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Abstract: - The number of people with access to the Internet continues to grow at a phenomenal rate. The 
potential for e-commerce on the web is huge, but fears about security are holding it back. Authentication of a 
person’s identity is a major concern in the fight against fraud. We present a method of identifying a computer 
user by using the unique rhythm generated when typing on a keyboard. Three neural networks, the cascade 
forward neural network (CFNN), probabilistic neural network (PNN) and traditional backpropagation neural 
network (BPNN) are implemented on two types of data set. Each networks performance and suitability to the 
task is evaluated. The PNN is seen to outperform the BPNN and a novel implementation based around the 
CFNN displays a great deal of promise. 
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1 Introduction 
In recent years, the numbers of people using the 
Internet has exploded. The potential for e-commerce 
on the web has brought with it the need for 
heightened security. In order to satisfy this need for 
greater security, much effort has been focused on the 
use of Biometrics as a suitable solution. 

Biometric identification is the use of measurable 
properties of the human body to verify a person’s 
identity. These properties are unique to each 
individual and cannot be easily copied, stolen or lost. 
Biometric features can be divided into two groups, 
behavioral and physical. Some physical biometric 
properties such as fingerprints, iris patterns and hand 
geometry have already been implemented with 
success. Behavioral biometric properties have 
received much less attention [2]. They exploit the 
behavioural characteristics of the human body. The 
differences exhibited between individual’s 
behavioural traits, are often less apparent than their 
physical counterparts. This can make them harder for 
an impostor to replicate. 

The focus of this paper is the behavioural 
biometric properties of keystroke dynamics [1]. This 
utilizes the unique rhythm generated when a person 
types on a computer keyboard to verify that 
individual’s identity. The use of keystroke dynamics 
has several advantages: 

• Unlike most physical biometric methods, it 
requires no hardware other than the computer 
itself. Therefore cost of implementation is low. 

• It is also ideally suited for use during a ‘logon’ 
procedure. It can be run in the background 
during a ‘logon’ without the knowledge of the 
user - adding an extra element of security with 
minimal disruption. 

• As most computer users are familiar with 
entering usernames and password there is no 
need for re-training personnel. 

• Being software based makes it easy to 
implement across a computer network. 
This paper builds on the current work in this 

field by applying the probabilistic neural network 
(PNN) as classifiers. The PNN will be trained to 
classify a previously unseen typing rhythm as 
belonging to either the correct user or an impostor. 
Also, a cascade forward neural network (CFNN) will 
use a novel indirect method, where the network is 
trained to interpolate single measurements removed 
from the data and its accuracy differs significantly 
enough between a correct user and an impostor to 
allow classification. Both these methods will be 
compared with the traditional backpropagation 
approach. 

 
 



2 Data Capture 
Whilst gathering of data is possible on a PC (and 
essential for the end application), new device drivers 
need to be written for the target operating system. 
Operating systems such as Windows™ use a 
messaging system to convey information such as 
keypresses to an application. However, the keyboard 
messages often have a low priority over other 
operations such as file management. This is evident 
when typing in a word processor, if there is any disk 
activity when typing, the text being written is held in 
a buffer until such time that the processor is free to 
deal with it (causing the display to pause and then 
the characters appearing).  In order to achieve the 
high accuracy of timing between keystrokes the 
keyboard driver and timing device need a high 
priority so they are not affected by other activity. 

The gathering of the typing data has been 
implemented on a Motorola™ 68000 single board 
computer, interfaced with a keyboard and a monitor. 
This platform provides an excellent environment for 
gathering experimental data as there is no operating 
system and all code is written in assembly. By using 
this approach, complete control can be imposed over 
the collection of data. 

Two sets of data were obtained using this 
method. The first set of data consists of a group of 
twenty one people, all typing the same phrase: ‘-u-s-
e-r-n-a-m-e-<enter>-p-a-s-s-w-o-r-d-<enter>’ where 
<enter> denotes the enter key being pressed and ‘-‘ 
denotes a time interval between a keypress. In order 
to emulate a real logon procedure, the characters for 
username are echoed back to the screen whilst the 
password characters are replaced with an asterisk. In 
order to capture a clean sample, the user is not 
allowed to make any spelling mistakes and any use 
of the backspace key will result in the sample 
becoming void. Each user gave twenty samples. 

The second set of data consists of a group of five 
people, all typing their own names and then the 
names of the others in the group. Again, no spelling 
mistakes or use of backspace is allowed. Each user 
gave twenty samples of their own name and ten 
samples of each of the other names. 

