
Forward Selection Initialization Method for Constructive
Neural Networks

JANI LAHNAJÄRVI, MIKKO LEHTOKANGAS, AND JUKKA SAARINEN
Digital and Computer Systems Laboratory

Tampere University of Technology
P.O.BOX 553, FIN-33101 Tampere

FINLAND

Abstract: In this paper we present an initialization method of hidden unit weights for cascade-correlation type con-
structive neural networks. The forward selection initialization (FSI) method uses a large pool of randomly initial-
ized hidden units and then selects the best one of them by some predetermined criterion which in our simulations
was the objective function used in the hidden unit training. The best unit is then trained to the final solution by a
desired training algorithm as normally and it is installed in the active network. In total we studied five different
algorithms with FSI method that were compared both in classification and regression problems to the basic ver-
sions of the same algorithms. The investigated algorithms were Cascade-Correlation, Modified Cascade-Correla-
tion, Cascade, Cascade Network, and Fixed Cascade Error. The simulation results show that the proposed
initialization method is beneficial not only in rather simple but also in highly complicated problems when com-
pared to the corresponding algorithms using only single randomly initialized candidate units in the hidden unit
training.

Key-Words: Constructive neural networks, initialization, cascade-correlation, forward selection, classification,
regression.

1 Introduction
The learning problem for neural networks can be
viewed as a nonlinear optimization problem in which
the goal is to find the set of network weights that mini-
mizes a performance function. The performance func-
tion, which is usually a function of the network
mapping errors, describes a surface in the weight
space, often referred to as the error surface. Training
methods can then be regarded as methods for searching
this surface for a minimum. The complexity of the
search is governed by the nature of the surface. Error
surfaces in most neural networks have several well-
known characteristics that make them difficult to
search. For example, they have many flat regions
where learning is slow, and long narrow troughs that
are flat in one direction and steep in surrounding direc-
tions. In addition, the error surface is usually character-
ized by a large number of poor local minima in the
neighbourhood of an acceptable local or a global mini-
mum.

In any nonlinear optimization problem, the initiali-
zation of the parameters has an important influence on
the ability of the training algorithm to converge and the
speed of that convergence. Since the network weights
are normally initialized randomly, a large number of
networks with different weight initializations may need
to be trained before a weight initialization is found
which converges to a good solution. An extensive
search for the optimum values requires therefore much
more overhead than performing a relatively small
number of simulations using near-optimal values. In
practise, however, it is not feasible to perform a global
search for obtaining the optimal values of the initial
network weights or other parameters. Furthermore,
current mathematical techniques are insufficient for a
complete theoretical study of the learning behaviour of
the neural networks. Nevertheless, it is important to
have a good approximation of the optimal initial values
of the parameters to reduce the required training time.
For those reasons, computationally more efficient

weight initialization methods are needed for the better
training of neural networks.

This research is focused on applying a forward
selection initialization (FSI) [5] method for construc-
tive neural network algorithms. Especially some cas-
cade-correlation type algorithms have been studied.
The idea of the cascade-correlation algorithm is to add
hidden units one by one, each on a separate hidden
layer, to form a multilayer perceptron capable of solv-
ing a learning problem without prior assumptions about
its size and structure.

2 FSI in Constructive Algorithms
We studied in total five different algorithms with FSI
method that were compared both in classification and
regression problems to the basic versions of the same
algorithms. The investigated algorithms were Cascade-
Correlation (CC) [1], Modified Cascade-Correlation
(MCC) with objective function presented in [2],
Cascade (CAS) [9], Cascade Network (CN) [6], and
Fixed Cascade Error (FCE) [3].

2.1 FSI in Cascade-Correlation Algorithm
The first benchmark algorithm was the standard Cas-
cade-Correlation algorithm designed by Fahlman and
Lebiere [1]. The cascade-correlation learning begins
with a minimal network and automatically adds new
hidden units one by one until a satisfactory solution is
achieved. Once a new hidden unit has been added to
the network, its input weights are frozen. This unit then
becomes a permanent feature detector in the network,
and it produces outputs for possibly additional hidden
units creating more complex feature detectors. The cas-
cade-correlation architecture has several advantages
over conventional non-constructive backpropagation
algorithms: it learns very quickly, the network deter-
mines its own size and topology, it preserves the struc-
tures it has built even if the training set changes, and it
requires no back-propagation of error signals through
the connections of the network.

