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Abstract- Multirate output controll ers (MROCSs) sample the plant outputs at afaster rate
than they change the plant inpus. Consequently, they offer greaer flexibility for
controller design than conventional single-rate cntrollers. MROCs designed urder
mixed H,/H_ performance have offered a new dimension in the design process In
this paper, we introduce the @ncept of lifting technique, fast discretization and
multirate output sampling and cdculate the mixed H,/H_ norm of the sampled-data
control systemsinduced via multirate output sampling.
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1. Introduction

Sampled-data cntrol systems consist of
a ontinuows-time plant to be controlled,
a discrete-time ntroller controlling it,
and ided A/D and D/A conwverters.
Figure 1 shows the idedized modd of
the standard sampled-data @ntrol
system.
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Figure 1: The standard sampled-data
control system

In this paper, MROCs are engaged as the
controller K, in Figure 1. The hybrid

closed-loop control system with a
MROC is down in Figure 2, where
continuows-time signals are indicated in
solid lines, discrete-time signals $own
in dated lines and continuows-time
signals denoted with superscript “c”. The
block P is a mntinuows-time LTI plant.
The inpus to the plant, P° are the
exogenows inpu, WS(t), containing
commands, disturbances and sensor
noise, and the cntrol inpu, u“(t). The
outputs of P are the cntrolled output,
z(t), z(t), and the measured ouput,

y(t). MROCs detect the ith plant output,
yo(t) at N; uniformly spaced times and
changes the plant input once during one
frame period, To. For simplicity, in this
paper, we asume that all the plant output



channels are sampled at the same rate,
m/Tp and the rate of /T is applied to all
channel haders, i.e. aMROC of uniform
output sampling rate is used here.
Readers can refer to [1], [2] for detail s of
MROCs.
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Figure2: Hybrid closed-loop control
system with aMROC

Design of control systems amost
inevitably invalves tradeoffs among
competing objectives. It is often the case
that the cntroller is required to med
several  different performance and
robustness goals, and all of these caana
be met simultaneoudly. In this paper, we
solve the problem of finding MROC
parameters F and G to minimize the H,
norm from w° to z in ore cannel
while keeging the conflicting He
performance on ancther channel below a

postulated level. This is the question
introduced by Bernstein and Haddad [3].

Instead of minimizing ||TZOW||2, we
considered the minimization d an “upper
bound for ||TZOW||2, subea to the
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constraint

<y. In this paper, we

focused on this kind o mixed H,/ H,_
problem. This problem nat only provides
a tradable gproach to the problem of
minimizing nominal performance subject
to arobust stability constraint, bu also it

can be interpreted as an ogima
performance problem.

We solve this problem in three steps.
First, we transfer a sampled-data system
employing a MROC to a nom-
equivalent discrete-time system. Then,
we transfer it to a full-information
controller (FIC) system. Third, we will
show that the mixed H,/H_, problem
with full-information feedbadk can be
reduced to a @nwex optimization
problem over a convex bounced set of
red matrices.

2. Lifting and Fast Discretization of
aMROC System

The system shown in Figure 2 is a
hybrid, periodic time-varying system. So,
we cana solve it directly using
techniques for tackling LTI systems.
However, using the technique of fast
discretization [4], we compute adiscrete-
time model for P° and olain a discrete-
time LTI system, acoourting for
intersample behavior. Furthermore, a
techndogy cdled dscrete lifting is used
to lift slow discrete-time signals to
suitably fast discrete-time signals.

Given T >0 and an integer | = 1, we
define three basic dements, namely the
periodic sampler, the zeroth-order hold
and the lifting operator. The periodic
sampler, § samples the continuows-time
signal y* at arate of |/1. The zeroth-order
hold, H, operates on the discrete-time
signal u; at the rate of I/t. The lifting
operator, L, is norm preserving, see [5]
for detail s.

