
Biometric verification of computer users with probabilistic and
cascade forward neural networks

S. SHORROCK, A. YANNOPOULOS, S.S. DLAY, D.J. ATKINSON

Department of Electrical & Electronic Engineering
University of Newcastle
Newcastle upon Tyne

UK

Abstract: - The number of people with access to the Internet continues to grow at a phenomenal rate. The
potential for e-commerce on the web is huge, but fears about security are holding it back. Authentication of a
person’s identity is a major concern in the fight against fraud. We present a method of identifying a computer
user by using the unique rhythm generated when typing on a keyboard. Three neural networks, the cascade
forward neural network (CFNN), probabilistic neural network (PNN) and traditional backpropagation neural
network (BPNN) are implemented on two types of data set. Each networks performance and suitability to the
task is evaluated. The PNN is seen to outperform the BPNN and a novel implementation based around the
CFNN displays a great deal of promise.

Key-Words: - keystroke dynamics, biometrics, verification, security, neural

1 Introduction
In recent years, the numbers of people using the
Internet has exploded. The potential for e-commerce
on the web has brought with it the need for
heightened security. In order to satisfy this need for
greater security, much effort has been focused on the
use of Biometrics as a suitable solution.

Biometric identification is the use of measurable
properties of the human body to verify a person’s
identity. These properties are unique to each
individual and cannot be easily copied, stolen or lost.
Biometric features can be divided into two groups,
behavioral and physical. Some physical biometric
properties such as fingerprints, iris patterns and hand
geometry have already been implemented with
success. Behavioral biometric properties have
received much less attention [2]. They exploit the
behavioural characteristics of the human body. The
differences exhibited between individual’s
behavioural traits, are often less apparent than their
physical counterparts. This can make them harder for
an impostor to replicate.

The focus of this paper is the behavioural
biometric properties of keystroke dynamics [1]. This
utilizes the unique rhythm generated when a person
types on a computer keyboard to verify that
individual’s identity. The use of keystroke dynamics
has several advantages:

• Unlike most physical biometric methods, it
requires no hardware other than the computer
itself. Therefore cost of implementation is low.

• It is also ideally suited for use during a ‘logon’
procedure. It can be run in the background
during a ‘logon’ without the knowledge of the
user - adding an extra element of security with
minimal disruption.

• As most computer users are familiar with
entering usernames and password there is no
need for re-training personnel.

• Being software based makes it easy to
implement across a computer network.
This paper builds on the current work in this

field by applying the probabilistic neural network
(PNN) as classifiers. The PNN will be trained to
classify a previously unseen typing rhythm as
belonging to either the correct user or an impostor.
Also, a cascade forward neural network (CFNN) will
use a novel indirect method, where the network is
trained to interpolate single measurements removed
from the data and its accuracy differs significantly
enough between a correct user and an impostor to
allow classification. Both these methods will be
compared with the traditional backpropagation
approach.

2 Data Capture
Whilst gathering of data is possible on a PC (and
essential for the end application), new device drivers
need to be written for the target operating system.
Operating systems such as Windows™ use a
messaging system to convey information such as
keypresses to an application. However, the keyboard
messages often have a low priority over other
operations such as file management. This is evident
when typing in a word processor, if there is any disk
activity when typing, the text being written is held in
a buffer until such time that the processor is free to
deal with it (causing the display to pause and then
the characters appearing). In order to achieve the
high accuracy of timing between keystrokes the
keyboard driver and timing device need a high
priority so they are not affected by other activity.

The gathering of the typing data has been
implemented on a Motorola™ 68000 single board
computer, interfaced with a keyboard and a monitor.
This platform provides an excellent environment for
gathering experimental data as there is no operating
system and all code is written in assembly. By using
this approach, complete control can be imposed over
the collection of data.

Two sets of data were obtained using this
method. The first set of data consists of a group of
twenty one people, all typing the same phrase: ‘-u-s-
e-r-n-a-m-e-<enter>-p-a-s-s-w-o-r-d-<enter>’ where
<enter> denotes the enter key being pressed and ‘-‘
denotes a time interval between a keypress. In order
to emulate a real logon procedure, the characters for
username are echoed back to the screen whilst the
password characters are replaced with an asterisk. In
order to capture a clean sample, the user is not
allowed to make any spelling mistakes and any use
of the backspace key will result in the sample
becoming void. Each user gave twenty samples.

The second set of data consists of a group of five
people, all typing their own names and then the
names of the others in the group. Again, no spelling
mistakes or use of backspace is allowed. Each user
gave twenty samples of their own name and ten
samples of each of the other names.

The number of samples used were carefully
chosen to strike the balance between the maximum
samples a user is prepared to submit and the
minimum required by the classifier.