The number of samples used were carefully 
chosen to strike the balance between the maximum 
samples a user is prepared to submit and the 
minimum required by the classifier. 

The first set of data, where all users type the 
same phrase, is to ensure any patterns that emerge 
are purely due to differences and similarities in 
typing styles. The second set of data is to 
demonstrate the effect typing a biased phrase has on 
classification. 

 
 

3 Background 
3.1 Backpropagation Neural Network 
The backpropagation neural network (BPNN) is well 
established as a benchmark in pattern recognition 
problems. Its basic structure consists of a feed-
forward network with an input layer, an output layer 
and at least one hidden layer of nodes. The 
backpropagation gradient descent technique is then 
applied to train the network's weights in a supervised 
mode in order to minimise the error with the output 
nodes target values. 

The BPNN has the ability to solve complex 
problems with a relatively compact network 
structure. However, its learning process is often 
unpredictable, time consuming and can become 
stuck in a solution which is not optimal. Network 
design is often done on trial-and-error basis, as there 
are many factors that can be fine-tuned to improve 
the networks behaviour. 

There are many alternatives to the BPNN, some 
of which have been explored by Obaidat and Sadoun 
[5]. A promising approach is the probabilistic neural 
network. 
 
 
3.2 Probabilistic Neural Network 
The PNN classifier has evolved from well-
established Bayesian statistical techniques [6]. It is 
closely related to radial-basis function neural 
networks. It offers the following advantages when 
compared to backpropagation: 
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 Figure 1 – PNN structure for a 2 class problem 



• Rapid Training: The PNN can train much faster 
than BPNN. It merely needs to 'read' the data. 

• The PNN is guaranteed to converge to an 
optimal result given sufficient data. This 
contrasts with the unpredictable nature of the 
BPNN, which suffers from the problem of local 
minima. 

• Data can be added and deleted without re-
training. Useful for adding new users to the 
system and removing old ones. 

• The PNN gives a measure of confidence 
associated with an output. 
The PNN still retains many of the features 

associated with BPNN such as learning and 
generalisation. Due to the parallel nature of the 
algorithms, it is also a candidate for multi-processor 
systems. 

The structure of the PNN for a 2-class problem 
can be seen in Figure 1. It consists of 4 layers: 
1. The Distribution Layer: This performs no 

computation and just connects the inputs to the 
next layer. Where X1 represents the first time 
interval, X2 represents the second, etc. 

2. The Pattern Layer: This consists of a number of 
nodes, one node for each training sample. The 
weights for each node correspond to the time 
intervals for that sample. For each node, the 
distance between the weights and the input 
vector is calculated and the result passed through 
a gaussian function. 

3. The Summation Layer:  The outputs of each 
pattern layer node and each class are summed. 

4. The Decision Layer: This picks the largest node 
in the summation layer, outputting a 1 for Sa > Sb 
and a 0 otherwise. 
Problems with more than 2 classes are easily 

dealt with by a competitive algorithm in the decision 
layer to pick the summation node with the highest 
value.  
The outputs of the pattern layer are given by: 
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The outputs of the summation layer are given by: 
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Where c represents nodes belonging to each class 
and i the samples for each class (σ2 being the 
standard deviation). The transpose of the unknown 
vector to classify is Xt  and the weights are XRi . The 
network operates by calculating the dot product 
between the unknown vector and the training 
vectors. However, this uses normalised training and 
testing vectors. Normalisation of data for this 
problem results in loss of information concerning the 
total typing duration Obaidat and Macchiarolo [4].  

In order to overcome the problem with 
normalisation, the dot product term can be replaced 
by a distance measure. 
 
3.2.1 Distance Measures 
For each node in the PNN the vector distance 
between the unknown input vector and the weights 
on the pattern layer needs to be calculated. Two 
distances which can be applied to this problem are: 
 
3.2.1.1 Euclidean Distance 
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This is a commonly used function but, while 
working well for consistent patterns, it can be 
adversely affected by large outlier values - due to the 
square term. 

 
3.2.1.2 Manhattan Distance 
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The Manhattan distance is similar to the Euclidean 
metric, but eliminates the square term. This makes it 
less susceptible to spurious values. 
 
