
Hardware Architecture for the 
 Montgomery Modular Multiplication  

NADIA NEDJAH AND LUIZA DE MACEDO MOURELLE  
Department of de Systems Engineering and Computation, 

State University of Rio de Janeiro 
São Francisco Xavier, 524, 5O. Andar, Rio de Janeiro, 

BRAZIL 

 

Abstract:- Modular multiplication is the most dominant part of the computation performed in public-key 
cryptography systems such systems. The operation is time consuming for large operands. This paper examines 
the characteristics of yet another architecture to implement modular multiplication using the fast Montgomery 
algorithm. An experimental Montgomery modular multiplier prototype is described and simulated. The 
simulation results are presented.  

Key-Words:- modular multiplication, Montgomery algorithm, simulation, cryptosystems. 
 

1 Introduction 

The modular exponentiation is a common operation 
for scrambling and is used by several public-key 
cryptosystems, such as the RSA encryption scheme 
[1]. It consists of a repetition of modular 
multiplications: C = TE mod M, where T is the plain 
text such that 0 ≤ T < M and C is the cipher text or 
vice-versa, E is either the public or the private key 
depending on whether T is the plain or the cipher text, 
and M is called the modulus. The decryption and 
encryption operations are performed using the same 
procedure, i.e. using the modular exponentiation. 
 The performance of such cryptosystems is 
primarily determined by the implementation 
efficiency of the modular multiplication and 
exponentiation. As the operands (the plain text of a 
message or the cipher or possibly a partially 
ciphered) text are usually large (i.e. 1024 bits or 
more), and in order to improve time requirements of 
the encryption/decryption operations, it is essential to 
attempt to minimise the number of modular 
multiplications performed and to reduce the time 
requirement of a single modular multiplication. 
 An RSA cryptosystem consists of a set of three 
items: a modulus M of around 1024 bits and two 
integers d and e called private and public keys that 
satisfy the property Tde = T mod M. Plain text T 
obeying 0 ≤ T < M. Messages are encrypted using the 
public key as C = Td mod M and decrypted as  
T = Ce mod M. So the same operation is used to 
perform both processes: encryption and decryption. 
Hardware implementation of the RSA cryptosystem 
is widely studied as in [2, 3, 4]. 
 In the rest of this paper, we start off by describing 

the algorithms used to implement the modular 
operation. Then we present the architecture of the 
hardware Montgomery modular multiplier and 
explain in details how it executes a single 
multiplication. Then we comment the simulation 
results obtained for such architecture. 

2 The Montgomery algorithm 

Algorithms that formalise the operation of modular 
multiplication generally consist of two steps: one 
generates the product P = A×B and the other reduces 
this product P modulo M. 
 The straightforward way to implement a 
multiplication is based on an iterative adder-
accumulator for the generated partial products. 
However, this solution is quite slow as the final result 
is only available after n clock cycles, n is the size of 
the operands [5].  
 A faster version of the iterative multiplier should 
add several partial products at once. This could be 
achieved by unfolding the iterative multiplier and 
yielding a combinatorial circuit that consists of 
several partial product generators together with 
several adders that operate in parallel [6, 7]. 
 One of the widely used algorithms for efficient 
modular multiplication is the Montgomery’s 
algorithm [8]. This algorithm computes the product 
of two integers modulo a third one without 
performing division by M. It yields the reduced 
product using a series of additions 
 Let A, B and M be the multiplicand and 
multiplicator and the modulus respectively and let n 
be the number of digit in their binary representation, 



  

i.e. the radix is 2. So, we denote X, Y and M as 
follows: 

 2  and  2   ,2
000

∑∑∑
===

×=×=×=
n

i

i
i

n

i

i
i

n

i

i
i mMyYxX  

The pre-conditions of the Montgomery algorithm are 
as follows: 

• The modulus M needs to be relatively prime to the 
radix, i.e. there exists no common divisor for M 
and the radix; 

• The multiplicand and the multiplicator need to be 
smaller than M. 

As we use the binary representation of the operands, 
then the modulus M needs to be odd to satisfy the 
first pre-condition. 
 The Montgomery algorithm uses the least 
significant digit of the accumulating modular partial 
product to determine the multiple of M to subtract. 
The usual multiplication order is reversed by 
choosing multiplier digits from least to most 
significant and shifting down. If R is the current 
modular partial product, then q is chosen so that 
R+q×M is a multiple of the radix r, and this is right-
shifted by r positions, i.e. divided by r for use in the 
nest iteration. Consequently, after n iterations, the 
result obtained is R =A×B×r−n mod M. A modified 
version of Montgomery algorithm is given in Fig. 1.  

 algorithm Montgomery(A, B, M) { 
  int R = 0; 
 1: for i= 0 to n { 

 2:  R = R + ai×B; 
 3:  if r0 = 0 then 
 4:   R = R div 2 
 5:  else 
 6:   R = (R + M) div 2; 
  } 
  return R; 
 } 

 
Fig. 1: Montgomery modular algorithm. 