The first set of data, where all users type the
same phrase, is to ensure any patterns that emerge
are purely due to differences and similarities in
typing styles. The second set of data is to
demonstrate the effect typing a biased phrase has on
classification.

3 Background
3.1 Backpropagation Neural Network
The backpropagation neural network (BPNN) is well
established as a benchmark in pattern recognition
problems. Its basic structure consists of a feed-
forward network with an input layer, an output layer
and at least one hidden layer of nodes. The
backpropagation gradient descent technique is then
applied to train the network's weights in a supervised
mode in order to minimise the error with the output
nodes target values.

The BPNN has the ability to solve complex
problems with a relatively compact network
structure. However, its learning process is often
unpredictable, time consuming and can become
stuck in a solution which is not optimal. Network
design is often done on trial-and-error basis, as there
are many factors that can be fine-tuned to improve
the networks behaviour.

There are many alternatives to the BPNN, some
of which have been explored by Obaidat and Sadoun
[5]. A promising approach is the probabilistic neural
network.

3.2 Probabilistic Neural Network
The PNN classifier has evolved from well-
established Bayesian statistical techniques [6]. It is
closely related to radial-basis function neural
networks. It offers the following advantages when
compared to backpropagation:

X1 X2 XN

Distribution Layer

Pattern Layer

Summation Layer

Decision Layer

A1

F()

AP

F()

B1

F()

BP

F()

ZA1 ZAP ZB1 ZBP

SA SB

 Figure 1 – PNN structure for a 2 class problem

• Rapid Training: The PNN can train much faster
than BPNN. It merely needs to 'read' the data.

• The PNN is guaranteed to converge to an
optimal result given sufficient data. This
contrasts with the unpredictable nature of the
BPNN, which suffers from the problem of local
minima.

• Data can be added and deleted without re-
training. Useful for adding new users to the
system and removing old ones.

• The PNN gives a measure of confidence
associated with an output.
The PNN still retains many of the features

associated with BPNN such as learning and
generalisation. Due to the parallel nature of the
algorithms, it is also a candidate for multi-processor
systems.

The structure of the PNN for a 2-class problem
can be seen in Figure 1. It consists of 4 layers:
1. The Distribution Layer: This performs no

computation and just connects the inputs to the
next layer. Where X1 represents the first time
interval, X2 represents the second, etc.

2. The Pattern Layer: This consists of a number of
nodes, one node for each training sample. The
weights for each node correspond to the time
intervals for that sample. For each node, the
distance between the weights and the input
vector is calculated and the result passed through
a gaussian function.

3. The Summation Layer: The outputs of each
pattern layer node and each class are summed.

4. The Decision Layer: This picks the largest node
in the summation layer, outputting a 1 for Sa > Sb
and a 0 otherwise.
Problems with more than 2 classes are easily

dealt with by a competitive algorithm in the decision
layer to pick the summation node with the highest
value.
The outputs of the pattern layer are given by:

]/)1exp[(2σ−= Ri
t

ci XXZ (1)

The outputs of the summation layer are given by:

]/)1exp[(2

1

σ−= ∑
=

Ri
i

t
C XXS (2)

Where c represents nodes belonging to each class
and i the samples for each class (σ2 being the
standard deviation). The transpose of the unknown
vector to classify is Xt and the weights are XRi . The
network operates by calculating the dot product
between the unknown vector and the training
vectors. However, this uses normalised training and
testing vectors. Normalisation of data for this
problem results in loss of information concerning the
total typing duration Obaidat and Macchiarolo [4].

In order to overcome the problem with
normalisation, the dot product term can be replaced
by a distance measure.

3.2.1 Distance Measures
For each node in the PNN the vector distance
between the unknown input vector and the weights
on the pattern layer needs to be calculated. Two
distances which can be applied to this problem are:

3.2.1.1 Euclidean Distance

2
1

2








−= ∑

i
ii yxd (3)

This is a commonly used function but, while
working well for consistent patterns, it can be
adversely affected by large outlier values - due to the
square term.

3.2.1.2 Manhattan Distance

∑ −=
i

ii yxd (4)

The Manhattan distance is similar to the Euclidean
metric, but eliminates the square term. This makes it
less susceptible to spurious values.

