
 

1 Introduction
Soft computing applications like artificial neural net-
works (ANN) and genetic algorithms require much
computation especially in the learning phase, where
the number of iterations is usually very high. In the
production phase, the computational requirements are
much smaller, which makes the algorithms attractive
in embedded and portable systems. The applications
being for example speech recognition, pattern recog-
nition and different classification tasks.

The soft computing ideas, inspired by biological
findings are usually inherently parallel like their bio-
logical counterparts. A massive number of synapses
and neurons work simultaneously and affect to each
others via the communication mechanism. This paral-
lelism can not be utilized in sequential processing on
PCs or workstations. 

The complexity of parallel system design and
usage can be alleviated by a modular and scalable
structure consisting of small testable units. In general,
replication seems to be a reasonable choice to use the
increased amount of computational resources and
transistors in the future system-on-chip implementa-
tions. 

Our PARNEU (Partial tree shape neurocomputer)
system was implemented to speed up algorithm devel-
opment in research environment where the algorithms
continuously change. Thus it was important that the
system is flexible and allows many parallel mapping
possibilities. PARNEU system is a continuation of
successful TUTNC (Tampere University of Technol-
ogy Neural Computer) [1] computer, which has a
complete tree topology where processing units are at
the outer leaves of a binary tree. In contrary to

TUTNC, PARNEU has more flexible communication
topology consisting of bus, ring and tree networks,
which allows practical expandability without any
needs to redesign any part of the system.

Other examples of similar systems based on dig-
ital signal processors (DSPs) are RAP [2], MUSIC
[3], RENNS [4], and Manitoba’s reconfigurable com-
puter [5]. RAP has a ring topology consisting of 10
boards at maximum, each of which have four Texas
TMS320C30 DSPs. MUSIC has been implemented
with Motorola 96002 DSPs and Inmos T805 transput-
ers and it also utilizes a ring topology. RENNS uses
TMS32025 DSPs in each system module while Mani-
toba’s system use Motorola 96002 DSPs and bus
topology. 

REMAP [6] is a SIMD-type linear vector with bit
serial computing elements using only Xilinx Field
Programmable Gate Arrays (FPGAs). Commercial
neurocomputer systems like CNAPS [7] and Synapse
[8] use application specific integrated circuits
(ASICs) as processing units. A more thorough review
of neurocomputers are found in [9,10,11].

In this paper, we present PARNEU topology and
show practical expandability with results obtained
from several ANN applications. In addition to soft
computing, PARNEU is currently used in digital
video and image processing which is another field of
computationally intensive data processing.

In the next section, we briefly review the general
requirements of ANN algorithms implemented in
PARNEU system. In Section 3, the hardware and soft-
ware implementation of PARNEU is presented. Per-
formance analysis is given in Section 4. Section 5
concludes the paper.
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2 Requirements of ANN algorithms
An artificial neuron, which is a basic block in most of
the ANN algorithms, requires numerous multiplica-
tion and addition operations as well as a computation
of an activation function. A support for fast addition
and multiplication operations are therefore the most
important common requirements for different ANNs.
Multilayer Perceptron networks (MLP) [12] use gen-
erally sigmoidal or hyperbolic tangent as an activation
function, which requires exponent and division opera-
tions. Sometimes the computation of the activation
function is improved by using look-up tables. 

The main computational operations in Self-
Organizing Map (SOM) [13] and other winner-take-
all type networks are comparison operation, which is
used to find the winner neuron, as well as multiplica-
tion, substruction and addition, which are used in dis-
tance computation and weight update. The operations
in distance computation depend on the used distance
metrics. The squared Euclidean norm requires only
subtraction, multiplication and addition. The dot-
product metric requires normalization, but after that
the weight matrix can be multiplied with the input
vector as in many other neural networks.

The computational needs for the basic Sparse Dis-
tributed Memory (SDM) [14] are Hamming distance
computation and bit manipulations. The operations
are simple and fast, but an enormous number of them
are executed when mimicking biological systems. The
improved reading method requires more computation
and higher precision even though 8 bits is enough for
the counter matrix [15]. In contrast to other ANNs,
SDM requires a large memory area to store the coun-
ter matrix.

The communication requirements of each ANN
depend on the mapping style. In fine-grain implemen-
tations and on-line learning [17] where weight values
are updated continuously after each input pattern, the
communication is much more frequent than in large-
grain and batch mode learning [17] where weights are
updated only after a complete learning set or a subset
of it. The batch mode allows pipelined operations and
block data transfers, for which reason it is used in
many hardware implementations to achieve good per-
formance values. However, the required algorithm
modifications slow down the convergence and more
iterations are needed in the application level [17]. 

