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Abstract- Multi rate output controllers (MROCs) sample the plant outputs at a faster rate
than they change the plant inputs. Consequently, they offer greater flexibilit y for
controller design than conventional single-rate controllers. MROCs designed under
mixed 2 /H H∞  performance have offered a new dimension in the design process. In
this paper, we introduce the concept of li fting technique, fast discretization and
multi rate output sampling and calculate the mixed 2 /H H∞  norm of the sampled-data
control systems induced via multi rate output sampling.   
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1. Introduction

Sampled-data control systems consist of
a continuous-time plant to be controlled,
a discrete-time controller controlli ng it,
and ideal A/D and D/A converters.
Figure 1 shows the idealized model of
the standard sampled-data control
system.

Figure 1: The standard sampled-data
control system

In this paper, MROCs are engaged as the
controller dK  in Figure 1. The hybrid

closed-loop control system with a
MROC is shown in Figure 2, where
continuous-time signals are indicated in
solid lines, discrete-time signals shown
in dotted lines and continuous-time
signals denoted with superscript “c” . The
block Pc is a continuous-time LTI plant.
The inputs to the plant, Pc are the
exogenous input, wc(t), containing
commands, disturbances and sensor
noise, and the control input, uc(t). The
outputs of Pc are the controlled output,

0( )cz t , 1 ( )cz t , and the measured output,

yc(t). MROCs detect the ith plant output,
yc(t) at Ni uniformly spaced times and
changes the plant input once during one
frame period, T0. For simplicity, in this
paper, we assume that all the plant output

    Pc

    S    Kd    H



channels are sampled at the same rate,
m/T0 and the rate of 1/T0 is applied to all
channel holders, i.e. a MROC of uniform
output sampling rate is used here.
Readers can refer to [1], [2] for details of
MROCs.
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Figure 2:  Hybrid closed-loop control
system with a MROC

Design of control systems almost
inevitably involves tradeoffs among
competing objectives. It is often the case
that the controller is required to meet
several different performance and
robustness goals, and all of these cannot
be met simultaneously. In this paper, we
solve the problem of finding MROC
parameters F  and G  to minimize the H2

norm from cw  to 0
cz  in one channel

while keeping the conflicting H∞
performance on another channel below a
postulated level. This is the question
introduced by Bernstein and Haddad [3].

Instead of minimizing 
0 2z wT , we

considered the minimization of an “upper

bound” for 
0 2z wT , subject to the

constraint 
1z wT γ

∞
< . In this paper, we

focused on this kind of mixed H H2 / ∞

problem. This problem not only provides
a tractable approach to the problem of
minimizing nominal performance subject
to a robust stabili ty constraint, but also it

can be interpreted as an optimal
performance problem.

We solve this problem in three steps.
First, we transfer a sampled-data system
employing a MROC to a norm-
equivalent discrete-time system. Then,
we transfer it to a full -information
controller (FIC) system. Third, we will
show that the mixed H H2 / ∞  problem
with full -information feedback can be
reduced to a convex optimization
problem over a convex bounded set of
real matrices.

2. Lifting and Fast Discretization of
a MROC System

The system shown in Figure 2 is a
hybrid, periodic time-varying system. So,
we cannot solve it directly using
techniques for tackling LTI systems.
However, using the technique of fast
discretization [4], we compute a discrete-
time model for Pc and obtain a discrete-
time LTI system, accounting for
intersample behavior. Furthermore, a
technology called discrete li fting is used
to li ft slow discrete-time signals to
suitably fast discrete-time signals.

Given τ >0 and an integer l ≥ 1, we
define three basic elements, namely the
periodic sampler, the zeroth-order hold
and the li fting operator. The periodic
sampler, Sl samples the continuous-time
signal yc at a rate of l/τ. The zeroth-order
hold, Hl operates on the discrete-time
signal ul at the rate of l/τ. The li fting
operator, Ll is norm preserving, see [5]
for details.
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choose an integer n  and an integer q,
which divides m exactly. We then
discretize Pc by introducing the fictitious
operators, 

m
S  and lH  to both sides of the

generalized plant cP , which is
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to get a time-invariant plant, we also
introduce the operators Lm and Ll

-1 as in
Figure 3. Finally we get the li fted plant
in Figure 3, which is given as:
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The li fted system shown in Figure 3 and
the system depicted in Figure 2 are
equivalent in norm so that if and only if
the norm of the transformation matrix Tew

of the first system is less than γ , the
norm of T

e wc c  of the second system is less

than γ . We can transform the original
system from one form to another form
using these norm-preserving methods.
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Figure 3:  Closed-loop control system
with fast-discretized and lifted plant

The discrete-time li fted plant P inside the
dashed box in Figure 3 is time-invariant.