     In order to yield the right result, we need an extra 
Montgomery modular multiplication by the constant 
rn mod M. As we use binary representation of 
numbers, we compute the final result using the 
algorithm of Fig. 2. 

algorithm ModularMult(A, B, M, n) { 
 const C = 2n mod M; 
 int R = 0; 
 R = Montgomery(A, B, M); 
 return Montgomery(R, C, M); 
} 

Fig. 2: Modular multiplication algorithm. 

3 Montgomery modular multiplier  
  architecture 

In this section, we outline the architecture of the 
Montgomery modular multiplier. The interface of the 
Montgomery modular multiplier is given in Fig. 3. It 
receives the operands A, B and M and it returns  
R = (A×B×2−n) mod M.  

 
Fig. 3: The Montgomery modular multiplier interface.  

 The detailed architecture of the Montgomery 
modular multiplier is given in Fig. 4. It uses two 
multiplexers, two adders, two shift registers, three 
registers as well as a controller. The latter will be 
described in the next section. 
 The first multiplexer of the proposed architecture, 
i.e. MUX21 passes 0 or the content of register B 
depending on whether bit a0 indicates 0 or 1 
respectively. The second multiplexer, i.e. MUX22 
passes 0 or the content of register M depending on 
whether bit r0 indicates 0 or 1 respectively. The first 
adder, i.e. ADDER1, delivers the sum R + ai × B (line 2 
of algorithm of Figure 1), and the second adder, i.e. 
ADDER2, yields the sum R + M (line 6 of the same 
algorithm). The shift register SHIFT REGISTER1 

provides the bit ai. Each iteration i of the multiplier, 
this shift register is right-shifted once so that a0 
contains ai. 

 

Fig. 4: The Montgomery modular multiplier architecture. 



  

 The role of the controller consists of 
synchronising the shifting and loading operations of 
the SHIFT REGISTER1 and SHIFT REGISTER2. It also 
controls the number of iterations that have to be 
performed by the multiplier. For this end, the 
controller uses a simple down counter. The counter is 
inherent to the controller. The interface of the 
controller is given in Fig. 5.  

 

Fig. 5: The interface of the Montgomery multiplier 
controller  

 In order to synchronise the work of the 
components of the architecture, the controller consists 
of a state machine, which has 6 states defined as 
follows: 

• S0: initialisation of the state machine;  
  go to S1; 
• S1: load multiplicand and modulus into registers; 
  load multiplicator into shift register1; 

  go to S2; 
• S2:  wait for ADDER1; 

  wait for ADDER2; 
  load multiplicator into shift register2;  
  increment counter; 
  go to S3;   
• S3:  enable shift register2; 
  enable shift register1; 
• S4:  check the counter;  
  if 0 then go to S5 else go to S2;  
• S5:   halt;  

4 Modular multiplier architecture  

The modular multiplier yields the actual value of  
A×B mod M. It first computes R = A×B×2−n mod M 
using the Montgomery modular multiplier. Then, it 
computes R × C mod M, where C = 2n mod M. The 
modular multiplier interface is shown in Fig. 6. 

 

Fig. 6: The modular multiplier interface. 

 The modular multiplier uses a 4-to-1 multiplixer 
MUX4 and a register REGISTER.  

• Step 0:  Multiplexer MUX4 passes 0 or B. MUX2 
passes A. It yields R = A×B×2−n mod M. Register 
REGISTER contains 0. 

• Step 1:  Multiplexer MUX4 passes 0 or R. MUX2 
passes C. It yields R = R×C mod M. Register 
REGISTER contains the result of the first step 
computation, i.e. R = A×B×2−n mod M. 

 The modular multiplier architecture is given in 
Fig. 7. 

 
Fig. 7: The modular multiplier architecture. 

 In order to synchronise the work of the 
components of the modular multiplier, the 
architecture contains a controller, which consists of a 
state machine of 10 states. The interface of the 
component CONTROLLER is given in Fig. 8.  

