
Load Balancing for Parallel Computing on Distributed Computers

Y.P. Chien, A. Ecer, J.D. Chen, and H.U. Akay
Purdue School of Engineering and Technology

Indiana University-Purdue University at Indianapolis
723 W. Michigan St. Indianapolis, Indiana 46202

U.S.A.
(317)-274-2760

Abstract: Distributed processing can be used for solving large computation intensive problems. A
distributed system may include parallel supercomputers, networked workstations and PCs. This
paper discusses load balancing of a parallel job in a distributed computation environment. The
information necessary for load balancing is studied. The software tools that automatically collect the
information and perform load balancing is described. Parallel computational fluid dynamics examples
are used to demonstrate the effectiveness of the load balancing method.

Key-Words: distributed computing, dynamic load balancing.

1. Introduction
Distributed computing allows the utilization of
multiple computers for a single parallel job. One
common approach in solving large parallel
computational fluid dynamics (CFD) problems is
domain decomposition. In domain decomposition
approach, the original domain is divided into a set
of sub-domains (also called blocks). The blocks
are distributed among a set of networked
computers. When each computer process is
solving one block of data, the computer processes
have to communicate with their neighbors
periodically. The parallel program can be divided
in terms of a series of block and interface solvers
[1]. The block solver is for computing the
solution for a block. The interface solver is for
exchanging information between block
boundaries. The execution time of each process
is affected by several time-varying factors, e.g.,
the load of computers, the load of the network,
the solution scheme used for solving each block,
and sizes of blocks. Therefore, some processes
may complete computation earlier than other
processes and wait periodically for information
from other processes. Such waiting significantly
increases the elapsed program execution time and
decreases the efficiency of the system.

 Dynamic load balancing (DLB) is to properly
distribute the computation processes among
computers to ensure the communication time and
the waiting time are minimized [2,3]. To increase
the efficiency and speed of parallel computation,
the computation load should be distributed to
computers in such a way that the elapsed
execution time of the slowest computer is
minimized. DLB is essential for efficient use of
complex and dynamic parallel and distributed
computing resources.

In this study, the basic assumptions of DLB
are as follows: (1) there are large numbers of
computers available in different locations. These
computers are grouped in many clusters and
connected to each other with different networks.
(2) The multi-user computers are operating under
Unix and/or Windows NT. (3) The parallel
application software is running MPI or PVM [4].
(4) The parallel job may take several hours or days
to execute. The time saving by load balancing is
justified. (5) A load balancing cycle is defined, e.g.,
half hour or unbalance is detected.
 In this paper, we will describe the information
necessary for load balancing, the tools needed for
obtaining such information, computer and network
models for evaluating the quality of load distribution
and the optimization methods used for load

balancing. Parallel CFD examples are described to
demonstrate the effectiveness of the proposed load
balancing method.

2. Information Needed for DLB
Many factors affect the load balance a parallel
job. Some factors are related to the parallel
applications, such as the sizes of CFD blocks,
sizes of interfaces, the computation complexity of
block and interface solvers, the algorithm used in
the CFD program (such as the method for
determining the size of time-steps). Some factors
are related to the computation environment, such
as the computer speeds, the number of non-
parallel processes (we call them extraneous load)
executed concurrently with parallel processes on
each processor, and the communication speed
between each pair of computers on the network
during the execution of parallel CFD. Knowing
all the factors enable us to derive a model to
estimate the quality of any given load distribution.
By describing the quality of the load distribution
as a cost function, load-balancing problem
becomes a standard optimization problem.
However, the factors related to computational
environment are usually not available to the user
of the parallel applications. The factors related to
the parallel applications are usually not
considered by computer system tools.