We denote €° :[Zﬂ} and e:[zo}, and
Z Z

choose an integer n and an integer q,
which dvides m exadly. We then
discretize P° by introducing the fictitious
operators, S and H, to bah sides of the

generalized pant P°, which is



. (PSS PSL
partitioned as P =]

. In order
n PoC
to get a time-invariant plant, we dso
introduce the operators Ly, and L™ as in
Figure 3. Finaly we get the lifted plant
in Figure 3, which is given as:
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The lifted system shown in Figure 3 and
the system depicted in Figure 2 are
equivalent in nam so that if and orly if
the norm of the transformation matrix T,
of the first system is less than y, the
norm of T . of the secondsystem is less
than y. We ca transform the original

system from one form to ancther form
using these norm-preserving methods.

Figure 3: Closed-loop control system
with fast-discretized and lifted plant

The discrete-time lifted pant P inside the
dashed box in Figure 3 istime-invariant.

Suppcse that the state eguation for P° is
given by:
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Discretizing using a zeroth-order hold at
the rate of m/t, we can show that the
discretization o Pis:;

An Bml Bm2
C | D Dy ©)
C | D; Dy
where
Ac% % Ao c :
A,=e ", B, =[redoBy, j=1 2.

Given an integer m>1, an integer q = 1
that divides mexadly, and the redization
for SyGHn, the state-space redization
for the lifted plant P in Figure 3 is given

by
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x diag(B,,---,B,)
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For i=1, 2, bBocks By, k=1,....m/q are
built by stacking q identity matrices as



B =| ()

The proof of this result can be foundin

[6].

3. Full Information Controller

Consider Figure 4, which depicts a full
information controller (FIC) of the
MROC system. Note that Figure 4 is

obtained by redrawing Figure 3.
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Figure 4 : Closed-loop Configuration
with a Full Information Controller

Let us define the state aaxd measured
output vedors as foll ows:
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J(k) = [U(k)} OR (6)

where xOR" is the state of the
redizationfor P in EqQ. (4) and v denotes
the inpu to the delay block. We have
then from Egs. (4) and (6) that the
foll owing equation exists:

X(k+)] |A B B [X(k)
k) |=|C Dy, 0wk (7
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where
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From Figure 4, v isgiven by
v(k)=[-G F]y(k) €)

Repladng y(k) by y(k) from Eq. (7),
we get the following equation:

v(k) =[-G F]
O¢, D,0 [P,k D (10)
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Now, we can let the linea static FIC law
be defined as

%(k
v(k) =[K, Kw]mkﬂ (11)

where K, ORY™ and K, ORV™Y
Then, we can see that the ntrol law in
Egs. (10) and (11) are equal if and only if
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It follows from the éowve eguation that if
we can get the FIC gains K, and K, we

can easily get the parameters of F and G
from the @&owe auation without
difficulity. However, in order to ascertain
that EQ. (12) hods, we need the
foll owing condtion.

Let wus first partition K, as
K =[K, K,], where K, OR*" and
K, OR¥™. We now derive the MROC

gains F and G from the given FIC gains
K, and K,. From standard results in

linexr algebra, we can solve the



parameters of F and G satisfying EQ.
(12) if and orly if

D D
rankgi)2 I22 Oﬂgz rankBDZ D= Pel (13)
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From Eq. (13), we can say that if and
only if thefollowing condtion hdds

(¢, D, D,O .
0. = “pgisof full columnrank (14)
M 1, 0f

we ca find F and G solving Eq. (12)
for any pair K, and K,,.

Readers can refer to [6] for a detailed
discusson d the condion that the FIC
model can be made euivaent to the
MROC model. We asaume that al the
condions stisfying these aiteria when
adopting the model of the plant in the
foll owing sections are true.

4, The Mixed H,/H. Control Problem
Let us begin by considering a finite-
dimensional linea time-invariant
(FDLTI) discrete-time system P as
shown in Figure 5.
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Figure5: Definition of the Mixed
H,/H. Performance Measure

Suppcee that P is internaly stable with
the discrete-time state-space model:

|:|Xk+l = Axk + BWk
L= = HoX + JoW (15)
Hzik =Hx +Jw,

The following lemma is adopted directly
from Theorem 2.1 of [7].