The FSI method in the case of CC can be presented
in the following way. First, Q (Q = 100 in our simula-
tions with all the algorithms) candidate hidden units are
created by initializing their weights with random num-
bers in predefined ranges that are given in section 3 for
all algorithms. After this, the value of the objective
function used in the hidden unit training is computed

for each of these candidate hidden units. For cascade-
correlation, this value is the magnitude of the covari-
ance between the output of the candidate unit and the
network output error, which is given by

(1)

where Vj,l is the output of the jth candidate unit for the
lth training pattern, Vj the mean of the jth candidate
unit outputs, El is the network output error (one output
unit in all our simulations) for the lth training pattern,
and E is the mean of the network output errors.

Finally, the maximum magnitude of the covariance
max(Cc,j) among all the candidates is searched and the
corresponding candidate unit j is selected to be the
most promisingly initialized hidden unit which is then
trained with RPROP algorithm [10] and installed in the
active network. All the other candidate hidden units are
deleted. The above procedure is repeated at each point
when a new hidden unit is to be added to the network.

2.2 FSI in Other Algorithms
Modified Cascade-Correlation algorithm [2] is

almost equivalent to CC. Only exceptions are due to
the different objective function used in the hidden unit
training. The averages of both the remaining network
error and the candidate hidden unit output have been
deleted when compared to the objective function of the
cascade-correlation. Otherwise, the general structure of
the method has been maintained the same. The best
candidate unit while applying FSI method is chosen by
maximizing [2], the magnitude of the modified
covariance between the output of the candidate unit
and the remaining network output error, which is given
by

(2)

where Vj,l is the output of the jth candidate unit for the
lth training pattern and El is the network output error
for the lth training pattern. All the other steps while
applying FSI method on this algorithm are kept the
same when compared to CC.

There are two major changes in Cascade algorithm
[9] while applying the FSI method when compared to
CC. Firstly, the objective function in the candidate unit
selection and hidden unit training is not correlation (or

S2

CC j, Vj l, Vj–() El E–()
l

∑ j, 1 … Q, ,= =

S2

S2 j, Vj l, El

l

∑ j, 1 … Q, ,= =

covariance, actually) function but the squared error
function, which is defined as

(3)

where oj,l is the actual network output for lth training
pattern with the jth candidate unit in the network and tl
is the target output of the network for the lth training
pattern. Furthermore, this objective function and selec-
tion criterion is of course minimized and not maxi-
mized as in the case of correlation. All the other parts
of FSI are similar to CC.

The architecture of Cascade Network algorithm [6]
differs most from the cascade-correlation. It has no
special output neuron but the output of the network is
obtained from the last added hidden neuron. The objec-
tive function in this method is the same as in CAS (the
network output is, however, now the candidate unit
output). Thus, we can use the same steps of FSI as in
the case of CAS.

Fixed Cascade Error algorithm [3] is quite similar
to the original cascade-correlation [1] and the modified
CC presented by Kwok and Yeung [2]. The difference
is that the objective function used in the hidden unit
training has been changed from a minimizable correla-
tion function into a maximizable cumulative product
between the zero-centered network output error and the
candidate unit output. The objective function is thus
given by

(4)

where Vj,l is the output of the jth candidate unit for the
lth training pattern, El is the network output error for
the lth training pattern, and E is the mean of the net-
work output errors. The best candidate unit in FSI is
selected to be the one that has the maximal value of the
above mentioned criterion CFE,j among all the Q candi-
dates. The other stages of FSI are kept similar to those
of FSI in CC.