Especially in the on-line learning, a fast broadcast
and global reduction operations like global addition or
comparison are needed. A fast broadcast operation is
achieved for example with a bus or tree topology [16].
Bus topology does not allow effective data gathering,
which limits its usability as an only communication
media. Instead, the tree topology gives logarithmic
gathering time as a function of the number of process-
ing units (PUs) [16], which is important to achieve

practical scalability. A local communication between
the PUs can be best arranged in a mesh or ring topol-
ogy, where point-to-point connections are available. 

A tree topology alone would be a good solution,
but it is hard to scale without external cabling. Bi-
directional communication is also difficult without
separate communication channels. A broadcast bus
combined with an uni-directional partial tree network
is a good compromise between easy scalability, mod-
ular implementation, and good performance. This
topology allows pipelined uni-directional data flow,
which decreases the effect of initial latency time. A
local communication, required in some ANNs, can be
best fulfilled with ring or mesh type communication
topology.

3 PARNEU System
PARNEU is a modular and scalable multiprocessor
system. It consists of identical, modular processing
cards connected to a master board and further to a host
computer, as depicted in Fig. 1. Currently, the host
computer is a PC with WindowsNT operating system
and it is used for initialisation and monitoring. 

The master processing unit (MPU) controls the
operations inside the PARNEU system as well as exe-
cutes some sequential parts of an application. Master
board consists of internal bus that connects DRAM
memory banks, MPU and communication interfaces
together. 

Processing boards also have a local bus connect-
ing four processing units (PUs) and a global bus inter-
face together. Each PU has a 256 kilobytes internal
SRAM memory. Program initialization, data transfer
and synchronization are done with the communication
network. The PUs can also reconfigure the partial tree
FPGAs. 

An effective communication network is the most
important part of PARNEU system. In addition to
scalability and modularity requirements, it should
support different communication methods and thus
different type of algorithm mappings. Buffered and
physically similar, synchronous processing board
interfaces with board wide clock signals allows physi-
cal scalability. Modular boards cause only a fixed
extra cost per additional board and thus cost scalabil-
ity is achieved. Performance scalability is analysed in
Section 4.

According to previous analysis, data broadcast to
the PUs, direct data exchange between PUs, and glo-
bal reduction operations for PUs data are required. In
PARNEU, a Global bus (GB) serves the broadcast
requirement and has the highest data transfer band-
width. The global bus is formed by buffered, point-to-
point segment between each board [18]. The pipelin-
ing through First-In First-Out (FIFO) memories
increase communication delay, but allows unlimited



 

physical scalability without clock skew or other tim-
ing problems. Buffering is done in Bus Units (BUSU)
as depicted in Fig. 1.

A reconfigurable partial tree is formed from a
complete subtrees located in each processing board.
Subtrees are connected together to form the overall
partial tree structure that ends up at the master board.
Data can be transferred from the PUs to the MPU in a
pipelined manner and the partial tree can perform
comparison, addition or other simple global reduction
operations. With different FPGA configuration, data
can also be transferred from an external connector to
each set of four PUs.

To support local communication, two of the link
ports of each PU are connected to the previous PU and
two link ports to the next PU to form a bi-directional
ring network. Local data transfer and systolic opera-
tions as well as synchronization of the PUs are the
main operations. Synchronization between the MPU
and the PUs are done with two physical wired-OR/
AND signals which inform the MPU whether none,
some or all the PUs have finished the current opera-
tion. 

A good example of effectiveness and capability of
data pipelining is a circle that starts from a data broad-
cast via the global bus to all the PUs. The PUs per-
form a local computation according to their own
program. After that PUs send the data to the partial
tree network, which does a global reduction operation
such as addition or comparison. Finally the MPU
receives the result via the tree network. Thus, the glo-
bal bus, the partial tree bus, the PUs and the MPU
operate simultaneously during the whole operation.
Data transfer latencies are hidden and PU idle times
are reduced. 

All the communication paths are implemented
using point-to-point connections and synchronous
data transfer between boards, which guarantees con-

stant timing characteristics and physical scalability. 
PARNEU hardware is implemented with Analog

Device ADSP-21062 DSPs [19] working as process-
ing units (PUs) and Xilinx Field Programmable Gate
Arrays that perform the communication operations.
All boards are mounted in a standard rack, as shown
in Fig. 2. The modular structure was chosen for con-
venient replacement of possible faulty board and prac-
tical scaling of the computational power. The
backplane is truly passive containing only connectors
and routing.

3.1 Programming Environment
Programming environment is one of the most impor-
tant part in application development, especially in
research, where different algorithms and parallel map-
ping methods are tested and analysed. The program-
ming environment should hide the communication
network and allow simple and fast primitives for pro-
grammers. Currently, a support for high level lan-
guages like C-language is almost mandatory. Our
work with programming environment has concen-
trated on easy usability and fast C-language primitives
that keep the software overhead for basic data trans-
fers very low. 

