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Abstract: - This paper presents the several possibilities of using the Coons’ interpolation in both CAD and 
CAE applications. It is shown that not only curvilinear surfaces may be interpolated (as it is well known from 
the literature), but also finite element meshes may be developed in any arbitrarily-shaped domain. Moreover, it 
is shown how it is possible to built-up isoparametric macro-finite-elements with degrees of freedom appearing 
at the boundaries only, using global shape functions that are based on the same interpolation. The theory is 
sustained by one typical two-dimensional application of a U-notched elastic structural member.  
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1   Introduction 
The technique of bivariate «blending» function 
interpolation of S.A. Coons [1], was developed and 
applied to geometrical problems of computer-aided 
design and numerically controlled machining of free-
form surfaces. Since then, the method has been used 
also in many engineering applications that require the 
description of three-dimensional surfaces in a form 
suitable for numerical analysis, such as in the finite 
element method and in mesh generation problems 
[17-19].  
     In two-dimensional problems, the domain is a 
patch, sometimes defined by its four surrounding 
sides, which may be meshed using any coordinate-
mapping technique such as blending processes [8-10] 
and others [6,27].  
     With respect to the polynomial degree of the finite 
elements, after many years of using small-size 
isoparametric ones [6], the development of “large” 
elements with the purpose of reducing mesh 
generation work load, the total number of degrees of 
freedom, as well as the computational effort in both 
static and dynamic regimes, has kept researchers 
busy for a long time. Historically, it was Irons [7] 
who generalized the idea of arbitrarily noded 
elements, but also blending function methods based 
on the ideas put forward in [8] have been used to 
produce some interesting element families [9,10,11].  
On the other hand, “large” elements were introduced 
by schemes [12-15] based on Trefftz’s method [4]. 
These, as well as the Boundary Element Method 
(BEM) [16], require knowledge of the fundamental 
solution of the problem under consideration.  

     Coons’s interpolation method has been 
generalised in a unique formula that describes C0-, 
C1-, C2- etc. continuity of the first-, second- and 
third-derivative, respectively [17]. In the context of 
the FEM, Coons’s interpolation is practically used 
for mesh generation in structured four-sided 
curvilinear patches [18-20].  
     El-Zafrany and Cookson [11] use Coons’s idea 
for two-dimensional problems in conjunction with 
Lagrange and Hermite interpolation functions, 
allowing a small number of degrees of freedom per 
element. Also, Zhaobei and Zhiqiang [24] apply 
Coons’s surface method to fit boundary conditions in 
some families of finite element of plates and shells. 
The use of large B-splines finite-elements based on 
Coon’s interpolation theory, with degrees of freedom 
appearing only at the element boundaries has 
appeared in two-dimensional potential [25] and 
elasticity problems [26].  
    In this paper, the theory of Coons’ is briefly 
presented for two-dimensional interpolation 
problems with C0-continuity in curvilinear 
coordinates. Then, it is explained how it is possible 
to use this formula in order to generate a structured 
finite element mesh. A smoothening procedure that 
may significantly improve the quality of the mesh is 
discussed, too. In the sequence, the general theory of 
creating “large” finite elements (macro-elements) is 
presented and global cardinal (1-0-type) shape 
functions are illustrated. Finally, the theoretical 
aspects are applied to a structural member with two 
U-notches of rectangular section.  
 
  



2   Problem Formulation 

2.1 Coons’ interpolation 

Let us assume a patch that is defined in the (r,s)-
coordinate system, with r and s being its normalised  
(0 ≤ r, s ≤ 1) curvilinear co-ordinates. Furthermore, it 
is assumed that the coordinate vector x(r, s) of any 
point on this surface can be expressed in a closed, 
analytical form on the four “boundaries” r = 0,1 and 
s = 0,1 of the patch: 
 

x(0, s), x(1, s), x(r, 0), x(r, 1)   (1) 
 
Let now Pr be a “projector” interpolating x(r, s) 
along the boundaries r = 0 and r = 1. We will have it 
defined by the formula 
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Similarly, a projector ][xsP  interpolates x(r, s) along 

the boundaries s = 0 and s = 1,  
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Furthermore, the “product projector”, 
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interpolates x(r, s) at the four corners of the unit 
square [0,1]×[0,1]. Finally, the “Boolean sum 
projector”,  
 

