
Application of the Co-design Finite State

Machines Model for the Design of a

Multiprocessor System

M. Marzougui, I.E. Bennour & M. Abid

Electronic and Micro-Electronic Laboratory

Faculty of Sciences of Monastir

5000 Monastir. Tunisia.

e-mail: rached.tourki@fsm.rnu.tn

Abstract: - This paper presents the use of CFSMs, Co-design Finite State Machines, for
the high level design of multiprocessor system. This technique is based on implementation-

independant representation that can be generated from a variety of speci�cation languages
such as VHDL, for control-dominated oriented systems. This representation allows to pre-
serve semantical correctness throughout the design process, since CFSMs assume unbounded,

non-zero reaction delays, that correspond both to hardware and software behavior. Our
technique illustrates the use of the CFSMs model to specify the multiprocessor target archi-

tecture. We focus on the speci�cation of the control oriented part.

Key-Words: - Co-design, Co-veri�cation, FSMS, CFSM.



1 Introduction

Due to the increasing complexity of elec-

tronic systems, and the decreasing cost of

microprocessors, embedded systems become

largely used architecture. Mixed hardware-

software systems may contain components

that proceed at di�erent speeds. Synchronous

hardware modules compute their next states

and outputs at each clock cycle. Software

procedures, on the other hand, run sequen-

tially on a micro-controller, and the reac-

tion to a given condition may take many

hundreds of clock cycles to compute, and

many hundreds of clock cycles to propagate
to other system components that might wait-
ing for it. Furthermore, this delay depends

on a very complex interaction of factors (such
as the activity of other procedures, inter-
rupts and so on) and hence can be almost

very diÆcult to model in determinist way.
Hardware is always active and computes a

function, while real-time control software is
generally event-driven and computes a reac-
tion.

These considerations make appear that clas-
sical Finite State Machines (FSMs) are not

an eÆcient solution to describe the behav-
ior of heterogeneous systems that proceed
at di�erent speeds. In fact, their utilization

require many ameliorations to adapt it to

these type of systems. While the CFSMs

model allows the representation of asynchronous

systems, it may be used as an eÆcient model

to specify the hardware software applications.

In this paper we illustrate the usefulness of

the CFSMs model in the case of an heteroge-

nous multiprocessor system in order to ver-

ify its functionality correctness. This sys-

tem is composed by an heterogeneous sub-
systems such as standard processors, shared

memory, some ASICs and a communication

controller. We present the CFSMs represen-

tations of the bus transactions and the com-

munication controller traÆcs. We focus on

the functionality correctness of the commu-

nication controller through a detailed exam-

ple. The latter consists on a communication

between a sub-system of the target architec-

ture and a VME based medium. The pa-

per is organized as follows: Section 2 brie
y

describes CFSMs and its theoritical founda-

tion for hardware software co-design. Sec-

tion 3 describes our target architecture. In

section 4 we show how a network of CFSMs

can be mapped into an equivalent network of

FSMs to model the target architecture. Sec-

tion 5 draws some conclusions and outlines

opportunities for future work.

2 FSMs versus CFSMs

A standard FSM transforms a set of inputs

to a set of outputs with only �nite amount of
internal states [6]. On the other hand, con-
current FSMs implie that all FSMs change

state exactly at the same time [5]. In other
word, these models of computation commonly
share the synchrony hypothesis. The term

\synchronous" has been used in the litera-
ture to mean at least three rather di�erent

concepts [5]:

1. Clocked, the synchronization of the sys-

tem components is assured by a global
signal, as opposed to asynchronous sys-

tems where synchronization is a local

property.

2. Zero reaction time, describing a sys-

tem where the components react in-

stantaneously to an event.

3. Without acknowledge, describing a com-

munication protocol where the sender

does not wait for the receiver to ac-



knowledge the reception of the mes-

sage.

Finite State Machine model is based on \zero

reaction time" synchrony hypothesis. This

is not always true for heterogeneous compo-

nents proceeding at di�erent speeds.

A Co-design Finite State Machine (CFSM),

inspired from FSM, is a formel mechanism

to describe the behavior of some control ori-

ented systems. CFSM is like standard Finite

State Machine, transforms a set of inputs

into a set of outputs with only �nite inter-

nal state. The di�erence between the two
models is that the concurrent FSMs imply
that all the FSMs change state exactly at

the same time [5].
A CFSM C = (I; O;R; F ) is basically com-
posed of a set of input events I (each with

its associated set of values), a set of out-
put events O (each with an associated set

of values and possibly with an initial value
in R), and a transition relation F describ-
ing how the CFSM reacts to input events by

causing output events to occur. Each tran-
sition is triggered by the input events with
the appropriate values and emits the out-

put events with the appropriate values. The
reaction time is unbounded non-zero. The

state of the CFSM is constituted by the set

of those events that are at the same time
input and output for it. The non-zero reac-

tion time provides the \storage" capability
that is required to implement the concept of

state.

