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AbstractA method combining Infinite Impulse Response (IIR) filters and Neural Networks (NN) is
proposed for precise electromagnetic (EM) of complex structures true the use of efficient optimization
and parameterization techniques. This method is based on the characterization of the time response
as a transfer function using a digital filter. The use of the neural network allows then the modeling of
the geometric variation of the studied structure.
The method is then also expanded in the frequency domain for studying the variation of the scattering
parameters for the studied structures as a function of frequency. This is achieved by building a
spectral transfer function. The main difference between time and spectral analyses is discussed and it
is shown that it is more advantageous to interpolate the transfer function's poles and zeros rather
than the polynomial coefficients The validity of our proposed technique is demonstrated on a
microstrip step in width discontinuity and a microstrip filter, both analyzed in the time domain and
also on a chamfered bend analyzed in the frequency domain.
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I. INTRODUCTION

EM-field Optimization requires to perform
several simulations using an electromagnetic
solver based on rigorous numerical methods
like Finite Elements (FE) [1], or Finite
Difference Time Domain (FDTD) [2].
However, each EM simulation is highly time
consuming and optimizing using traditional
techniques becomes a heavy task.
Conventional Neural Networks, especially
Multilayer Perceptron (MLP) have been
introduced for optimal modeling and
simulation of microwave structures [3]. This
method proved its efficiency for reducing the
CPU time consumed for optimization by
mapping a relationship between input and
output (I/O) parameters [4-5]. However, the
major drawback of NN is that it costs many
computer calculating hours to achieve a good
accuracy due to the high complexity of time
signals.

The Infinite Impulse Response filters
(IIR) which are largely used in signal
processing, have been successfully introduced

for field simulation in the time domain [6].
The filter approach is well adapted to time
domain algorithms because of its iterative
construction. However, the IIR filter is not
multidimensional and thus, cannot take in
consideration the geometric variation of
structures.

In this paper we propose to combine
neural networks and IIR filters for determining
the time behavior of the studied structures.
The parameters are separated in two
categories. The predefined time domain
responses in one side and the geometric
structure parameters in the other side. This
method is adopted after observing that the
variation of the geometric parameters does not
hardly affect the response of the structure.
Thus, time is nearly the only responsible of the
important variations of the system outputs.
Hence, we use an IIR-filter for studying the
time response and the NN-MLP for modeling
geometric variation of the structure
dimensions. In this manner, we reduce the size
of the samples and increase the accuracy of the
interpolated points.



In the frequency domain, the transfer
function is built from a data set representing
the spectral response of the studied system.
Then, by applying a simple algorithm we
extract the poles and zeros of the transfer
function. The poles and zeros are then learned
using neural networks. Hence, for any value of
the geometrical parameters, the NN gives the
poles and zeros of the transfer function. And
thus, the complete response is known.

The paper is organized as follows.
Section II starts describing the IIR-filter
approach in time domain. Section III contains
a description of MLP-NN. Then in section IV,
we present the proposed method and
especially the connection between the two
techniques. Section V describes the domain
extension of the method. Results are described
in section VI and general conclusion in section
VII.

II. IIR FILTERS

The responses provided by the FDTD
method can be interpreted as a high order
digital filter with input and output signals
(x(t), y(t)) respectively. The filter is based on a
finite difference equation which can basically
be written as :
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This equation represents the transfer function
of the IIR filter described in Fig.1, where ai

and bi are the feedback and feedforward
coefficients respectively. y(n-j) are the output
samples and x(n-i) are the input samples.

Figure1 IIR  filter structure

Equation (1) can be written in a matrix form
as:
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where :
♦ N)](ny  ... 2)(ny   1)(n[y YT

1n −−−=−  is the output
vector.

♦ )](n x ... )1(n  x (n)[x XT
n M−−=  is the input

vector.
♦ ]b ... b b  a ...  a [a M10N21=Tθ  is the N+M+1

filter coefficient vector.