][][][),( xxxx srsr PPPPsr −+=    (5) 

 
interpolates x(r, s) over the entire domain [0,1]×[0,1] 
(see Fig.1: u has replaced x, as is required in Section 
2.3).  
     By the above interpolation technique, it is 
essentially intended to approximate the unknown 
function x(r,s) using on the one hand information 
given at the element’s boundaries and on the other 
hand certain auxiliary scalar functions ( )ηjE , where 

η  is either r or s and j=0,1. These functions are 
termed “blending” functions and are taken to satisfy 
the cardinality conditions:  

( )E j i ijη δ=     (6) 

where ijδ  is the Kronecker’s delta.  

 

 
Fig.1: Boundary curves u(0,s), u(1,s), u(r,0), u(r,1) and 

‘blending functions’ E0 and E1 of the macro-
element. 

 
 

For C0-continuity discrete problems the blending 
function are linear and equal to: 
 

( ) ( ) ηηηη =−= 10 ,1 EE    (7) 

2.2 Construction of a finite element mesh 

The formula (5) can be applied an arbitrarily-shaped 
domain that may be considered as a four-sided two-
dimensional patch. To do this, it is only necessary to 
know the coordinates along the four sides (eq.(1)). 
Then, using (5) a one-to-one mapping is established 
between the real x(x,y) and the normalized r(r,s) 
coordinates, the last belonging to a square (ABCD) of 
unit side (master or reference element, e.g. Fig.4b). If 
the number of the boundary nodes on the opposite 
sides (AB,CD) and (BC,DA) is the same, then 
r=const. and s=const. represent lines perpendicular to 
the lines AB and BC, respectively.  
     Generally, the so-produced mesh is irregular. 
However, due to its structured nature it is possible to 
carry out a smoothening as follows. By considering 
that eight other nodes surrounding each node in the 
interior of the patch, one can update these coordinates 
by the formula 

( )∑
=

=
8

1

81
j

j
new xx      (8) 

This procedure is of low cost and leads to smooth  
meshes that may be used for the FEM analysis where 
conventional isoparametric or triangular elements are 
considered.  

2.3 Construction of the global shape functions 

As it has been previously presented [25,26], the 
above-mentioned patch may be discretized at its 
boundaries only, and constitute a macro-element. 



According to this approach, the displacement vector 

( )u x y,  inside the macro-element that covers the 

whole domain or a sub-domain Ω  is approximated, 
again, by (5), where x is now replaced by u:  
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or, equivalently 
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Moreover, if now Bj(n), where n is either r or s, 
denote cardinal splines of degree m i.e. 

Bj(ni)=äij    (11) 

 
then the functions u(0, s), u(1, s), u(r, 0) and u(r, 1) 
may be written in the following form: 
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Finally, by substituting (12) in (10), one can finally 
obtain 
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with ),( srkN  denoting the macro-element shape 

function, )(rku  nodal degrees of freedom 

appearingonly at the boundaries of the macro 
element. 

     The advantage of using this kind of interpolation 
is that undesirable oscillations between two arbitrary 
abscissae iη  and 1+iη  (as in Lagrangian 

interpolation) are avoided. A typical global function 
is illustrated in Fig.2 and Fig.3 for a 24-node macro-
element. 

 
 
 

 

 
 
Fig.2: Shape function at a corner node of a 24-noded 

macro-element. 

 
 

Fig.3: Shape function at an intermediate node of a 24-
noded macro-element. 

 
 
3   Numerical examples 
In mechanical engineering, it is usually necessary to 
estimate the stress concentration factor k, which is 
defined as the ratio of the maximum stress in the 
stress raiser to the nominal stress, using the net cross 
section. In the past, photoelastic methods had been 
applied and a list of many such factors may be found 
in the literature [28].  
     As a typical case, we choose the case of two U-
notches in a member of rectangular section. The 
geometry of a relevant specimen is shown in Fig.4.      
In order to examine the efficiency of the mesh 
generation technique and the macro-element, a 
coarse mesh of only thirty-six boundary nodes is 
considered for one-fourth of the U-notch, as it is 
illustrated in Fig.4 (a). In the same figure, one can 
notice the correspondence between the real 

3

1 



boundaries and the four sides of the reference square 
(ABCD), shown in Fig.4(b). It should be noticed that 
the real side CD is composed of two straight 
segments (CC1) and (C1D).  

