
A JAVA system supporting fuzzy controller design in robotics

G. ATTOLICO, G. MAGGIO, A. ITTA
Istitut o Elaborazione Segnali ed Immagini

Consiglio Nazionale dell e Ricerche
Via Amendola 166/5, 70126 Bari, ITALY

Abstract: - The paper addresses the problem of designing fuzzy reactive controllers for robotics applications.
Describing the straight association between input and output spaces required by this kind of controllers involves
several critical choices (especiall y fuzzification of input and output variables and rule base drawing) heavily affected
by the subjective skills of the designer. Automatic tools working on suitable training samples can greatly simplify and
making more objective this process.

The paper describes a system developed for supporting all the design phases of fuzzy controllers. The platform-
independent JAVA language has bee n choosen in order to obtain the benefits of object-oriented environments and
develop an easily portable system, including its graphical user interface.

The system offers a graphic user interface allowing four different modalities for interacting with a real vehicle in
order to execute the desired task: the strategy used by the operator is recorded (in terms of examples of the association
between sensory data and control commands). A few tools supports the operator during this phase by providing
graphic and/or audio feedback about the quality of its driving with respect to previousl y defineable criteria. The
collected examples are then analysed by a module using a machine-learning based algorithm for identifying the inputs
really relevant for each situation and for drawing rules suited for replicating the control strategy.

Our experiments show that the operator does not need to be conce rned with fuzzy logic and control: his only care
is to execute the task at its best. As a further advantage, the use of fuzzy rules for describing the automatically derived
control strategy allows its eventual validation and/or refinement by human engineers.

Five operators, with different characteristics with respect to knowledge of fuzzy logic and driving skills, have
been used for obtaining different training sets related to the task of driving a real vehicle along the right-hand wall in
an indoor environment. The results obtained by the corresponding rule bases, generated by the system, are shown and
discussed in order to evaluate the effectiveness of the approach. CSCC'99 Proceedings, Pages:7141-7147

Key-Words: - Reactive control, fuzzy controllers, rule-base drawing, supervised learning, JAVA language

1 Introduction
Building control systems by combining basic

reactiv e behaviors (straight associations between input
and output spaces) is becoming popular in robotics for
achieving generality and robustness. Non-linearity and
complexity of such functions, often defined in a
multidimensional domain, can make difficult their
design, making desirable automatic tools supporting
this activity.

Fuzzy rules, besides providing a smooth control (a
very desired property), can be derived by appropriate
learning algorithms and remain easily understandable
by humans, for direct examination and, eventually,
modification. Identifying input and output variables,
defining their fuzzy partitions (terms and related
membership functions) and drawing a suitable rule
base expressing the control strategy involve increasing
levels of subjectivity. While input and output variables
naturally arise from the problem, their partition in
fuzzy terms is less immediate. Finally, identifying and

expressing a control strategy into working fuzzy rules
can be difficult for a task less than trivial and can
heavily depend on the designer skill. Supervised
learning may be useful for extracting rules from
appropriate and meaningful training examples [1, 7, 2,
5].

The paper describes a system supporting the
development of fuzzy reactive controllers from
examples recorded by observing a human operator
accomplishing the task at hand. Its modular
architecture (realized in Java) allows an operator to
drive a vehicle, using different modalities, on the base
of both external (sonar, CCD camera, ...) and internal
sensory data that are stored with the corresponding
control commands. We argue that this wide support
increases the quality of training examples and of the
automatically derived rules. Moreover the modified
generation algorithms, fully exploiting the fuzzy
representation of the problem, select data really
relevant for each control situation and draw the rules

replicating the driving strategy of the operator. The
system supports driving style evaluation (both on-line
and off-line) and training set extension when critical
spatial configurations are encountered.

The system has been tested on the wall-following
basic behavior (moving the vehicle at a constant
distance from the wall on the right hand, avoiding
collisions and with minimum linear and rotational
accelerations). Linear and steering velocities are set on
the base of data provided by a sonar ring. The obtained
results confirm that the operator just needs to exhibit a
sufficient skill in driving the vehicle. He can ignore
the structure of the system as long as the theories it is
based upon. Even the designer, besides defining the
translation of input and output spaces in fuzzy terms,
just has to tune a few parameters of the algorithms
generating the rule base.

2 Fuzzy rule base generation
The controller for the task at hand (wall-following)

is composed by two tightly coupled fuzzy controllers,
each in charge of a different velocity (linear and steer).
Even if formally divided, they must be logically
considered as one entity: a strong relation between
velocities is mandatory for a safe and efficient
navigation. Both the controllers have n inputs x1,...,xn

and a single output y, associated respectively with the
continuous universe of discourse UI and UO. A=(A1, A2,
..., An) denotes the multivariate fuzzy input variable
(each Ak UI, k=1,..,n, has Nk linguistic terms
Ak1,Ak2,...,AkN

k
}). The fuzzy output variable, B UO,

has M linguistic terms B1,B2,...,BM. Further details on
the fuzzy system used in our experiments can be found
in [3].