3.3 Interpolating with a CFNN to recognise
correlation
One property of the data which is not exploited by
the standard pattern-recognition of the BPNN and
the PNN is that each data vector is in fact a time
sequence – and successive measurements can be
expected to be highly correlated with each other. Our
third approach has therefore been to train a variant of
the BPNN, the CFNN1, to learn these correlations:
We slide a window over the input vector, removing
the window’s central element at each step and using
it as the training target for the single network output.
This training tunes the network to the specific
correlations exhibited by the data generated by the
user who is to be recognised. Assuming that new
data produced by this user contains similar
correlations, the simulation outputs will be close to
their targets if training was successful. However, if a
different user is the source of the data, its internal
correlations will be different and the errors between
net simulation outputs and their respective targets
will be larger. A collective measure of errors

1A Cascade-Forward Neural Network is identical to a feed-

forward BPNN except that each layer after the first has weights
coming not just from the previous layer but also from the input
and all other previous layers. We used the Levenberg-Marquardt
[7] training algorithm to accelerate training in this case.

between outputs and targets for all window positions,
for example their mean-square-error, will provide a
strong indication of the user’s identity. Deciding
upon the threshold, beyond which this error indicates
an impostor, may not be straightforward. This
problem is especially pronounced when the
distinctive capability of the network is not very
good, whereas achieving a clear distinction would
make the thresholding easier. We therefore
concentrate on achieving good results assuming ideal
thresholding.

4 Pre-processing data
Consistency when typing varies between users.
While some individuals may be highly consistent,
others are not. This causes problems with the
distance measures described due to large spurious
outliers.

In order to reduce these problems, the data is pre-
processed for the PNN and BPNN. This involves
calculating the z-score values for each sample in the
training set with respect to its class.

2σ
xx

z i
i

−
= (5)

The z-score is shown in Equation 5 and is
calculated by subtracting the vector from the mean of
its class then dividing by the standard deviation of
it's class.

Pre-processing is achieved by eliminating values
which fall outside a specified range. These values are
then replaced by the mean of the remaining
components for each feature. A limit is put on the
number of outliers that may be removed from each
sample in order to preserve the majority of features.

5 Results
The success of the classifier can be measured in two
ways:
1. The number of errors occurring where it

incorrectly identifies an impostor as the real
user.

2. The number of errors occurring where it
incorrectly rejects the real user as an impostor.

These are known as type 1 and type 2 errors
respectively. A type 1 error occurs when the
classifier incorrectly rejects the correct user as an
impostor. A type 2 error occurs when the classifier
incorrectly accepts an impostor as the correct user.

It is possible to apply a bias to these errors
depending on the application. For example, in a high
security application if may be preferable to minimise
the type 2 error at the cost of a higher type 1 error.

Table 1 shows how the three networks compare.
It is divided into the two data sets:
1. Unbiased – Twenty one people, all typing the

same, previously unrehearsed, phrase.
2. Biased – Five people, each typing their own

names and then trying to type the names of the
other four.

The type 1 and type 2 errors for each data set are
shown as an overall percentage. This is calculated by
summing the errors generated for all users and
dividing by the total number of presentations.

The data pre-processing was not required for the
biased data set as all users exhibited highly
consistent typing styles.

Results for the PNN include both types of
distance measure.

Table 1 – Comparison of network performance

 Data set 1 percentage errors Data set 2 percentage errors

Network Type 1 error Type 2 error Type 1 error Type 2 error
BPNN No data Pre-Processing 41 3 0 7

 With data Pre-Processing 31 7 - -

PNN No Pre-Processing & MD 30 1 0 5

 No Pre-Processing & ED 48 2 0 3

 With Pre-Processing & MD 22 9 - -
 With Pre-Processing & ED 34 8 - -

CFNN 44 10 12 9

Key: MD = Manhattan Distance, ED = Euclidean Distance.

6 Discussion
6.1 Backpropagation Network
6.1.1 Data set 1
The BPNN, while working well for some users,
struggles to classify certain individuals. This has an
effect on the overall performance. On analysis of the
results, the users who return large errors tend to
exhibit an inconsistent typing style. The spurious
outlier data generated by these inconsistencies may
be confusing the network during training.

An improvement is seen in the network's
performance for type 1 errors when it is trained with
the pre-processed data. This is due to outlier datum
caused by the correct user typing inconsistently,
being removed from the sample and replaced with a
mean value. However, as some outlier data in
impostor samples is also replaced (making an
impostor sample more like the correct user’s), type 2
errors are increased.

6.1.2 Data set 2
These results are much improved, with zero being
returned for type 1 errors. This is probably due to the
fact users are typing a phrase which is familiar to
them (their name) and are therefore more consistent.
The level of type 2 errors is comparable with the first
data set. Note, that this data set is probably more
representative for verification as a user will indeed
be biased towards typing their own identifier. We
can thus expect the better of our results to be
indicative of real-world performance for these
methods.

6.2 Probabilistic Network
6.2.1 Data set 1
The PNN gives poor results when the Euclidean
distance metric is employed. Some improvement is
achieved with the pre-processed data, but it is still
worse than the BPNN. Analysis again shows the
largest errors occur with the least consistent typists.