The error between the true output y(n) and
estimate filter output is :

θT
nz - y(n) = (n)ŷ -y(n) = (n)e (3)

The filter coefficients are obtained by forming
a least square solution of an over determined
set of p+1 equations (note :  p>M+N). The p+1
equations are written from (2) as :
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Now, the corresponding error vector is E = Y-
Z θ where Z is a (p+1) × (M+N+1) matrix of
input and output data samples. The least
square solutions to minimize E = e eT  error
yields :
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where R Z ZT= is the data autocorrelation
matrix and r Z YT= is crosscorrelation vector.
From (4) we can write this matrices as :
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The filter coefficients are calculated using (4),
thus, we have :

nnn rR 1−=θ (7)

Using (6), the equation (7) becomes:
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The crosscorrelation matrix is computed using
(5) as follows:
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Then by introducing (9) in (8) we have:
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And finally, we use (5) to compute the
autocorrelation matrix in (10) :
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This last equation constitutes the adaptive
formula for computing the filter coefficients.
To perform this algorithm we need to evaluate
the inverse autocorrelation matrix used in (11).
For this purpose we use the matrix inversion
lemma as follows :
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This lemma requires the knowledge of the
initial approximation of the inverse
autocorrelation matrix noted R0

-1 .This matrix
is initialized by :
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where σx and σy are the autovariance of x(t)
and y(t) respectively. I is the identity matrix of
appropriate dimension.
Note that the output signal is delayed from the
input one due to the propagation phenomena.
This delay time (∆t) must be taken in
consideration in the adaptive algorithm to
reduce the filter order. Hence, the algorithm
would be applied to the signal defined as :
$x (t)=x(t-∆t).

It is important to note that once the
coefficients converge, no more simulation is
needed. The output signal at time t (ie : y(t)) is
extrapolated from the input samples x(t-i), 0 ≤
i ≤ M and the earliest output samples y(t-j), 0
≤ j ≤ N.

III. NEURAL NETWORKS

The standard MLP neural network is
composed of 3 layers: Input layer, hidden
layer and output layer (Fig.2). A set of (x,y)
data called the training data, is generated from

EM simulations. The neural model learns the
(x,y) relationship from the training data.

Figure.2. MLP-NN with 2 hidden layers

The training set is especially used to
compute the weights and biases of the neural
network. The computational algorithm called
« back propagation » is then used to adjust the
neural parameters[7]. Another set of data
called the testing set is used to test the ability
of the network for generalizing out of the
training set. Training and testing sets are used
to train and stop the neural learning.
The input parameters are generally the
geometric dimensions of the studied system
and the frequency or time. The output
parameters could be the scattering parameters,
the eigenvalues or eigenvectors. For our
purpose, we use a conventional MLP with 2
hidden layers and an adaptive learning rate.

IV. COUPLING METHOD

As it was previously discussed,
coupling the MLP-NN and the IIR filter is
made in the learning set. The inputs of the
neural network
are the geometric parameters and the outputs
are IIR coefficients (Fig 3)
For any value inside the geometric parameters
interval, the coefficients can be determined
using the neural network. The filter have
approximately the same behavior as the
simulated response.
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Figure. 3. Combined MLP-NN and IIR filter

V. EXPANSION OF THE METHOD TO
THE FREQUENCY DOMAIN

The IIR-filter approach is still available in the
spectral analysis when the filter is causal and
stable. The frequency response is computed by
either the Fourrier transform or the inverse z
transform z = ejw of the transfer function. In
this case the transfer function can be written
as:
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It is to be noted that the expression of the
transfer function is close to the formulation of
the Cauchy method [8] applied in modeling
the scattering parameters via model reduction
techniques

VI. RESULTS (TEST CASES)

VI.1. Step in width microstrip discontinuity

The first test case is a microstrip step in width
discontinuity studied in the time domain using
the FDTD method.

Figure 4. Microstrip step in width
discontinuity

The input parameters of the neural network are
the widths w1 and w2 as shown in Fig 4. The
output parameter of the IIR filter is the voltage
time domain signal between the strip and the
ground at the output port P2. This structure is
studied for w1 varying from 75 µm to 100 µm
and w2 varying from 150 µm to 200 µm. The
structure is excited using a Gaussian input
signal at the plane P1.

Figure 5: Convergence of the IIR filter
coefficients

The step in width is designed on a GaAs
(εr= 13) substrate.