The entire system is described by a CFSMs
network synchronized by a global signal and

communicate through a very low-level prim-
itives : events. Events are emitted by a

CFSM and can be detected by one or more

CFSMs. Each CFSM is not bound to prod-
uct the computation results at the next clock

edge but it takes a non-zero unbounded time
to perform its task. The receiver waits for

the sender to emit the event, but the sender

can proceed after emitting the event without

the need to wait. To satisfy these require-

ments, a queue FIFO is placed between the

sender and each receiver and will save the

event until it is detected (or overwritten).

At the design partitioning step, the designer

can choose between di�erent hardware and

software implementations for each compo-

nent of the system speci�cation [3].

In the case of hardware synthesis, each tran-

sition function is implemented and optimized

with a combinational circuit [6]. The circuit

outputs are latched to ensure the non-zero

reaction delay.

The CFSM sub-network mapped into a soft-
ware structure is constituted by a number of
procedures and a simple Real Time Operat-

ing System (RTOS). The RTOS is responsi-
ble to activate the corresponding procedure
when an event occurs.

3 Modeling of the pro-

posed architecture

The used architecture is a set of heteroge-
neous subsystems: standard processors such

as 80486 Intel microprocessor and DSP pro-
cessor TMS320C25, communication controller,

one ASIC and one FPGA for real time signal

processing or pattern recognition [7]. These

sub-systems share the same memory via the

same bus for data transferring (Figure 1).

To allow maximum inter-communicating, a

communication controller processor is used

to resolve signal con
ict and arbitrate trans-

actions. The main role of the communica-

tion controller is switching buses to allow di-

rect connection and to adapt signal between
incompatible devices when data transfer oc-

curs. The bus arbiter accepts requests for

the bus on eight request lines. Each re-



quest line has a corresponding grant line .

If the bus is idle when a request is received,

the arbiter will immediately respond on the

grant line corresponding to the level of re-

quest pending [8].

Shared memory

ASIC

FPGA

Commun. Ctrl

µprocessor

DSP

Bus
Arbitration Interfaces

Communication

Synchronization signals

Figure 1: Plate-form architecture.

4 System modeling

The multiprocessors system is modeled with

a communicated CFSMs network as shown
in �gure 2. Each CFSM reacts to input

events and products outputs events. With

this representation,the component ASIC can
communicate with the FPGA, the micropro-

cessor can dialog with the ASIC and the
FPGA can use the shared memory. Any

component requesting the bus access to com-

municate with another component should be
authorized by the communication controller.

The main objectives of this representation is

to allow the veri�cation of the functionality
correctness of the communication controller.

We focus in the ISA to VME communica-

tion function, while updating it for the co-

simulation of many transactions between the

proposed system and VME-bus based one.

In the next subsections, we present the inter-

CFSM1
CFSM

BUS ctrl
CFSM

Shared
Memoryµprocessor

BIM CFSM1

DSP
BIM CFSM2

CFSM2

SW on DSP

SW on µprocessor

SW partition HW partition

CFSM

ASIC

FPGA

Figure 2: Modeling of the proposed archi-

tecture by the CFSMs model.

actions between the microprocessor and the

communication controller in order to read
data from VME system.

4.1 Bus transactions CFSMs

based modeling

The interaction of the microprocessor with

its environment may be performed by read-
ing and writing data. In this case, there is
a great deal of communication between the

hardware and the software partitions of the
system. This may be true, even if we ab-

stract out all trivial communications such
as instructions fetches and local data access.

In other cases, it may be important to sim-

ulate all of the cycle level details of a set
of transactions, but it is often true that we

just need the data to be transferred and we
aren't overly concerned with collecting the

details of how it gets done each and every

time. For this reason, the microprocessor

and the DSP are abstracted to the bus func-

tional model. So, the DSP and the micro-



processor are abstracted to a test vector as

shown in �gure 3. The microprocessor sends

its request to the communication controller

and waits on the Grant signal to utilize the

bus.

IdleGrant_bar Grant_bar

Assert RD_barAssert W_bar

W/BReq RD/BReq

Grant.Sync

READY_bar
Sync

Grant.Sync

Req.Inter
READY_bar

W_bar<=1

READY READY

DATA IN
RD_bar<=1

Wait

State1

State2

Wait

State1

State2

Figure 3: Bus transactions of the 80486 mi-

croprocessot CFSMs based modeling.

4.2 Communication controller

CFSMs based modeling

The microprocessor react with its environ-
ment on read-write operations from the shared
memory or from an external medium. This

latter sends its request to the communica-
tion controller and waits until it receives the
bus access acknowledge . At this moment,

the Bus Control Unit (BCU) recognizes the

communication nature based on the three

least signi�cant bits of the address bus. For

the communication with an external resource,
the BCU activates the corresponding inter-

face to allow direct connection and to adapt

incompatible signals.