A simplified diagram of PARNEU software inter-
faces is illustrated in Fig. 3. PARNEU is connected to
the host computer via PCI card using WindowsNT
device driver. PARNEU system can be used directly
from the host computer or via a special TCP/IP server.
With TCP/IP server, PARNEU can be used from an
internet connected PC in a similar way as in the host
computer. At the remote computer, a TCP/IP client is
running to give handles to PARNEU applications.

The host and client computers have a special
graphical user interface (GUI) for system initializa-
tion, debugging, monitoring, and execution of simple
user programs. The debugger GUI helps in program
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development and fault diagnosis. In multiprocessor
systems, the debugging interface is more important
than in sequential systems because of synchronization
and locking difficulties. PARNEU has exception mes-
sages of the low level errors to inform users of the
failed operation. Many times the reason for the excep-
tion is caused much earlier than the exception arrives.
To find the actual stage of program execution it is
important that the host computer can access all PU’s
memory and register space directly even though they
are not physically connected to the same bus.

PARNEU allows MIMD (multiple-instruction,
multiple-data) type operations, but for scalability and
easy programming the operations are usually limited
to master-slave configuration, in which the MPU con-
trols the overall operation and the PUs execute the
parallel program. Each PU has its own memory space
and thus the PUs can execute the same code but they
neither need to be synchronized in each operation nor
depend on each other’s memory contents. This,
restricted MIMD structure, is called SPMD (Same
Program, Multiple Data) model [20]. For a program-
mer this means that separate programs are needed, one
for the MPU and one for the PUs. A programmer has
possibility to use only a specific PU for a certain task
by using conditional branches with a PU identification
number. Each PU has a differentiable order number
for this purpose. However, this is an exceptional situa-
tion and should be avoided, since it may decrease par-
allel speedup.

Application programs are written completely in
C-language and a programmer can choose the most
reasonable communication primitive from a C-library.
Communication primitives work similarly even
though the number of processors changes.

Communication is performed using a message-
passing interface (MPI) that gives users a consistent
programming platform. In addition to basic MPI prim-
itives, more complicated operations such as global
reduction operation is supported. This is very effec-
tive in the reconfigurable hardware because the primi-
tives hide the way operations are performed.

Operations can be done either in the hardware or soft-
ware level, but the programmer has always the same
functions even though the hardware configuration
changes.

The parallel algorithm mapping to the PARNEU
architecture is done manually. Compilation and link-
ing are done using ADSP-2106x development tools
and the development library primitives. PC programs
are written in C++-language under the Windows NT
operating system. The programmer can also write an
application specific GUI that uses the host computer
library functions. The application program downloads
the program files and initiate PARNEU as well as
configure the FPGAs by calling the library primitives.
The ready-made FPGA configuration files are stored
in the disk of the host computer from which the pro-
grammer can select the most suitable configuration
for each application. 

4 Performance Measurements
The most important hardware performance metrics
are plain processor performance, communication
throughput and data transfer latencies. The application
performance depends on the parallel mapping strategy
and algorithm properties, which makes comparison
between different systems quite difficult.

To achieve reliable and predictable external signal
timings, all communication buses operate synchro-
nously. Flip-flops cause one clock cycle delay in both
input and output pads but allows zero wait state
implementation for 40 MHz system clock. All DSPs
work with the same clock frequency.

Latency time in each node of the global bus is
three clock cycles and the achieved throughput is 160
Mbyte/s. A cluster of four PUs need three clock cycles
to receive one 32 bit wide data word. Latency time in
the ring bus is about 13 clock cycles and the through-
put is limited to 20 Mbyte/s because of nibble wide
communication links and 40 MHz system clock. The
tree network also uses DSPs’ link ports but additional
delays are caused by the active tree nodes that com-
bine two data values. In four PUs configuration, the
latency time from the PUs to the MPU is about 50
clock cycles. Operation pipelining gives a sustained
throughput of 20 Mbyte/s.

One of the critical operations to achieve good per-
formance in ANN is a global reduction operations. In
small systems, a common bus can work reasonable
well, but as the number of processors is increased the
communication times increase remarkable as illus-
trated in Fig. 4. GB sync all means an operation using
the global bus where synchronization is done between
each operation i.e. the order of data is important. GB
sync add operation is synchronized only after each
addition operation. However, both methods scales
much worse than similar operations using either the
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ring or partial tree networks. In practical implementa-
tion, the partial tree network does not limit the scala-
bility. 

Next we analyse the performance of ANN appli-
cations, like MLP, SOM and SDM. Performance is
given either in wall clock time, in million connections
per second (MCPS) or in million connection updates
per second (MCUPS). All implementations use on-
line learning and execute the same functionality as the
sequential implementations.