3 Simulations and Results
The algorithms were tested in extensive simulations
with four classification and four regression problems.
The classification problems were Chess [4], Spiral [1],
Parity [1], and Cancer problem [8]. The regression
problems were Henon [4], Laser [11], Additive [2], and

Mackey-Glass [7]. The Cancer problem and Laser time
series are based on real-world data while the others are
artificially generated. All the simulations were repeated
twenty times due to the random initialization of the net-
work weights. The hidden unit weights were initialized
with uniformly distributed random numbers of the
range [-0.5, +0.5] in the basic versions of CC, MCC,
CAS, and FCE algorithms whereas the range for the
candidate unit initialization in the FSI versions of the
same algorithms was [-4.0, +4.0]. The ranges used in
the basic and FSI versions of CN algorithm were [-8.0,
+8.0] in classification problems and [-2.5, +2.5] in
regression problems. Because all the hidden units had
sigmoidal activation function (hyperbolic tangent),
they were trained with RPROP algorithm [10]. The
hidden unit training was continued until the changes in
the objective function value were sufficiently small or
the maximum number of the epochs was reached. The
separate output units in the CC, MCC, CAS, and FCE
algorithms were trained by the pseudo-inverse method
of linear regression, since they were employing linear
activation function. The network training was stopped
when the network output error fell below the target
error value or the maximum number of the hidden units
was reached.

The error values that we used for obtaining the sim-
ulation results were classification error (CERR) for the
classification problems and normalized mean square
error (NMSE) for the regression problems. In our
results CERR was defined as

(5)

where l is the number of the data samples, tl is the tar-
get output of the network for the lth data pattern, ol is
the actual network output for lth data pattern, and sgn is
the sign function of a number. The sign function oper-
ates as follows: if the number is negative, sgn gives an
output value of -1, otherwise it gives an output of +1.
Furthermore, NMSE was determined as

(6)

where σ2 is the variance of the target data t.
The final results in terms of the error values are

shown in Table 1. In each case, the averaged best result
of the testing data while using the FSI version of the
algorithm is shown above the averaged best result of

CE j, tl oj l,–()2

l

∑ j, 1 … Q, ,= =

CFE j, El E–()Vj l,
l

∑ j, 1 … Q, ,= = CERR
1
2l
----- tsgn l olsgn– ,

l

∑=

NMSE
1

lσ2
-------- tl ol–()2

,

l

∑=

the testing data while using the basic version of the
same algorithm. In addition, the respective computa-
tional costs of the algorithms while training for differ-
ent problems are given in Table 2. The average
numbers of hidden units and MFLOPS (millions of
floating point operations) that were needed for the
results in Table 1 are shown. For the readers’ conven-
ience, the best results of all the problems in Tables 1
and 2 are shown in ‘bold’ for both the FSI and the basic
versions among all the algorithms. In case of many
equal best results in one problem, all of the best results
of that particular problem are given in ‘bold’. Figure 1
depicts an example of the behaviour of the objective
function values during the training of the first five hid-
den units with the basic and FSI versions of the MCC
algorithm in Henon problem. From the figure one can
observe that the hidden unit training of the FSI version
starts and usually ends up with higher objective func-
tion values than that of the basic version, as we would
expect.

The results show that the benefits of FSI can be seen
in almost all the cases. The results obtained with the
FSI versions of the algorithms stay approximately at
the same level when compared to the results obtained
with the basic versions of the algorithms. FSI seems to
be working better in simpler problems, since the results
in Laser problem as well as in some cases in Additive
problem have deteriorated. On the other hand, FSI ver-
sions work as well as basic versions in Mackey-Glass
problem, which is the most difficult problem in our
simulations. However, this does not change the fact
that the enhancements are at their best in the classifica-
tion problems that happen to be the easiest problems in
our simulations.

When considering the total number of hidden units
needed in the networks, we can see the obvious advan-
tages of our initialization method. Only in Spiral and
Laser problems we need to spend regularly more hid-
den units with the FSI versions than with the basic ver-
sions. In most of the cases we are able to use from 20%
to 50% less hidden units in the FSI versions than what
is needed in the basic versions. One reason for the
smaller amount of the hidden units is that we usually
end up in higher objective function values in the hidden
unit training when we are using appropriate initial val-
ues for the network weights thus enabling more effi-
cient hidden unit training. Clearly, as the single hidden
units can learn more efficiently, we need a smaller
amount of them in the final network to perform the
desired overall function.