 
Fig.4:  (a) Geometry and boundary discretization of a U-

notched specimen (one fourth), and  
          (b) Reference square-element (r,s) 
 
 
The application of Coons’ formula (5) leads to a 
irregular finite element mesh of seventy-two 
elements and ninety-one nodes, as shown in Fig.5. 
However, after forty-three smoothening iterations 
according to (8), the mesh becomes significantly 
regular as shown in Fig.6. 
 
 
 
 
 
 
 

 

 
Fig.5:  Initial finite element mesh 
 

 
Fig.6: Final finite element mesh, after smoothening. 
 
 
The accuracy of the macro-element is presented in 
Table 1. One can notice that the displacements of 
both the conventional mesh and the macro-element 
are close each other, again, for the same number of 
boundary nodes. It can noticed that in both cases the 
accuracy is adequate, compared with a large finite 
element model of 6203 nodes and 6041 four-noded 
elements using the FEM-code ALGOR (U.S.A.).  
 
 
Table 1.  Mean averaged value of the calculated 
displacements along the side (C1D) using macro-elements 
(Fig.4a) and conventional four-noded elements (Fig.6). 
 

TYPE OF ELEMENTS Displacement 
Macro element (Fig.4a) .437 
Four-node elements (Fig.6) .438 
ALGOR .440 
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With respect to the stress concentration factor, two 
cases are presented below. In Table 2, we present the 
stress ratio at the Gauss points that correspond to the 
center of the twelfth (last) element along the arc AB, 
adjacent to the point B, as well as the next three 
ones. The stress ratio is defined as the ratio of the 
current stress towards the direction of loading over 
the externally applied stress. Obviously, the 
maximum stress ratio coincides with the stress 
concentration factor k. One can notice that results are 
close each other.  
 
 
Table 2. Calculated stress ratio at the center of the 
elements adjacent to the side (BC) using macro-elements 
(Fig.4a) and conventional four-noded elements (Fig.6). 
 

TYPE OF ELEMENTS Stress Ratio 
 
Macro element (Fig.4a) 

2.099 
1.609 
1.398 
1.312 

 
Four-node elements (Fig.6) 

2.229 
1.604 
1.370 
1.267 

 
 
 
Finally, Table 3 presents the stress ratio at the 
boundary nodes. This is possible for the macro-
elements, where strain and stress are continuous 
functions, while in conventional elements 
extrapolation is required.  
 
 
Table 3. Calculated stress ratio at the center of the 
elements adjacent to the side (C1D) using macro-elements 
(Fig.4a), compared with ALGOR. 
 

TYPE OF ELEMENTS Stress Ratio 
 
Macro element (Fig.4a) 

2.918 
2.956 
1.758 
1.509 

ALGOR  
(stress concentration factor) 

3.072 

 
 
Obviously, the calculated stress concentrated factor 
through the macro-element approach (k=2.956) is 
very close to that, which was calculated with 
ALGOR with much more elements, as was 
previously mentioned.  
 

 

4   Conclusion 
It was shown that Coons’ interpolation formula, 
which was firstly applied in automotive CAD/CAM 
applications, is a powerful tool for also CAE 
applications. After a suitable smoothening, the 
formula is capable of constructing regular structured 
meshes that are near to orthogonal ones. The domain 
may be arbitrarily-shaped and must be seen as a four-
sided patch. It should become clear that each side of 
the patch is not necessarily a unique entity, arc or 
straight line, e.t.c., but it can be also a composite line 
made of several different segments. Moreover, it was 
shown that Coons’ interpolation formula gives the 
capability to built-up global cardinal shape functions 
of (1-0)-type. The theory was successfully tested on 
a U-notched specimen, where displacements and the 
stress concentration factor were calculated.  
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