3 DLB Tools
We have developed a software tool set DLB to
support dynamic load balancing. Several tools are
provided by DLB.
GPAR: The GPAR is a parallel CFD data
management tool. It provides all load-balancing
factors that are related to the parallel application.
Stamp Library: The stamp library is a collection of
functions which can be called by C or FORTRAN
programs, they can be embedded into CFD
programs. They gather the timing information
related to both the CFD program and the computer
network. The development of the stamp library is
based on the assumption that the parallel CFD
program is written in a format that consists of

two components, the block solver and the
interface solver. The block solver contains all
computations for solving differential equations.
The interface solver is responsible for inter-
processes communication only. When non-
consecutive communications are required within
each time-step, multiple block solvers and
multiple interface solvers are allowed.
Ptrack: Presently DLB can be used on UNIX and
Windows NT based systems. Since both UNIX and
Windows NT are multi-user and multi-tasking OS,
CPU time is shared by all concurrently running
processes, Ptrack (process tracker program) finds
the average number of processes on each computer.
Since the number of parallel CFD processes running
on each computer are known, the load that belongs
to other users (extraneous load) can be calculated.
Ctrack: In order to estimate the elapsed execution
time for the CFD blocks, information about the
communication speed between all computers is
needed. Ctrack (communication tracker program)
supports communication speed measurement by
systematically sending round trip short messages
between different pairs of computers. The messages
are sent in such a low rate so that it does not affect
the network load.
Balance: This tool predicts the computation and
communication costs of any given load distribution
based on the information of the parallel application
and the measured information of the computers. A
cost function is defined as the elapsed time to
complete the slowest process. This cost functions is
minimized at the end of each load balancing cycle by
redistributing the blocks among computers. The
optimized load distribution is used in the next
execution cycle. The tool allows of abandoning
busy processors and utilizing additional processors
when they are available. Different optimization
algorithms (e.g., greedy algorithm, genetic
algorithms and mixed genetic-greedy algorithms)
can be utilized to minimize the cost function.
DLB Monitor: This tool launches the computation
and communication measurement programs, Ptrack
and Ctrack, and the application program
simultaneously. It gathers the results of time stamp
measurements and Ptrack/Ctrack from all parallel

computers. It also runs the Balance tool and restart
the parallel application with balanced distribution.
RCopy & Rspawn: Rcopy is a tool to copy files
from/to remote NT and Unix based computers using
message-passing libraries. This tool is necessary for
gathering data for load balancing. Rspawn is a tool
to execute system commands (or applications) on
remote NT and Unix based computers.
Others: There are other miscellaneous useful tools
for DLB, such as, ps, killit and cat were developed
for Windows NT.

4 Tools Organization
Fig. 1 depicts the relationship between DLB tools
and the parallel application. Fig. 2 shows the
flowchart of the load balancing cycles. In each load
balancing cycle, Ctrack, Ptrack, and CFD
applications are started together. After executing
the application code for a fixed amount of time
steps, the application code, Ptrack, and Ctrack are
stopped. The DLB monitor uses RCopy tool to

gather the measured information of the parallel
application and computational environment and runs
the balancing tool to suggest a new load
distribution. Then Ctrack, Ptrack, and CFD
applications are started together again. This cycle
repeats until the execution of the application code
completes.

A1

DLB
Monitor

A2

Generate All
Results

A3

Load
Balancing

A4

CFD
Applications

A5

Communication
Speed

Measurement

A6

Count the
Average

Number of Non-
CFD processes

New Block
Distribution

Timing Result

Communication Cost

RCopy
Cat

Extraneous Load

Balance

CTrack

PTrack

Initial Block
Distribution

Stamp Library

Start

Start Start

Simultaneously
Start/Stop with
CFD
Application

RSpawn
Killit Simultaneously

Start/Stop with
CFD
Application

Fig 2. Load balancing cycles.

Networked Heterogeneous Computers

Operating System
(UNIX and Windows NT)

Message Passing Tools
(PVM or MPI)