Suppose that the state equation for Pc is
given by:
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Discretizing using a zeroth-order hold at
the rate of m/τ, we can show that the
discretization of Pc is:
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Given an integer m>1, an integer q ≥ 1
that divides m exactly, and the realization
for SmGHm,, the state-space realization
for the li fted plant P in Figure 3 is given
by

A B q B

C D q D

C D q D

1 2

1 11 12

2 21 22

( )

( )

( )

�
�
���

�
�

���          (4)

where
1 2

2

2

2

2 2

2

1 2

2 2

1 2

1 1 1

1

1 1 1

1 1

( )

( )

0 0

( ) 0

( )

m m m

m m m m

c c

i i

c c c

i m i m i

i i

c m c m c

i m i m m i

m m

m m m m m

c

i

c c

i m i

c
i i m m i

A A A I B

C D
A B

C A C B D
C D

C A C A I B D

A B A B B

D

B q C B D

D q C A B C

− −

− −

− −

+ + +

= +

+ + +

=

 
 
                      
        

 
 
 

�
� �

�
���

1

2 3

1 1 1

1

  
0

                     ( , , )

c

m

c m c m c

i m m i m m i

m

q

B

C A B C A B D

diag B B

− −

×

 
 
 
 
 
 
 
 
  

�� � � �
��

For i=1, 2, blocks Bk, k=1,….m/q are
built by stacking q identity matrices as
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The proof of this result can be found in
[6].

3.  Full Information Controller
Consider Figure 4, which depicts a full
information controller (FIC) of the
MROC system. Note that Figure 4 is
obtained by redrawing Figure 3.
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Figure 4 : Closed-loop Configuration
with a Full Information Controller

Let us define the state and measured
output vectors as follows:
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where  x Rn∈  is the state of the
realization for P  in Eq. (4) and v denotes
the input to the delay block. We have
then from Eqs. (4) and (6) that the
following equation exists:
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From Figure 4, v is given by

v k G F y k( ) ~( )= −                 (9)

Replacing ~( )y k  by ~( )y k  from Eq. (7),
we get the following equation:
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Now, we can let the linear static FIC law
be defined as

v k K K
x k

w kx w( )
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where K Rw
nu w∈ ×ln  and K Rx

n n nu u
~

( )∈ × +  .
Then, we can see that the control law in
Eqs. (10) and (11) are equal i f and only if
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It follows from the above equation that if
we can get the FIC gains Kx~  and Kw,  we
can easily get the parameters of F  and G
from the above equation without
diff iculi ty. However, in order to ascertain
that Eq. (12) holds,  we need the
following condition.

Let us first partition Kx~  as

K K Kx x u~ [ ]= , where K Rx
n nu∈ ×  and

K Ru
n nu u∈ × . We now derive the MROC

gains F  and G  from the given FIC gains
Kx~  and Kw. From standard results in
linear algebra, we can solve the
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parameters of  F  and G  satisfying  Eq.
(12) if and only if
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From Eq. (13),  we can say that if and
only if  the following condition holds

2 22 21
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un
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  is of full column rank   (14)

we can find F  and G  solving Eq. (12)
for any pair Kx~  and  Kw.
Readers can refer to [6] for a detailed
discussion of the condtion that the FIC
model can be made equivalent to the
MROC model. We assume that all the
condtions satisfying these criteria when
adopting the model of the plant in the
following sections are true.

4. The Mixed H2/H∞∞ Control Problem
Let us begin by considering a finite-
dimensional li near time-invariant
(FDLTI) discrete-time system P  as
shown in Figure 5.

                                                    0z

        w
                                                    1z

Figure 5:  Definition of the Mixed
H2/H∞∞ Performance Measure

Suppose that P  is internally stable with
the discrete-time state-space model:
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The following lemma is adopted directly
from Theorem 2.1 of [7].

Lemma 1:
Consider the stable system P  defined in
Eq. (15) and let zwT  denote the transfer

matrix from w  to z . Suppose that

1
1z wT

∞
< , then the mixed 2 /H H∞

performance measure ( )zwJ T  for the

LTI system should be:

{ }' ' '

0 0 0 0

( )

inf ( ) : 0

such that  ( ) 0  ( ) 0

zw
J T

tr H YH J J Y Y

M Y and R Y

= + = >

> <

  (16)

with
M Y I J J H YH( ): ' '= − − >γ 2

1 1 1 1 0, and
' ' '

1 1

1 ' ' '

1 1

( ) : ( )

          ( ) 0

R Y AYA Y AYH BJ

M H YA J B BB
−

= − + +

× + + <
    (17)

Let us then consider the FDLTI discrete-
time feedback system depicted in Figure
6 with the state-space expression as
shown in Eq. (18). In the sequel, we will
consider the mixed H H2 / ∞  synthesis
problem for the full -information plant.
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Figure 6:   The H2/H∞∞ Synthesis
Framework
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Consider Figure 6, let J  denotes the
“mixed H H2 / ∞  performance measure”
and let
Ψ := inf {  J : K  internally stabili zing and

Tz w1 ∞
< γ }

denote the optimal mixed H H2 / ∞

performance measure. Then, we can
consider the following problem:

“ Compute Ψ  and given α > Ψ, find an
internally stabili zing controller K  such
that Tz w1 ∞

< γ , and the mixed H H2 / ∞

performance measure satisfies J < α ” .