When comparing the FSI versions of the algorithms
to their basic versions one-by-one, we notice that FSI
works best with CC, MCC, and FCE algorithms. For
CAS and especially for CN the FSI approach is not as
successful as we would think beforehand. One reason
may be the objective function used in the hidden unit
training (which is also used in selecting the best candi-
date in FSI), since for CAS and CN methods this is a
squared error function, while for the other methods it is
a maximizable correlation-type function. Another rea-
son for the poor performance of CN is the missing sep-
arate output unit. The last hidden unit can not operate
as an output unit as efficiently as a separate output unit
(which is found in all the other algorithms) can work.

4 Conclusions
We presented a forward selection initialization method
for some cascade-correlation type constructive neural
network algorithms. The key idea of the method is to
use a large pool of randomly initialized candidate units,
and then to choose the best one of them (according to
some predefined criterion which in our simulations was
the objective function used in the hidden unit training)
to be trained and installed in the active network. The
simulations showed that FSI produced equal results
with smaller number of hidden units when compared to
the basic versions (that use only single randomly ini-
tialized candidate hidden units) of the same algorithms.

References:
[1] S. E. Fahlman and C. Lebiere, “The Cascade-Cor-

relation Learning Architecture”, Technical Report
CMU-CS-90-100, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, 1990.

[2] T.-Y. Kwok and D.-Y. Yeung, “Objective Func-
tions for Training New Hidden Units in Construc-
tive Neural Networks”, IEEE Transactions on
Neural Networks, Vol. 8, No. 5, Sep. 1997, pp.
1131-1148.

[3] J. Lahnajärvi, M. Lehtokangas, and J. Saarinen,
“Fixed Cascade Error - A Novel Constructive
Neural Network for Structure Learning”, Proceed-
ings of the Artificial Neural Networks in Engi-
neering Conference, ANNIE’99, St. Louis,
Missouri, USA, Nov. 7-10, 1999, pp. 25-30.

[4] M. Lehtokangas, J. Saarinen, P. Huuhtanen, and
K. Kaski, “Initializing Weights of a Multilayer

Perceptron Network by Using the Orthogonal
Least Squares Algorithm”, Neural Computation,
Vol. 7, No. 5, 1995, pp. 982-999.

[5] M. Lehtokangas, “Fast Initialization for Cascade-
Correlation Learning”, IEEE Transactions on
Neural Networks, Vol. 10, No. 2, Mar. 1999, pp.
410-414.

[6] E. Littmann and H. Ritter, “Generalization Abili-
ties of Cascade Network Architectures”, S. J.
Hanson, J. D. Cowan, and C. L. Giles (eds.),
Advances in Neural Information Processing Sys-
tems, Morgan Kaufman, San Mateo, CA, Vol. 5,
1993, pp. 188-195.

[7] Oregon Graduate Institute of Science and Tech-
nology, Data Distribution WWW site (http://
www.ece.ogi.edu/~ericwan/data.html).

[8] L. Prechelt, “PROBEN1 - A Set of Neural Net-
work Benchmark Problems and Benchmarking
Rules”, Technical Report 21/94, Fakultät für
Informatik, Universität Karlsruhe, D-76128 Karl-
sruhe, Germany, Sep. 1994.

[9] L. Prechelt, “Investigation of the CasCor Family
of Learning Algorithms”, Neural Networks, Vol.
10, No. 5, 1997, pp. 885-896.

[10] M. Riedmiller and H. Braun, “A Direct Adaptive
Method for Faster Backpropagation Learning: The
RPROP Algorithm”, Proceedings of the IEEE
International Conference on Neural Networks,
San Francisco, CA, Mar. 28 - Apr. 1, 1993, pp.
586-591.

[11] The Santa Fe Time Series Competition Data
WWW site (http://www.stern.nyu.edu/~aweigend/
Time-Series/SantaFe.html).