The first algorithm, derived from Sudkamp and
Hammel [6, 3], set the consequent of a rule has
weighted-mean of the output values associated to the
training data verifying its antecedent (weights depend
on the activations the training samples produce on the
rule) [3]. We define:

(Ai is the antecedent of the rule and a pre-defined
threshold). The crisp consequent wi of the rule ri is:

and the corresponding fuzzy term Bi is Bj*, so that:

Bj*(wi) = maxj=1,...,M Bj(wi)

The method has been modified for better coping with
crisp values activating adjacent fuzzy terms with
similar degree. The new system generates several rules
with the same antecedent and the consequents having
membership values close to the maximum. Formally,
the system generates a set of rule of the form
Ai Bj if

Bj(wi) Bj*(wi) >

with [0,1] being a threshold on similarity. Each of
them receives a weight defined as:

weightij = Bj(wi) k Bk
(wi)

with k representing the terms satisfying the condition
(1).

The first version of the algorithm could generate at

most N =
n

i=1Ni. In the new version this number
depends also on granularity of the output, that is: N' =
N M The previous completeness condition (N rules)

becomes
k

i=1weighti=N with k N' (usually k << N').
The not complete coverage of the input space,
depending on the distribution of sample data, can be
solved by using the principle of similarity (distance
between antecedents) giving similar consequents to
rules with similar antecedents.
The second algorithm reduces the number of rules
(without affecting the completeness) by selecting
really relevant inputs for each control situation. A
machine learning approach (ID3), proposed by
Quinlan for building decision trees, had been used for
reaching this goal [4,3]. The method recursively
choose the most relevant input variable (with greater
information content and better separation of training
data) as root of the potential sub-tree. The expansion is
conditioned to a significant increase in control
accuracy. Rules are generated by following each path
from the root of the tree to a leaf (chaining conditions
on input variables in the antecedent and picking the
output value from the final leaf). Each path shorter
than the maximum depth covers several rules
generated by the previous algorithm.

Also this algorithm has been modified for exploiting
the fuzzy information available. We define:

 t as the global activation available from
training samples at a point of the tree (the
sum of training samples memberships
with respect to conditions encountered
along the path to the point)

Bj as t modulated by the membership of

})(|),{(xyxT iAi

i

i

i

i

Tyx
A

Tyx
A

i
x

yx

w

),(

),(

)(

)(

output values y with respect to the fuzzy
term Bj

Aki as t modulated by the membership of xk

with respect to the fuzzy term Aki

AkiBj as t modulated by both the membership
of y with respect to Bj and of xk with
respect to Aki

The relevance of each input variable (estimated by the
Quinlan's Gain ratio becomes:

where:

is the information content of the potential sub-tree
with respect to the output variable,

is the expected information content of the sub-tree
having as root the input variable xk with respect to
output values,

is the information content associated to the input
variable xk as root of the potential sub-tree.

3 System architecture
The system is composed by three applications:

Interactor supporting the collection of training data;
Generator for the automatic derivation of suitable
fuzzy rules reproducing the driving strategy of the
operator; Driver executing controllers and supporting
their verification in driving the real vehicle. They have
all been implemented in Java, obtaining an almost
complete hardware independency. A basic layer (two
packages of classes implementing the interface with
the robot and the basics of fuzzy systems) does support
the application layer.

A meaningful training set is crucial for any
supervised learning strategy: its completeness
(coverage of the whole input space) and consistency
(constancy in associating control actions to sensory
data) heavily affect the performance of the resulting
controller. The system designer is charged with the
identification of training situations covering most of
the possible sensory configurations (usually a trial-
and-error process). Consistency of data is a major
concern. Humans can provide different commands in
similar conditions (due to lack of attention, to wrong
perception of the world, to rough understanding of the
task, ...). The system support greatly improves the final
results by providing: a simple and natural user
interface, related to the task, without fuzzy logic or
learning algorithms concerns; a sensory representation
giving to the operator the same information available
to the robotic systems; a feed-back information about
the driving consistency with the requirements of the
task at hand.