Let

0

1

z w

zw
z w

T
T

T

 
=  

 
               (19)

denotes the closed-loop transfer matrix,
where 

0z wT  and 
1z wT  are the  closed-loop

transfer matrices from w  to 0z  and w  to

1z , respectively.

Consider the feedback system shown in
Figure 6. Given a plant P  and an
internally stabili zing controller K , the
mixed 2 /H H∞  cost ( )zwJ T  of the

closed-loop system is a function of the
transfer matrix zwT  only. We then define

the sub-optimal mixed H H2 / ∞  controller
synthesis problem considered in this
paper to be the following:

To calculate the optimal mixed H H2 / ∞

performance measure
{ }: inf ( )zwJ TΨ =                  (20)

while the controller K  is admissible  and
given any α > Ψ, find a controller K
such that ( )zwJ T α< .

It is easy to see that as long as such a
realization is internally stable, J Tzw

, -
 is

only a function of the transfer matrix Tzw ,
and does not depend on the choice of
realization. The mixed H H2 / ∞

performance measure J Tzw

, -
 is also a

function of the parameter γ . Without
loss of generali ty, we set γ =1 for the
remainder of this paper.
It will be shown later that in the full -
information case, the mixed H H2 / ∞

optimal performance Ψ  and a static gain
controller that satisfies J < α  (for any
α > Ψ) can be obtained by solving a
finite-dimensional convex programming
problem over a bounded set of real
matrices. Here, a solution to this convex
programming problem is a global
solution to the mixed H H2 / ∞  synthesis
problem.

5.  A Convex Approach to Full
Information Feedback Problem

Now, we reduce the full i nformation
feedback problem to a memoryless
feedback problem. The following
theorem is directly adopted from
Theorem 4.1 of [7]. This theorem applies
to the case of a full i nformation (FIC)
model with the state-space model given
by Eq. (18).

Theorem 1:
Consider the full -information plant
defined by Eq. (18), then we get

Λ Λ∞ ∞≠ ∅ ⇔ ≠ ∅( ) ( ),K Km       (21)

where Λ∞( )K  means that there exists an
admissible FIC controller K K Kx w= ~ ,

while Λ∞, ( )m K  means that there exists an
admissible memoryless controller K . In
this case

Ψ Ψ( ) ( )K Km=              (22)                                       

Furthermore, given any α > Ψ( )K , there
exists a static FIC K Km∈ ∞Λ , ( ) such that
J G K( , ) < α .

With reference to the full -information
plant defined in Eq. (18), let n xx = dim( ),



n uu = dim( ) and n ww = dim( ).

Furthermore, let ∑ denote the set of all
real n nx x×  symmetric matrices, and
define

( ){ }: , , , 0u x u wn n n n

wW Y k R R Y× ×Ω = ∈ × ∑× >  (23)

Note that Ω  is a strictly convex open
subset of R Rn n n nu x u w× ×× ∑ × . Given
( , , )W Y Kw ∈ Ω, let us then define

' '
0 0 01 01( , , ) : ( + D ) wf W Y K tr C YC D=      (24)                     

Given any ( , , )W Y Kw ∈ Ω, define the
following:

'

2 21
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1 2 1 2

11 11
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     
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        (25)

Consider the set of real matrices:

( ){ }( ) : , , :  ( , , ) 0w wK W Y K L W Y KΦ = ∈ Ω <  (26)

and the constrained optimization
problem

{ }( ) : inf ( , , ) : ( , , ) ( )
w w

K f W Y K W Y K KΨ = ∈ Φ    (27)

Now, we present the main result of the
mixed H H2 / ∞  problem under the full -
information model.

Theorem 2:
Consider the system defined in Eq. (18)
with transfer matrix G fi . Let Λ∞, ( )m K  be

the set of static full i nformation
controllers. Then

Λ Φ∞ ≠ ∅ ⇔ ≠ ∅, ( ) ( )m K K           (28)

where Φ( )K  is given by Eq. (26). In this
case,

v K Km( ) ( )= Ψ                 (29)

where ν m K( ) is a memoryless controller
and Ψ( )K  is a controller defined in Eq.
(27) respectively. Furthermore, given

any α > V Km ( ) , there exists a triple
( , , ) ( )W Y K Kw ∈ Φ  such that the static
FIC

K K K WY Kx w w: [ ]~= = −1      (30)

satisfies

K Km∈ ∞Λ , ( )  and  J G Kfi( , ) < α     (31)

This result is a direct and straightforward
generalization of Theorem 4.2 of [8].