Table 1. Results of the algorithms with all simulation problems. Problems marked with
an asterisk (*) give CERR values and the others give NMSE values. The upper values are
for the FSI versions and the lower values are for the basic versions of the algorithms. The
results are average values of twenty runs. There were no testing data for Chess and Spiral
problems, so the values are from training data. In all other cases, the values are from
testing data.

Algorithm/
Problem

CC MCC CAS CN FCE

Chess* 0
0

0
0

0
0

0
0

0
0

Spiral* 0
0

0
0

0
0

0.1255
0.1196

0
0

Parity* 0.0806
0.0958

0.0896
0.1042

0.1562
0.0944

0.2980
0.3764

0.0916
0.1225

Cancer* 0.0213
0.0212

0.0208
0.0219

0.0183
0.0231

0.0272
0.0246

0.0222
0.0222

Henon 0.0464
0.0397

0.0432
0.0475

0.0348
0.0460

0.1054
0.0949

0.0501
0.0457

Laser 0.0404
0.0327

0.0425
0.0318

0.0438
0.0288

0.1737
0.1861

0.0389
0.0328

Additive 0.0895
0.0736

0.0670
0.0724

0.0804
0.0683

0.5545
0.5632

0.0939
0.0627

Mackey-Glass 0.3319
0.3252

0.3256
0.3316

0.3247
0.3367

0.4027
0.4060

0.3314
0.3296

Figure 1. (a) The values of the objective function during the training of the first five
hidden units with the basic version of the MCC algorithm in Henon problem. (b) The
values of the objective function during the training of the first five hidden units with the
FSI version of the MCC algorithm in Henon problem.

Table 2. The computational costs of the algorithms for different problems. The upper
values are average numbers of hidden units and MFLOPS (separated by a semicolon)
spent in the FSI versions while the lower values give the corresponding values for the
basic versions of the algorithms. The values correspond to the networks that produced the
results shown in Table 1.

Algorithm/
Problem

CC MCC CAS CN FCE

Chess 2.90; 0.18
6.70; 0.38

3.10; 0.17
5.75; 0.28

3.85; 0.37
5.80; 0.65

9.15; 0.90
21.25; 2.0

3.00; 0.16
6.90; 0.35

Spiral 42.20; 140
27.75; 50

44.90; 150
30.40; 57

58.35; 370
26.75; 100

74.95; 370
60.65; 130

44.40; 150
31.80; 65

Parity 10.05; 51
10.65; 50

11.05; 58
9.25; 40

11.10; 95
9.45; 100

9.95; 62
12.20; 47

9.15; 44
10.85; 48

Cancer 3.00; 8.3
4.00; 8.7

3.30; 8.8
2.90; 5.8

4.00; 19
3.00; 16

12.40; 68
9.35; 30

2.60; 6.6
2.95; 5.9

Henon 10.55; 7.4
11.45; 5.9

10.00; 6.3
10.85; 5.1

11.15; 11
10.40; 13

21.40; 25
12.25; 6.9

10.30; 6.5
11.60; 5.6

Laser 25.15; 390
19.80; 210

22.85; 330
19.60; 200

35.20; 990
19.75; 470

10.05; 140
10.85; 120

24.60; 370
20.25; 210

Additive 17.45; 62
21.30; 69

17.35; 60
22.15; 75

26.60; 170
20.00; 130

58.40; 420
46.20; 180

18.10; 63
22.50; 70

Mackey-Glass 6.20; 18
10.30; 27

6.75; 20
7.80; 18

9.65; 48
8.85; 45

10.60; 36
7.45; 12

7.80; 25
10.05; 25

0 50 100 150 200 250 300 350
0

5

10

15

20

25
Training curve of hidden units, MCC:basic

Number of epochs

V
al

ue
 o

f t
he

 o
bj

ec
tiv

e
fu

nc
tio

n

(a)

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

Number of epochs

V
al

ue
 o

f t
he

 o
bj

ec
tiv

e
fu

nc
tio

n

Training curve of hidden units, MCC:FSI(b)