 
3.3 Interpolating with a CFNN to recognise 
correlation 
One property of the data which is not exploited by 
the standard pattern-recognition of the BPNN and 
the PNN is that each data vector is in fact a time 
sequence – and successive measurements can be 
expected to be highly correlated with each other. Our 
third approach has therefore been to train a variant of 
the BPNN, the CFNN1, to learn these correlations: 
We slide a window over the input vector, removing 
the window’s central element at each step and using 
it as the training target for the single network output. 
This training tunes the network to the specific 
correlations exhibited by the data generated by the 
user who is to be recognised. Assuming that new 
data produced by this user contains similar 
correlations, the simulation outputs will be close to 
their targets if training was successful. However, if a 
different user is the source of the data, its internal 
correlations will be different and the errors between 
net simulation outputs and their respective targets 
will be larger. A collective measure of errors 

                                                   
1A Cascade-Forward Neural Network is identical to a feed-

forward BPNN except that each layer after the first has weights 
coming not just from the previous layer but also from the input 
and all other previous layers. We used the Levenberg-Marquardt 
[7] training algorithm to accelerate training in this case. 



between outputs and targets for all window positions, 
for example their mean-square-error, will provide a 
strong indication of the user’s identity. Deciding 
upon the threshold, beyond which this error indicates 
an impostor, may not be straightforward. This 
problem is especially pronounced when the 
distinctive capability of the network is not very 
good, whereas achieving a clear distinction would 
make the thresholding easier. We therefore 
concentrate on achieving good results assuming ideal 
thresholding. 
 
 

4 Pre-processing data 
Consistency when typing varies between users. 
While some individuals may be highly consistent, 
others are not. This causes problems with the 
distance measures described due to large spurious 
outliers. 

In order to reduce these problems, the data is pre-
processed for the PNN and BPNN. This involves 
calculating the z-score values for each sample in the 
training set with respect to its class. 
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The z-score is shown in Equation 5 and is 
calculated by subtracting the vector from the mean of 
its class then dividing by the standard deviation of 
it's class. 

Pre-processing is achieved by eliminating values 
which fall outside a specified range. These values are 
then replaced by the mean of the remaining 
components for each feature. A limit is put on the 
number of outliers that may be removed from each 
sample in order to preserve the majority of features. 
 
 

5 Results 
The success of the classifier can be measured in two 
ways: 
1. The number of errors occurring where it 

incorrectly identifies an impostor as the real 
user. 

2. The number of errors occurring where it 
incorrectly rejects the real user as an impostor. 

These are known as type 1 and type 2 errors 
respectively. A type 1 error occurs when the 
classifier incorrectly rejects the correct user as an 
impostor. A type 2 error occurs when the classifier 
incorrectly accepts an impostor as the correct user. 

It is possible to apply a bias to these errors 
depending on the application. For example, in a high 
security application if may be preferable to minimise 
the type 2 error at the cost of a higher type 1 error. 

Table 1 shows how the three networks compare. 
It is divided into the two data sets: 
1. Unbiased – Twenty one people, all typing the 

same, previously unrehearsed, phrase. 
2. Biased – Five people, each typing their own 

names and then trying to type the names of the 
other four. 

The type 1 and type 2 errors for each data set are 
shown as an overall percentage. This is calculated by 
summing the errors generated for all users and 
dividing by the total number of presentations. 

The data pre-processing was not required for the 
biased data set as all users exhibited highly 
consistent typing styles. 

Results for the PNN include both types of 
distance measure. 

 
 

Table 1 – Comparison of network performance 

  Data set 1 percentage errors Data set 2 percentage errors 

Network  Type 1 error Type 2 error Type 1 error Type 2 error 
BPNN No data Pre-Processing 41 3 0 7 

 With data Pre-Processing 31 7 - - 

PNN No Pre-Processing & MD 30 1 0 5 

 No Pre-Processing & ED 48 2 0 3 

 With Pre-Processing & MD 22 9 - - 
 With Pre-Processing & ED 34 8 - - 

CFNN  44 10 12 9 

 
Key: MD = Manhattan Distance, ED = Euclidean Distance. 



6 Discussion 
6.1 Backpropagation Network 
6.1.1 Data set 1 
The BPNN, while working well for some users, 
struggles to classify certain individuals. This has an 
effect on the overall performance. On analysis of the 
results, the users who return large errors tend to 
exhibit an inconsistent typing style. The spurious 
outlier data generated by these inconsistencies may 
be confusing the network during training. 