Figure 6. NN-IIR interpolated response
compared to that from an EM commercial

simulations for different values of w1 and w2.

A 30x30 IIR filter was needed to have a
good approximation. Fig 5 shows the first 10th

filter coefficients convergence and Fig 6
shows results that are tested choosing different
values for w1 and w2.
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This test was performed for a geometry of a
step in width discontinuity which was not
furnished in the learning set of the neural
network. Figure 6 shows the good accuracy
between results using directly the FDTD EM
simulator and those using NN_IIR model.

V I.2. Filter test

The purpose of this test is to model a
microstrip filter (Fig 7) using the NN-IIR
method. For this case, we use a 70x70 digital
filter to approach the output voltage.

Figure 7: Microstrip filter design

This structure is studied using the FDTD
method. The input parameter of the neural
network is the width d (see Fig 7). The output
parameter of the IIR filter is the voltage time
domain signal between the strip and the
ground at port P2.

Figure 8. NN-IIR interpolated response
compared to that from an EM commercial

simulations for d= 5.08 mm

This structure is studied for d varying from
2.45mm to 10 mm. The structure is excited
using a gaussian input signal at the port P1.
The structure is designed on a Teflon (εr= 2.2)
substrate. Figure 8 shows the good accuracy
between the FDTD EM simulator results and
those using the NN_IIR model for d=5.08 mm
This latter results were not furnished while
establishing the NN).

VI.3. Chamfered bend test (Frequency
Domain).

An NN-IIR model is developed for
modeling a microstrip chamfered bend
structure like that shown in Fig 9. The test was
performed in the frequency range [1 GHz-15
GHz] and for the geometrical parameter, d,
varying between 571 µm and 1261µm.

Figure.9. Microstrip chamfered bend structure
with h= 635µm, b=500µm and εr =9.6
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 Figure.10. Poles and zeros position in
complex plane with d=575
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The IIR filter is built for 4 structures
corresponding to different values of the
geometrical parameter (Fig.9). The studied
response is taken to be the S11 parameter. A
filter order of M=N=70 was needed to fit
accurately the system response. However, it is
interesting to note that a large set of poles and
zeros cancels each other as shown in (Fig.10).
Hence, we select only those which are
different. It is important to note that conjugate
zeros correspond to a minimum pic and
conjugate poles to maximum one.
The poles and zeros are then interpolated by a
neural network which gives the poles and
zeros variation in the z-plane (Fig 11 and 12).
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Figure.11. Poles positions in z-plane for d
varying between 575µm to 261µm
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Figure.12. Zeros positions in z-plane for d
varying between 575 µm to 1261 µm

For any value inside the considered “d”
interval, the corresponding poles and zeros are
computed using the neural network and hence,
the frequency response of the output parameter
can be easily determined. Fig 13 gives a
comparison between results for the output
response for different values of the

geometrical parameter d, once calculated by a
rigorous analysis using a frequency domain
electromagnetic commercial simulator and
another time using our NN-IIR model. The
excellent agreement of the results
demonstrates the validity of our proposed
method

VII. CONCLUSION

A new method has been proposed for
precise and rapid EM modeling of complex
microwave structures using efficient
optimization and parameterization techniques
in the time and frequency domains. It
combines the powerful learning possibilities of
neural networks and those of the accurate
fitting of IIR filters in time domain. This
method fits the desired response by
determining the corresponding transfer
function between

Figure 13. NN-IIR interpolated response
compared to that from an EM commercial

simulations for different values of d

the input excitation and the output response of
the studied structure.

The extension of this technique to
applications in the frequency domain is shown
to be still precise. The characterization of the
transfer function by its poles and zeros
decreases the number of samples that are
required to be furnished to the neural network
to learn the behavior of the response. It is
shown that interpolating of poles and zeros in
the frequency domain is more precise because
it is found that the number of dominant or
significant poles and zeros is smaller.

Optimizing using this technique become an
easy task as the maximums and the minimums
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of the IIR filter transfer function correspond to
the required poles and zeros.

This technique is distinguished from other
known ones by its capacity of interpolating
functions (filter transfer function) and not only
points.

This work is significant due to the growing
demand of having accurate means of
parameterization and optimization in existing
electromagnetic simulations.
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