Lemma 1:
Consider the stable system P defined in
Eq. (15) and let T,, denote the transfer

matrix from w to z. Suppee that
T,.,| <1, then the mixed H,/H,_

PA

performance measure J(T,,) for the
LTI system shoud be:

J(T,)
=inf{tr(HYH, +3,3,):Y =Y >0} (16)
suchthat M(Y)>0and R(Y) <0

with
M(Y):=y?l = 3,3, - H,YH, >0, and
R(Y) := AYA -Y + (AYH, + BJ))
L . 17)
xM™7(HYA +JB)+BB <0

Let us then consider the FDLTI discrete-
time feedback system depicted in Figure
6 with the state-space expresson as
shown in Eq. (18). In the sequel, we will
consider the mixed H,/H, synthesis
problem for the full -information dant.
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Figure6: TheH,/H. Synthesis
Framework

X1 = A%+ Bw, +Bu,
Zy, = CyX + Dpyw,
z, = Cx, + Dyw, (18

o



Consider Figure 6, let J denotes the
“mixed H,/H, performance measure”
and let

W:=inf { J: K internally stabilizing and
Tl <V}

denote the optima mixed H,/H,
performance measure. Then, we ca
consider the foll owing problem:

“ Compute W and given a > W, find an
internally stabilizing controller K such
that |T,,[ <Yy, and the mixed H,/H,

performance measure satisfies J <a”.

Let

0

[Tl = 5™

w

(19
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x

FAY

denotes the dosed-loop transfer matrix,
where T, and T, are the dosed-loop

transfer matrices from w to z, and w to
z,, respedively.

Consider the feedbadk system shown in
Figure 6. Given a plant P and an
internally stabilizing controller K, the
mixed H,/H_, cost J(T,) of the
closed-loop system is a function d the
transfer matrix T,, only. We then define
the sub-optimal mixed H, / H_ controller

synthesis problem considered in this
paper to be the foll owing:

To cdculate the optimal mixed H,/H
performance measure

W:=inf {J(T,,)} (20)
while the ontroller K is admissble and
given any a>WY, find a ontroller K
suchthat J(T,,) <o .

o

It is easy to seethat as long as such a
redization is internally stable, J(T,,) is
only afunction d the transfer matrix T,,,

and daees not depend onthe doice of
redization. The mixed H,/H,

performance measure J(T,,) is dso a

function d the parameter y. Withou
loss of generality, we set y =1 for the
remainder of this paper.

It will be shown later that in the full-
information case, the mixed H,/H,
optimal performance ¥ and a static gain
controller that satisfies J<a (for any
a>W¥) can be obtained by solving a
finite-dimensional convex programming
problem over a bourded set of red
matrices. Here, a solution to this convex
programming problem is a global
solution to the mixed H, / H, synthesis
problem.

5. A Convex Approach to Full
Information Feedback Problem

Now, we reduce the full information
feedback problem to a memoryless
fealback problem. The following
theorem is diredly adoped from
Theorem 4.1 d [7]. This theorem applies
to the cae of a full information (FIC)
model with the state-space modedl given
by Eq. (18).

Theorem 1:
Consider the full-information dant
defined by Eq. (18), then we get

A (K)2zO = A, (K)z20O (21

where A_(K) means that there exists an
admissible FIC cortroller K =[K; K,],
while A, (K) meansthat there exists an

admissble memoryless controller K. In
this case

W(K) = ¥, (K) (22)

Furthermore, given any a > W¥(K), there
existsastatic FIC K OA,, (K) such that
J(G,K)<a.

With reference to the full-information
plant defined in EQ. (18), let n, = dim(x),



n, = dim(u) and n, = dim(w).
Furthermore, let 5 denote the set of all
red n xn, symmetric matrices, and
define

Q:={(w,Y,k,) DRV x3xR"™,Y >0} (23)

Note that Q is a strictly convex open

subset of RV™ xYxR¥™, Given

(W,Y,K,,) 0Q, let usthen define
fOW,Y,K,) =tr(CoYCy +Dy,Dy)  (24)

Given any (W,Y,K,)0Q, define the

foll owing:
LW,Y,K,) =
|]AY+BW|:| |]AY+BW|:|
2
Heov B Bov B (29
(B +BK,(IB +BK, [0 [Y 00
N _
Ho, HHo, HB IH

Consider the set of real matrices;

oK) ={(W,Y,K,)0Q: LW,Y,K,) <0} (26)
and the @nstrained ogimization
problem

WK) =inf { FW,Y,K ):W,Y,K )DOoK)} (27)

Now, we present the main result of the
mixed H,/H, problem under the full-
information model.

