions 
include changes of the connections among particular 
components of the unit, as well as the changes of the 
parameters that characterize the input measurements 
(frequency, voltage, current, etc.).  Such systems are 
dedicated first of all to the generating sets with a 
high-degree redundancy of components, for example 
the combined plants with steam- and gas-driven 

turbines [3, 4], where it is easy to replace one 
component with another.  Systems of this kind are 
characterized by a complex structure, a short start-up 
time, thus, becoming a fast source of power control. 
Due to these properties, it is possible to work out 
autonomous algorithms of the adaptive prevention-
restitution automation. 
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