The Manhattan distance function seems more
suited to this problem. It produces respectable results
when applied to the normal data. Better results for
type 1 error are achieved when it is applied to the
pre-processed data but at the expense of type 2
errors. In both cases it out performs the traditional
BPNN, exhibiting a reduction in the type 1 error of
approximately 25%.

6.2.2 Data set 2
Improved results for type 1 errors are seen for the
biased data with the PNN. However, the type 2
errors remain comparable to data set 1. Again, this
could be a result of the increased consistency seen
when a person types a familiar phrase.

Figure 3 – Time

User number 1 2 3 4 5
Times the user was

recognised (out of 10)
9 9 10 9 7

Accepted impostors at
this rate (out of 40)

3 0 7 2 6

Figure 2 – Example of CFNN performance for correct user and impostor

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

C
or

re
ct

 U
se

r

U S E R
C F N N

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

Im
po

st
or

6.3 CFNN Neural Network
Figure 2 shows the performance of a trained network
attempting to interpolate data produced by the
legitimate user and data produced by an impostor.
Each user has typed a 14-character id and password
10 times and a window size of 7 was chosen. This
gives 13 time-measurements between keystrokes, of
which all but the first and last three can be compared
to a network output as the window’s central element
slides over them. The various input vectors and
network outputs have been concatenated for
compactness: Figure 2 illustrates the network
interpolating with much greater accuracy for the
legitimate user than for the impostor.

Classification using the mean-square of the
network errors for each single id-password
combination produces the results in Table 1
(assuming ideal thresholding). Note that each of 5
users has typed an id and password 10 times and 4
impostors have typed the same words 10 times each.
The individual results for data set two can be seen in
Figure 3.

7 Conclusion
We have shown that there is a distinct pattern in the
way people type and that it may be fully exploited to
reinforce password security. Our results highlight the
PNN and CFNN as strong candidates for this
application.

The PNN, by nature, has several advantages
inherent in its structure when compared to other
networks. Advantages such as data removal/addition
without re-training and parallel processing are
particularly suited to this application, allowing new
users to be added and old ones removed with
minimal disruption (a BPNN would require time
consuming re-training). The PNN implementation
does produce a significantly larger network than the
BPNN, with each training sample allocated to a node
in the pattern layer. However, the parallel nature of
the PNN lends itself easily to implementation with
parallel processing.

Using the Manhattan distance measure in place
of the Euclidean distance measure has yielded
significant improvements in performance for the
PNN. We have demonstrated the choice of distance
measure to have greater effect when outlier datum is
present in the samples.

Problems encountered with outlier data are a
major factor affecting the performance of all the
neural networks presented. The pre-processing of
data using z-scores has been implemented. It offers a

method of reducing type one errors, but can have an
undesirable effect on the type two errors.

We have demonstrated a novel approach using a
CFNN to interpolate typing characteristics. The
difference between the CFNN output and the actual
sequence can be evaluated, with a large difference
indicating an impostor. We have used a very basic
interpolation scheme to perform pattern
classification with high success rates. The results are
good enough to be useful in themselves – with the
added benefit that the network is very easy to
implement as the windowing is a pre-processing
function and, basically, any interpolation method
could have been employed – and they also indicate
that further work using a more complicated
technology such as recurrent networks instead of the
CFNN may be very fruitful.

References:
[1] Bleha S., Computer access security systems

using keystroke dynamics, IEEE Transactions on
Pattern Analysis and Machine Intelligence,
Vol.12, No.12, 1990, pp.1217-22.

[2] Leggett J. and Williams G., Verifying Identity
via Keystroke Characteristics, International
Journal of Man-Machine Studies, Vol.28, No.1,
1988, pp.67-76.

[3] Obaidat M. S. and Macchairolo D., A multilayer
neural network system for computer access
security, IEEE Transactions on Systems, Man
and Cybernetics, Vol.24, No.5, 1994, pp.806-13.

[4] Obaidat M. S. and Macchiarolo D., An online
neural network system for computer access
security, IEEE Transactions on Industrial
Electronics, Vol.40, No.2, 1993, pp.235-42.

[5] Obaidat M. S. and Sadoun B., Verification of
Computer Users Using Keystroke Dynamics,
IEEE Transactions on Systems, Man and
Cybernetics, Vol.27, No.2, 1997, pp.261-69.

[6] Wasserman P. D., Advanced Methods in Neural
Computing, Van Nostrand Reinhold, 1993.

[7] Hagan M.T. and M. Menhaj, Training
Feedforward Networks with the Marquardt
Algorithm, IEEE Transactions on Neural
Networks, Vol.5, No.6, 1994.