The Interactor provides four different modalities
for acquiring examples (fig. 2). The Direct Operator
Modality allows driving by the hardware joystick
available on the vehicle while the module records
sensory data and associated commands. This natural
mode simply requires a sufficient skill in moving the
joystick. The system can eventually provides on-line
(through a voice synthetizer) the measures acquired by
the sensory systems. In this modality the operator can
use sensory information that are not available to the
control system, resulting in a strategy that is not
detectable into the recorded training data. In the
Remote Controller Modality a working controller
drives the vehicle while the system records the
association between sensory data and commands. Due
to the absolute consistency of this driving, these data
are particularly suitable for early testing of new
generation algorithms. In the Remote Operator
Modality the sensory data acquired by the robotic
system are presented on the screen and the operator
drives using a software joystick. He must rely only on
the data available to the vehicle: therefore if he is able
to accomplish the task, also the controller is expected
to do the same. This usefully checks the balance
between task complexity and amount/kind of
information provided by the sensory systems. The
Mixed Operator/Controller Modality is useful when
failures arise in specific situations (due to poor or
insufficient training data). The controller drives the
vehicle and the operator (using the hardware or the
software joystick) takes control in those situations
supplying further correct examples.

The Generator stand-alone application implements
the two previously described derivation algorithms.
The system designer must set few parameters of them
(in our tests they have been set once and left

)(

)(
)(

k

k
k xINF

MyINF
xGR

t

B
M

j t

B jjyINF 2log)(

)log(2

ik

jik

ik

jik
k

ik

A

BA

A

BA
N

i t

A

kM

t

ikik A

t

A

kxINF 2log)(

unchanged for all the experiments) using a very
straightforward interface for direct editing structured
text files. During the generation, the designer can
check the state of progress and evaluate the produced
rules. The rule base, stored in structured text files, can
be edited, evaluated and modified. While direct
modifications are discouraged, a direct examination
often provides enough information for recognising
poor controller, preventing the loss of time for a test
on the real vehicle.

Alg. WM Alg. FDT
Exec. Time Pentium 133 / Win98 59’ 30’’ 13’ 30’’
Exec. Time Alpha 500 / Unix 12’ 30’’ 3’
Number of rules 116 32
Covered input space < 33 100

The Driver module read the structured text files
produced by Generator: fuzzy variables and related
terms, a few parameters influencing the specific
behavior (desired distance from the wall and minimum
distance allowed from a frontal obstacle in the case of
wall-following) and the separated sets of rules
(controlling linear and rotational speeds of the
vehicle). Then it runs the associated controllers.

4 Experimental results
The experiments have been done using a Nomad

vehicle running in a real environment. A sonar ring,
composed by 16 sonar sensors, has been used as
sensory system for all the trials.

Up to three training runs have been done on each of
five representative situations for collecting a variety of
examples. Five different operators have driven the
vehicle using the hardware joystick. They had
different knowledge about fuzzy logic and its
application to control, different understanding of the
effects of their driving style on the quality of examples
(and therefore on the rule-base automatically derived
from them) and different skills in using the joystick.
The Interactor module has been used for collecting
training samples, providing, at the same time, the
required support to the operator.

The Generator module has been used for deriving a
rule-base from each collection of examples,
confirming superior performance of the decision tree
based algorithm in deriving complete and compact rule
bases. All the results shown in fig. 3 have been
obtained using the Driver module for running the
controllers generated by this method: the number of
available training samples, the number of rules derived
for controlling linear and steering speeds and a score
evaluated using suitable penalty functions are
provided.

In two cases (Op \#3 and Op \#5) the rule-bases
derived by the automatic algorithms hit the wall: a
simple manual intervention on a couple of rules
produced a satisfactory (even if not very good)
behavior. This is an advantage of the clarity of
representation typical of fuzzy rules.

Moreover we had experimental evidence that
ability in executing the task (driving the vehicle along
the wall) was definitely more important than
knowledge about fuzzy logic, control and algorithms.
The operator \#4 outperformed the operator \#2, due to
its superior skill in driving the vehicle, in spite of its
reduced knowledge about the principles and
techniques used by the whole system.

Op #1 Deep knowledge about fuzzy logic
applied to robotics. Good understanding
of the desired behavior, of driving style
effects on examples and on derived
fuzzy rules. High driving skill.
Supported by vocal messages.

Op #2 Deep knowledge about fuzzy logic
applied to robotics. Good understanding
of the desired behavior, of driving style
effects on examples and on derived
fuzzy rules. Supported by vocal
messages and landmarks on floor.

Op #3 Limited knowledge about fuzzy logic
applied to robotics. Lower
understanding of the desired behavior,
of driving style effects on examples and
on derived fuzzy rules. Low driving
skill. Supported by vocal messages.