Theorem 2:
Consider the system defined in Eq. (18)
with transfer matrix G;. Let A, (K) be
the set of oatic full information
controllers. Then

A (K20 = d(K)2O (28

where ®(K) is given by Eq. (26). In this
case,
Vin(K) = ¥(K) (29)

where v_(K) is a memoryless controll er
and W(K) is a ontroller defined in EQ.
(27) respedively. Furthermore, given

any a>V (K), there eists a triple
(W,Y,K,) O®P(K) such that the static
FIC

Ki=[K; K,]=[WY™ K,] (30)
satisfies

K OA,,(K) and J(G,,K)<a (31)

Thisresult is adired and straightforward
generalization o Theorem 4.2 d [8].

Let usrewrite Eq. (25) as

ovg, .. . A GLC
BT Ve CSE

D31 BZDJ'
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LW,Y,K,) =§: >

y 00
RN
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where
=_|A B ~_[B B
‘[q 0} ‘[Dn 0}
wW=[Y W] K=l K]

From the Propasition E.7f in [9], the
mappings W,Y) -~ P "WF, and
K -~ GKK'G are convex in their domains.
Since the maps w,y)-§ wEg and
K, -8 k., pare affine linear, the
convexity of L follows. Finaly, the
conwvexity of ®(K) follows from the
convexity of L.

As we have seen that the optimization
problem defined by Eq. (27) is a convex
problem, we solve this kind d problem
using the popuar LMI method.

Finaly, let us simmarize the procedures
to solve the mixed H,/H, control
problem using a FIC model.

e Solve the constraned convex
optimization problem of



®(K) :=inf {tr (C,YC, + D,D;,) : LW, Y,K,) < 0}

* Get the required FIC from Eq. (30).
Then, according to Eq. (12), based on
which a MROC modd is made
equivalent to a FIC model, we get the
final parameters F and G of the
MROC system.

6. Design Example

In order to fully examine the
effectiveness of our design, we docse
the original plant P° to be & follows:

o B 60, o0 (A0
X(t)_ﬁ S (t) 5_69(0 .8 (t)
Z0 [92 Olm

CO-GFE ol ¢
y (=[5 1x(t)

We docse the lifting rate 1=1 and the
frame period To=0.2s with m=4. The
state-space representation of the FIC
model after it islifted isthe foll owing:

(2.10® 1.1761 0.430 | 0.069 | O
S).sgﬂ 0.537%4 0.204 | 0.083L | 0&

C
0 0 0 0 0 |1iC
502 01 o0 0 |of
[0.245 0.130 0.01& | 0.003% | OC

%).3017 0.178 0.0412 | 0.0083 | OF
@.3724 0.229 0.07® | 0.014 | Ot
0 1 -02 0 0 |oC
%.1579 0.13B 0.058 | -0.0a | ot
[1.37% 0.43% 0.13D|0.00% | OC
16615 0743 0.243 | 0.028 | OF
0 5 1 0 0 |oC
%.982 2.23B 0.3766 | 0.048% | OF
5*7.253 34984 0.8719 | 0.134 | OL
(8.879 4.868 1.520 |0.259%5 | 0L
H o 0 1 0 |oOF

Keeping the H., performance a one in
one channel, while adieving the “upper

bound of the H, performance on the
other channel at 2.6608, the controller
parameters are given below:

F =9.20%
G=[-0.21& 3.229 2.19& 5.328]

7. Conclusions

In this paper, we solve the problem of
designing a multirate output controller
uncer mixed H,/H_ performance We

use fast-discretization and dscrete-lifting
tecdhndogies to first convert the periodic
time-varying multirate system to a norm-
equivaent discrete system. Then, we
transfer the discrete system to a FIC
system. Using the mnvex approad to
full information feedbad problem, we
solve the mixed H,/H_, problem by
keegping the H_ performance & one in
one output channel, while adieving a
minimum  “upper bound of H,
performance on the other.
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