MLP implementation is based on continuous
weight update and it uses back-propagation (BP)
learning with momentum [12]. Both neuron and
weight parallel mappings can be effectively used in
PARNEU architecture, but a mixed neuron and
weight parallel mapping minimizes communication
without increasing memory consumption or computa-
tion time [21].

Table 1 illustrates performance in the forward
pass (production) of the MLP network for a problem
with 203 inputs, 80 hidden neurons and 26 output neu-
rons. The measurement is done with one processing
board configuration (4 PUs). The estimated speedup,
based on exact equations found out by the actual
measurements, for 8 board configuration in the learn-
ing phase is about 6.2, which gives efficiency of 78%.
The number of neurons in the MLP network affects
the performance values. For a good parallel perform-
ance, at least one neuron is mapped per PU. However,
this fine-grain parallelism does not give the best per-
formance due to intensive communication. However,
more significant improvements would be achieved by
optimizing the program code in an assembly level, but
the purpose is to show the practical performance val-
ues achieved with normal C-language.

In SOM, the weight and neuron parallel mappings
are both suitable for an on-line execution. Measure-
ments are done with the neuron parallel mapping
using Euclidean distance metric and squared neigh-

borhood area. The presented mapping only needs
broadcast communication and global comparison
operation, which are both well supported in
PARNEU. Global comparison is done in the partial
tree network that is reconfigured to transmit simulta-
neously the coordinates of the winner neuron.

Table 1 gives the performance of SOM with 32
inputs and 32x32 two-dimensional output plane. The
neighbourhood radius is 4. The performance of the
learning phase is computed using all the output neu-
rons even though all the neurons are not updated in
each cycle. The neighbourhood radius has a large
effect on the learning performance, because the
number of updated weights increase as a function of
neighbourhood radius. Computations are performed in
32 bit precision and measurements are done with a
configuration of four PUs. Program codes are mainly
written in C-language, but the local winner search in
each PU is optimized using an assembly level subrou-
tine. The speedup value for 8 board configuration in
the learning phase is 5.9, while the speedup in the read
operation is about 7.5. The extremely good speedup
value in read operation is based on the partial tree net-
work that is used to find out the best matching unit.

A neuron and weight parallel mappings can also
be applied to the SDM model, where a row-wise map-
ping corresponds to the neuron parallel mapping and a
column-wise mapping corresponds to the weight par-
allel mapping. In the column-wise mapping, the col-
umns of the counter matrix are divided into PUs. The
writing operation is fast in both mappings even
though the row-wise mapping benefits from parallel
search of activated locations. However, the column-
wise mapping requires significantly less communica-
tion in the reading operation and is thus selected for
implementation. 

The measurements shown in Table 1 are done for
column-wise mapped SDM with a mask based activa-
tion mechanism and with an improved reading
method [15]. The number address bits is 256 and the
mask size is five. The contents matrix used in the
measurement is 4096 (number of memory locations)
times 512 (data width). The speedup values for 8
board configuration in both reading and writing oper-
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Table 1: Production and learning performance of
MLP, SOM and SDM applications. Estimated
speedup values are given for 8 board configuration.

Production
read

Learning 
write

Speedup, 
8 boards

MLP 5.5 MCPS 1.5 MCUPS 6.2

SOM 30.1 MCPS 25.7 MCUPS 5.9

SDM 51 ms 12.4 ms 6.4



 

ations are about 6.4. The program is written in C-lan-
guage. The number of data bits, the number of
memory locations and the number of mask bits to
select an active position mostly affect the total execu-
tion time. 

5 Conclusions
The presented PARNEU architecture combines

the most useful communication topologies: the tree is
optimal for global reduction operations and the bus
can be used for broadcast. Local communication is
supported by the ring network. However, the recon-
figurable and scalable implementation of the active
partial tree is the most significant topological contri-
bution. The flexibility of the architecture makes it a
very good platform for parallel system research and
allows effective implementations for different algo-
rithms and different mappings. Scalability and modu-
larity are achieved by placing the functional units into
processing boards, which can be connected together
and increased in number. A separate master board
makes the control path shorter and faster than would
be achieved with external controllers. 

In the future, the application development will
continue. In addition to soft computing algorithms, a
parallel H.263 low bit-rate video encoder was imple-
mented. New DCT-based motion estimation methods
and wavelet based image processing algorithms have
also been implemented, and will be further developed.
Parallel compilers and run-time performance monitors
will also be studied. 

In the hardware development, the next phase is to
apply the architectural ideas to System-On-Chip
design. The current board level implementation gives
a good reference for a more integrated chip scale sys-
tems.
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