Op #4 No knowledge about fuzzy logic applied
to robotics. Lower understanding of the
desired behaviors, none of driving style
effects on examples and on derived
fuzzy rules. Good driving skill.
Supported by vocal messages and
landmarks on floor.

Op #5 No knowledge about fuzzy logic applied
to robotics. Limited understanding of the
desired behavior, none of driving style
effects on examples and on derived
fuzzy rules. Low driving skill. Not
supported.

Figure 1. The five operators, each with different skills, used
for testing the approach.

5. Conclusions
A system has been realized for supporting the

design of fuzzy controllers in robotics. Special care
has been paid to the collection of training samples, a
critical point for every supervised learning approach.
A friendly user interface and four different modalities

(each especially suitable for particular tasks and/or
training needs) have been designed for acquiring
examples. Two algorithms for the automatic
generation of rule baseshave been realized. The
representation of derived fuzzy rules is easily
understandable and, eventually, modifiable by human
designers. Finally, the system provides facilities for
both testing and running the controllers.

Extensive tests, accomplished by deriving fuzzy
controller for a basic reactive behavior (wall-
following), have been done on a real vehicle moving
in an indoor environment. The system allows an
operator, with no knowledge about fuzzy logic and
control, to build a fuzzy controller for a reactive
behavior by simply providing a few executions of the
task.

The system is being extended to the design of fuzzy
partitions for input and output variables (applying
unsupervised learning techniques to the training
examples) in order to reduce the subjectivity of the
whole process.

References:
[1] S. Abe and M. Lan. Fuzzy rules extraction directly

from numerical data for function approximation.
IEEE Transactions on Systems, Man and
Cybernetics, 25(1):119-129, Jan. 1995.

[2] C. Baroglio, A. Giordana, M. Kaiser, M. Nuttin,
and R. Piola. Learning controllers for industrial
robots. Machine Learning, 1996. (in press).

[3] G. Castellano, G. Attolico, and A. Distante.
Automatic generation of fuzzy rules for reactive
robot controllers. Robotics and Autonomous
Systems, 22:133-149, 1997.

[4] S. Hsu, J. Hsu, and I. Chiang. Automatic
generation of fuzzy control rules by machine
learning methods. In Proceedings of the IEEE
International Conference on Robotics and
Automations, pages 287-292, Nagoya, Japan, 1995.

[5] P. Reignier. Supervised incremental learning of
fuzzy rules. Robotics And Autonomous Systems –
Elsevier, 16:57-71, 1995.

[6] T. Sudkamp and R. Hammell. Interpolation,
completion, and learning fuzzy rules. IEEE
Transactions on Systems, Man and Cybernetics,
24(2):332-342, Feb. 1994.

[7] L. Wang. Stable adaptive fuzzy control of
nonlinear systems. IEEE Transactions on Fuzzy
Systems, 1(2):146-155, May 1993.

(a)
(b)

(c) (d)

Figure 2. The four different interaction modalities available in the system. In the Direct Operator Modality (a) the operator drives
the vehicle by using the aboard joystick, while the module Interactor does record the association between sensory situation and
selected commands. In the Remote Controller Modality (b) a software controller can drive the vehicle: again the Interactor
module records all the sensory situations and related commands. In the Remote Operator Modality (c) the operator can drive
using the software joystick provided by the system and using only the sensory data available to the vehicle (displayed on the
screen). Finally in the Mixed Operator/Controller Modality (d), the operator can take temporarily control of the vehicle whenever
the controller does exhibit poor behavior: the new examples provided to the system can integrate the original training set in order
to improve the performance of the software controller.

Figure 3. Results obtained by the controllers derived from the training examples provided by the different operators. The arrow
shows the starting point. The best controllers (Op #1 and Op #4) come from examples provided by the operators with better
knowledge about the right way for performing the task and better manual skill in using the hardware joystick. The knowledge of
fuzzy logic and robotic control does not help: Op #2 performs poorer than Op #4 in spite of his superior knowledge about these
topics. The scores provided for Op #3 and Op #5 have been obtained after a manual tuning of the respective rule bases (in both
cases the first trial resulted in a collision).

Operator #1
Number of examples 7718
Number of rules for speed 11
Number of rules for steer 33
Score obtained 0.7250

Operator #2
Number of examples 5147
Number of rules for speed 42
Number of rules for steer 33
Score obtained 0.5817

Operator #3
Number of examples 6498
Number of rules for speed 1
Number of rules for steer 48
Score obtained (2nd trial) 0.5601

Operator #4
Number of examples 6151
Number of rules for speed 23
Number of rules for steer 57
Score obtained 0.6573

Operator #5
Number of examples 4878
Number of rules for speed 36
Number of rules for steer 52
Score obtained (2nd trial) 0.4902