Parallel CFD
Application DLB Tools

Fig. 1. Distributed computation

5 DLB Examples
Two test cases are presented to demonstrate DLB.
Both cases include 64 blocks of data. All blocks
have similar number of nodes.
 In the first case, 24 processors were available: a
cluster of 6 IBM RS/6000 workstations in CFD Lab
at IUPUI, Indianapolis, Indiana (iw1-iw6), a luster
of 10 Windows NT PCs in CFD Lab at IUPUI,
Indianapolis, Indiana (ip1-ip7, ip9-ip13), and 8
processors (Thin node 2SC) of the IBM SP in
Indiana University, Bloomington, Indiana (b1-b8).
The network model is constructed based on the
information of computer and network measurement
and parallel application. The model shows that each
of iw1-iw6 in the CFD lab is approximately 10%

faster than the nodes b1 to b5 in Bloomington, 30%
faster than nodes b6 to b8 in Bloomington, and nine
times faster than one of the PC's. Initial load
distribution assigned 3 blocks on each processor at
the PC-Cluster and at the SP in Bloomington, 1 or 2
blocks at the RS/6000s of the CFD Lab as shown in
Fig. 3a. The gray blocks in the figure are the
processes of the parallel job. The black block is
the extraneous load with respect to parallel job.
The balanced distribution is shown in Fig.3b. The
white blocks are the blocks being moved buy DLB.
Elapsed program execution time was reduced from
13.79 second per time step to 3.71 second per time
step due to load balancing.

Fig. 3a. DLB test case 1: original distribution

Fig. 3b. DLB test case 1: load balanced distribution.

 This example shows the advantage of the
online measurements during the application

execution. We initially considered all the nodes of
the SP in Bloomington to be equal since they use

the same CPU and have the same RAM size. But
the load balancer puts fewer loads on three of the
eight nodes. The output files from the load-
balancer indicated that these processors were
slower than the others. After discussing with the
system administrator, we found out that the five
faster nodes have 4 memory boards with 64 MB,
the other three nodes have 2 boards with 128 MB
each. The five nodes were faster due to the
higher memory interleave. Without such
measurements, one would try to put equal load
on each of these nodes.
 The second case involved the following 32
processors: a cluster of 6 IBM RS/6000 in CFD Lab

at IUPUI, Indianapolis, Indiana, (iw1-iw6), 8
processors (Thin node 2SC) of the IBM SP at
Indiana University, Bloomington, Indiana (b1-
b8), and 8 processors (Thin node 2) of the IBM
SP, in RUS at Stuttgart, Germany (s1 - s8), 10
processors of the Windows NT PC-Cluster in
CFD Lab at IUPUI, Indianapolis (ip1, ip4-ip7,
ip9-ip13). Each of iw1-iw6 at CFD Lab at
IUPUI is nearly 4 times faster than the SP nodes
in Stuttgart. Initial load distribution is shown in
Fig. 4a. The load distribution after the DLB is
shown in Fig. 4b. Load balance reduced elapsed
execution time from 12.71 seconds per time step
to 3.45 seconds per time step.

Fig. 4a. DLB test case 2: original distribution

Fig. 4b. DLB test case 2: load balanced distribution

6 Conclusions
The method and tools for the load balancing of
parallel processes on distributed computers are
studied. The cost functions for load balancing are
derived based on the information of both the
parallel application and the measured computer
and network speed. The different optimization
algorithms can be used. The test cases
demonstrated the usefulness of DLB.

References
[1] Akay, H.U., Blech, R., Ecer, A., Ercoskun,

D., Kemle, B, Quealy, A. and Williams, A.,
A Database Management System for Parallel
Processing of CFD Algorithms, Parallel
Computational Fluid Dynamics ’92, Ed. By
R.B. Pelz, et. al., Elsevier Science Publishers,
1992, pp. 101-107.

[2] Chien, Y.P., Ecer, A. Akay, H.U., and Secer, S.,
“Communication Cost Function for Parallel
CFD in a Heterogeneous Environment Using
Ethernet,” (invited paper) Proceedings of
Parallel CFD '96 Conference (edited by P.
Schiano, et al., Elsevier Science), May 1996,
Capri, Italy, pp. 1-10.

[3] Chien*, Y.P., Ecer, A., Akay, H.U., Secer, S.,
"Cost Estimation for Parallel CFD Using
Variable Time-Stepping Algorithms,” to appear
on International Journal of Computational
Fluid Dynamics.

[4] Geist, A., Beguelin, A., Dongarra, J., Jiang, W.,
Manchek, R., and Sunderam, V. (1993), ‘PVM
3.0 User's Guide and Reference Manual,’ Oak
Ridge National Laboratory Technical Report,
ORNL/TM-12187.