Bus arbitration function allows to solve con-


ict problems by swiching buses between dif-
ferent requesters according to the priority

option in which the communication controller

is con�gured (�xed priority, round-robin pri-
ority, daisy-chain priority, etc). In many ap-

plications, the system may require to read

data from external medium enclosing incom-

patible modules such as VME-bus, etc. There-

fore, it is necessary that the communication

controller allows the adaptation of some in-

compatible signals. For example, we focus

on the case that the system requires to read

data from VME-bus through VME-interface

adapter. The interaction between the BCU

and the ISA to VME adapter is shown in

�gure 4.

Idle

Commu
Nature

Wait on
DATA

Read 3LSB
Adress

Req.Intrf

grant

Latch-com
READY

ACK_bar

Idle

State1

State2State3

State4

Req.Intrf_bar

Sync

Addr-ISA

Sync

AS_bar<=1
UDS,
LDS<=1

VME-
DATA

Sync

Addr_VME<=

DTACK

Sync
(UDS,LDS)_bar

AS_bar

Control unit
CFSMs

Compatible VME
generated signals
CFSMs

CFSMs interactions

Figure 4: Control unit to interface adapter

CFSMs interaction.

Initially, the interface will wait in the idle



state until a VME bus access request (RE-

QINTRF) is received. Thus, the VME in-

terface will enter in the next state (State1).

In this state, it connects system address to

VME system address and activates the sig-

nal R=W to con�gurate the data bus trans-

fer as read or write cycle. In state2, it gen-

erates the (UDS, LDS) signals to control

the 
ow of data on the data bus, AS to vali-

date address on the address bus and then en-

ters in the state3. Thus, the VME-interface

waits on the DTACK signal to steady that

data transfer is completed. When DTACK

is activated, the interface enters in the state4

and then latches data, negates UDS; LDS

and AS signals. When DTACK is negated,
the interface returns to the idle state. The
generated VME signals are shown in �gure

5.

CLK

Addr

A0

AS_bar

UDS_bar

LDS_bar

R/W_bar

DTACK_bar

D8-D15

D0-D7

CLK

Request

Grant

Addr
Read

B
us A

dapter
C

om
patible V

M
E

 protocol
C

om
patible IS

A
 protocol

VME Bus

ISA Bus

Figure 5: ISA to VME adapter.

5 Conclusion

This paper introduced Co-design �nite State

Machines model that is well suited to model

control dominated real time applications.

The model is based on low level communi-

cation primitive called events. A key point

of this approach is that the CFSMs speci-

�cation is totally implementation indepen-

dent (software or hardware), thus allowing

designers to experiment with a number of

implementation options. The possibility to

applicate the model on a multiprocessor tar-

get architecture is presented.

Several complicated applications (control, sig-
nal processing for video compression, etc.)
can be implemented in our target architec-

ture. We are interested to implement a 
ow
control and resource management algorithm,
based on CFSMs, for ATM network. In this

heterogeneous system, the 
ow control (Soft-
ware) and the resource management subsys-

tems are most conveniently modeled in much
di�erent ways, and yet there is a desire to
study the interaction of these subsytems.

In the future, we are planning to explore the
possibility to use Co-design �nite State Ma-

chines model to co-simulate the functionnal-
ity correctness of the system at di�erent lev-
els of abstractions.

References

[1] Rowson, J. Hardware/Software co-
simulation. In proceeding of the de-

sign Automation Conference (1994),

pp. 439-440.

[2] Boriello. G, Chou. P and Ortega,

R. embedded system co-design - to-

wards portability and rapid integration.

NATO, 1995.



[3] Gerard Berry and Laurent Causserat.

Synchronous programming language

and its mathematical semantics. In S.D

brookes, A.W. Roscoe, and G. winskel,

editors, Seminar on concurrency, page

369-448. Carnegie-Mellon University,

1984.

[4] D. Del Corso, H. Kirman, and J.D.

Nicoud.Microcomputer buses and links.

Academic press, London, 1986.

[5] M. Chiodo, P. Guisto, H. Hsieh, A. Ju-

rescka, L. Lavagno and A. Sangiovanni-

Vincentelli. A formal Speci�cation

Model for Hardware/Software Co-

design. June 1, 1993.

[6] E.M. Sentovich, K.J. Singh, H. Savoj,
R.K. Brayton and A.L. Sangiovanni-
Vincentelli. Sequential Circuit Design

Using Synthesis and Optimization. In
Proceeding of Internatioanal Confer-

ence On computer Design. October
1992.

[7] C. Souani, M. Abid, A. Zitouni, M.

Atri and R. Tourki. A heterogeneous
Multiprocessor System with Dedicated
Communication Controller. IN Proceed-

ing of the Fourth IEEE Conference

On Electronics, Circuits and Systems

ICECS'97. December 1997.

[8] A. Zitouni, M. Abid, K. Torki, C.

Souani, R. Tourki. "Communication

Synthesis Approach for Distributed Sys-

tems and its application During the De-

sign of a Communication Controller."

In Proc Of the International Conference

on MicroElectronics(ICM 98), pp.249

252, 1998.