An improvement is seen in the network's 
performance for type 1 errors when it is trained with 
the pre-processed data. This is due to outlier datum 
caused by the correct user typing inconsistently, 
being removed from the sample and replaced with a 
mean value. However, as some outlier data in 
impostor samples is also replaced (making an 
impostor sample more like the correct user’s), type 2 
errors are increased. 
 
6.1.2 Data set 2 
These results are much improved, with zero being 
returned for type 1 errors. This is probably due to the 
fact users are typing a phrase which is familiar to 
them (their name) and are therefore more consistent. 
The level of type 2 errors is comparable with the first 
data set. Note, that this data set is probably more 
representative for verification as a user will indeed 
be biased towards typing their own identifier. We 
can thus expect the better of our results to be 
indicative of real-world performance for these 
methods. 

 
 
6.2 Probabilistic Network 
6.2.1 Data set 1 
The PNN gives poor results when the Euclidean 
distance metric is employed. Some improvement is 
achieved with the pre-processed data, but it is still 
worse than the BPNN. Analysis again shows the 
largest errors occur with the least consistent typists. 

The Manhattan distance function seems more 
suited to this problem. It produces respectable results 
when applied to the normal data. Better results for 
type 1 error are achieved when it is applied to the 
pre-processed data but at the expense of type 2 
errors. In both cases it out performs the traditional 
BPNN, exhibiting a reduction in the type 1 error of 
approximately 25%. 
 
6.2.2 Data set 2 
Improved results for type 1 errors are seen for the 
biased data with the PNN. However, the type 2 
errors remain comparable to data set 1. Again, this 
could be a result of the increased consistency seen 
when a person types a familiar phrase. 

Figure 3 – Time 

User number  1 2 3 4 5 
Times the user was 

recognised (out of 10) 
9 9 10 9 7 

Accepted impostors at 
this rate (out of 40) 

3 0 7 2 6 

 

Figure 2 – Example of CFNN performance for correct user and impostor 
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6.3 CFNN Neural Network 
Figure 2 shows the performance of a trained network 
attempting to interpolate data produced by the 
legitimate user and data produced by an impostor. 
Each user has typed a 14-character id and password 
10 times and a window size of 7 was chosen. This 
gives 13 time-measurements between keystrokes, of 
which all but the first and last three can be compared 
to a network output as the window’s central element 
slides over them. The various input vectors and 
network outputs have been concatenated for 
compactness: Figure 2 illustrates the network 
interpolating with much greater accuracy for the 
legitimate user than for the impostor. 

Classification using the mean-square of the 
network errors for each single id-password 
combination produces the results in Table 1 
(assuming ideal thresholding). Note that each of 5 
users has typed an id and password 10 times and 4 
impostors have typed the same words 10 times each. 
The individual results for data set two can be seen in 
Figure 3. 

 
 

7 Conclusion 
We have shown that there is a distinct pattern in the 
way people type and that it may be fully exploited to 
reinforce password security. Our results highlight the 
PNN and CFNN as strong candidates for this 
application. 

The PNN, by nature, has several advantages 
inherent in its structure when compared to other 
networks. Advantages such as data removal/addition 
without re-training and parallel processing are 
particularly suited to this application, allowing new 
users to be added and old ones removed with 
minimal disruption (a BPNN would require time 
consuming re-training). The PNN implementation 
does produce a significantly larger network than the 
BPNN, with each training sample allocated to a node 
in the pattern layer. However, the parallel nature of 
the PNN lends itself easily to implementation with 
parallel processing. 

Using the Manhattan distance measure in place 
of the Euclidean distance measure has yielded 
significant improvements in performance for the 
PNN. We have demonstrated the choice of distance 
measure to have greater effect when outlier datum is 
present in the samples. 

Problems encountered with outlier data are a 
major factor affecting the performance of all the 
neural networks presented. The pre-processing of 
data using z-scores has been implemented. It offers a 

method of reducing type one errors, but can have an 
undesirable effect on the type two errors. 

We have demonstrated a novel approach using a 
CFNN to interpolate typing characteristics. The 
difference between the CFNN output and the actual 
sequence can be evaluated, with a large difference 
indicating an impostor. We have used a very basic 
interpolation scheme to perform pattern 
classification with high success rates. The results are 
good enough to be useful in themselves – with the 
added benefit that the network is very easy to 
implement as the windowing is a pre-processing 
function and, basically, any interpolation method 
could have been employed – and they also indicate 
that further work using a more complicated 
technology such as recurrent networks instead of the 
CFNN may be very fruitful. 
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