 Let us rewrite Eq. (25) as
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'

From the Proposition E.7.f in [9], the
mappings 1 ' '( , )W Y FWY W F−→

. . . . .
, and

' 'K GKK G→

. .. . .
 are convex in their domains.

Since the maps '' '
( , )W Y Y W→     and

''

w w
K I K→    are aff ine linear, the

convexity of L  follows. Finally, the
convexity of Φ( )K  follows from the
convexity of L .

As we have seen that the optimization
problem defined by Eq. (27) is a convex
problem, we solve this kind of problem
using the popular LMI method.

Finally, let us summarize the procedures
to solve the mixed H H2 / ∞  control
problem using a FIC model.

•  Solve the constrained convex
optimization problem of



{ }' '

0 0 01 01( ) : inf ( ) : ( , , ) 0wK tr C YC D D L W Y KΦ = + <

•  Get the required FIC from Eq. (30).
Then, according to Eq. (12), based on
which a MROC model is made
equivalent to a FIC model, we get the
final parameters F  and G  of the
MROC system.

6.  Design Example
In order to fully examine the
effectiveness of our design, we choose
the original plant Pc to be as follows:
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5

We choose the li fting rate l=1 and the
frame period T0=0.2s with m=4. The
state-space representation of the FIC
model after it is li fted is the following:

2.1059 1.1764 0.4300 0.0690 0

0.3921 0.5374 0.2046 0.0831 0

0 0 0 0 1

0.2 0.1 0 0 0

0.2451 0.1370 0.0182 0.0035 0

0.3017 0.1793 0.0412 0.0083 0

0.3724 0.2291 0.0702 0.0144 0

1 0.2 0 0 0

1.1579 0.1303 0.0518 0.001 0

1.3757 0.4375 0.1320 0.0076 0

1.6

−
−

615 0.7438 0.2430 0.0253 0

5 1 0 0 0

5.9822 2.2358 0.3706 0.0486 0

7.2573 3.4984 0.8719 0.1344 0

8.8799 4.8669 1.5240 0.2595 0

0 0 1 0 0
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 
 
 
 
 
 
 
 
   

Keeping the H∞ performance at one in
one channel, while achieving the “upper

bound” of the H2 performance on the
other channel at 2.6608, the controller
parameters are given below:

9.2032F =
[ ]0.2187 3.2290 2.1987 5.3286G = −

7. Conclusions
In this paper, we solve the problem of
designing a multi rate output controller
under mixed 2 /H H∞  performance. We
use fast-discretization and discrete-li fting
technologies to first convert the periodic
time-varying multi rate system to a norm-
equivalent discrete system. Then, we
transfer the discrete system to a FIC
system.  Using the convex approach to
full i nformation feedback problem, we
solve the mixed 2 /H H∞  problem by

keeping the H∞  performance at one in
one output channel, while achieving a
minimum “upper bound” of 2H
performance on the other.

References:

[1] T. Hagiwara and M. Araki, “Design
of a stable state feedback controller
based on the multi rate sampling of
the plant output,”  IEEE Trans.
Automat. Contr. 1988, pp. 812~819.

[2] M. J. Er and B. D. O. Anderson,
“Practical issuses in multi rate output
controllers,” Int. J. control 1991, pp.
1005~1020.

[3] D. S. Bernstein and W. M. Haddad,
“LQG control with an H∞
performance bound: A Riccati
equation approach,” IEEE Trans
Automat. Contr., 1989, pp. 293-305.

[4] J. P. Keller and B. D. O. Anderson,
“A new approach to the discretization
of continuous-time controllers” ,



IEEE Trans. Automat. Contr., 1992,
pp. 214-223.

[5] T. Chen and B. Francis,  “Optimal
sampled-data control systems”,
Springer Verlag, Berlin, 1995.

[6] D. E. Viassolo and M. A. Rotea,
“Practical design of multi rate output
controllers,”  Proc. Conf. Decision
Contr., 1998, pp. 337~342.

[7] I. Kaminer, P. P. Khargonekar and
M. A. Rotea, “Mixed H2 / H∞ control
for discrete-time systems via convex
optimization,” Automatica 1993, pp.
57~70.

[8] P. P. Khargonekar and M. A. Rotea,
“Mixed H2/ H∞ control: A convex
optimization approach,”  IEEE Trans.
Automat. Contr., 1991, pp. 824~837.

[9] A. W. Marshall and I. Olkin,
“ Inequaliti es: theory of majorization
and its applications,” Academic
Press, New York, 1979.