 
Fig. 8: The interface of the modular multiplier controller  



  

 The modular multiplier controller does all the 
control that the Montgomery modular multiplier 
needs as described in Section 3. Furthermore, it 
controls the changing from step 0 to step 1, the 
loading of the register REGISTER. 

• S0: initialisation of the state machine;  
  go to S1; set step 0; 

• S1: load multiplicand and modulus into registers; 
  load multiplicator into shift register1; 

  go to S2; 

• S2:  wait for ADDER1; 
  wait for ADDER2; 
  load partial result into shift register2; 
  increment counter; 
  go to S3;   

• S3:  enable shift register2; 
  enable shift register1; 
  go to S4; 

• S4:  load the partial result of step 0 into register; 
  check the counter;  
  if 0 then go to S5 else go to S2;  

• S5:   load constante into shift register1; 
  reset  register; 
  set step 1; 

  go to S6; 

• S6:  wait for ADDER1; 
  wait for ADDER2; 
  load partial result into shift register2;  
  increment counter; 
  go to S7; 

• S7:  enable shift register2; 
  enable shift register1; 
  go to S8; 

• S8:  check the counter;  
  if 0 then go to S9 else go to S6;  

• S9:  halt.  

5 Conclusion 
 

In this paper, an alternative architecture for 
computing modular multiplication based 
Montgomery algorithm is described. Other algorithms 
exist, such as Barrett’s and Booth’s method [11, 12], 
and Brickell’s algorithm [13]. 
 The project of the modular multiplier described 
throughout this paper was specified in Very High 
Speed Integrated Circuit Description Language - 

VHDL [9], and simulated using the MyVHDL Station 
of MyCad Inc. [10]. 
 The prototype of the modular multiplier was then 
synthesized and implemented using the Xilinx Project 
Manager [14]. The implementation device used is an 
FPGA: family SPARTAN and model S05PC84-4. 
The area needed to implement the prototype is about 
624 equivalent gates and the maximum net delay is 
about 41 ns, with a maximum period of about 18ns, 
i.e. maximum frequency of 58 MHz. 

6  References 

[1] R. Rivest, A. Shamir and L. Adleman, A method 
for obtaining digital signature and public-key 
cryptosystems, Communications of the ACM, 
21:120-126, 1978. 

[2]  E. F. Brickell, A survey of hardware 
implementation of RSA, In G. Brassard, ed., 
Advances in Crypltology, Proceedings of 
CRYPTO'98, Lecture Notes in Computer 
Science 435:368-370, Springer-Verlag, 1989. 

[3] C. D. Walter, Systolic modular multiplication, 
IEEE Transactions on Computers, 42(3):376-
378, 1993. 

 [4] S. E. Eldridge and C. D. Walter, Hardware 
implementation of Montgomery’s Modular 
Multiplication Algorithm, IEEE Transactions on 
Computers, 42(6):619-624, 1993. 

[5] J. Rabaey, Digital integrated circuits: A design 
perspective, Prentice-Hall, 1995. 

[6] N. Nedjah, L. M. Mourelle, Yet another 
implementation of modular multiplication, 
Proceedings of 13th. Symposium of Computer 
Architecture and High Performance Computing, 
IFIP, Brasilia, Brazil, September 2001. 

[7] N. Nedjah, L. M. Mourelle, Simulation Model 
for Hardware implementation of modular 
multiplication, Proceedings of International. 
Conference on Simulation, WSES, Knights 
Island, Malta, September 2001. 

[8] P.L. Montgomery, Modular Multiplication 
without trial division, Mathematics of 
Computation 44, pp. 519-521, 1985. 



  

[9] Z. Navabi, VHDL - Analysis and Modeling of 
Digital Systems, McGraw Hill, Second Edition, 
1998. 

[10] MyCad, Inc. and Seodu Logic, Inc., MyVHDL 
Station V 4.0 Tutorial, http://www.mycad.com 
or http://www.mycad.co.kr.  

[11] A. Booth, A signed binary multiplication 
technique, Quarterly Journal of Mechanics and 
Applied Mathematics, pp. 236-240, 1951. 

[12] G. W. Bewick, Fast multiplication algorithms 
and implementation, Ph. D. Thesis, Department 
of Electrical Engineering, Stanford University, 
United States of America, 1994.  

[13] C. D. Walter, A verification of Brickell’s fast 
modular multiplication algorithm, International 
Journal of Computer Mathematics, 33:153:169. 

[14] Xilinx, Inc. Foundation Series Software, 
Http://www.xilinx.com. 


