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Abstract: - We have developed ESCAPE, an easy-to-use, highly interactive portable PC-based simulation
environment aimed at the support of computer architecture education. The environment can simulate both a
microprogrammed architecture and a pipelined architecture with single pipeline. Both architectures are cus-
tom-made, with a certain amount of configurability. Other tools, like a memory monitor,
assembler/disassembler and analysis tools, such as on-the-fly generation of pipeline activity and usage dia-
grams, are integrated with the environment.

In this paper we present the simulator as well as a practical exercise that we prepared for the students of
an undergraduate level course on computer architecture at the University of Ghent. Based upon our limited
experience with the simulator so far, we can state that the results are excellent. Students respond very posi-
tively, and the evaluations indicate a far deeper understanding than was previously attainable by using only the
traditional textbook-and-paper-problems approach.             IMACS/IEEE  CSCC'99  Proceedings, Pages:3691-3697
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1 Introduction
The complexity of computer architectures has in-
creased significantly over the past decades. It is our
experience that many students fail to understand
even the basic concepts, such as microprogrammed
architectures or pipelined execution with simple
pipeline, making it impossible to fully understand
the operation of a contemporary processor – typi-
cally superscalar, with branch prediction and specu-
lative, out-of-order execution.

One way to clarify these simple concepts is by
the use of simulation tools. There are many simula-
tors for computer architectures available, but most
of them are unsuitable for inexperienced users. Most
simulators are in fact designed with accurate mod-
eling as a main feature; as a result, these simulators
have a complexity similar to today's processors.

At the University of Ghent, we are extensively
using ESCAPE1 in an undergraduate level course on
computer architecture [1]. ESCAPE is an interactive
computer architecture simulation environment that
was created to increase the effectiveness of the
                                                          
1Environment for the Simulation of Computer Architec-
tures for the Purpose of Education

course, i.e. to increase the level of insight in and
understanding of computer architectures achieved by
the students. We will present an actual assignment
on microprogramming that the students have to
solve.

The paper is organized as follows. We first
describe ESCAPE, starting from a situation of our
work in the context of computer architecture educa-
tion. After identifying problems and defining a
solution in terms of requirements for the simulation
environment, we briefly describe the architectural
aspects of the simulated processor models. We then
describe an actual assignment to be solved in
ESCAPE, while also showing some more details of
the simulation software and possible uses for the
environment in general. We then briefly evaluate the
preliminary results obtained, and conclude with an
outlook on future work.

2 Computer architecture education
2.1 Situating the course
The course in which the work presented here is
situated, is a second course on computer architecture
in the computer science and computer engineering



undergraduate curriculum of the University of
Ghent. The preceding course covers instruction-
level aspects, such as addressing modes, assembly
language, etc.  The second course focuses on the
micro-architectural aspects of contemporary archi-
tectures, with significant emphasis on their evolu-
tion. The course is a one-semester course featuring
12 weekly 75-minute lectures and three lab sessions,
each initiating an independent homework assign-
ment to be completed by the students.

The main topics of the course are the internal
control of the instruction execution process (dis-
cussing microprogramming and pipelined execution)
and the many issues of the memory hierarchy
(caches, virtual memory, register optimization, etc.).
Although the initial approach taken in the course is
rather qualitative, we clearly aim at a more quantita-
tive treatment of the material, along the style
advocated by some recent excellent textbooks
[2,3,4]. Obviously, hands-on experience is crucial to
achieve the latter.

Based on the experience of many years of
teaching computer architecture and related courses,
we feel that the lack of a thorough understanding of
basic concepts makes it hard for students to fully
grasp more complex topics, let alone to achieve
quantitative insights.

2.2 Towards a more thorough understanding
To make such understanding easier to achieve by the
students, we decided to develop a simulation envi-
ronment addressing some of the architectural issues
treated in the course. The main goal of this envi-
ronment is to present the students with an easy-to-
understand custom-made architecture that allows
them to become familiar with the basic concepts of
computer architecture, without being overwhelmed
by the complexity of realistic microprocessor archi-
tectures.

To be successful in meeting these goals, a
number of requirements should be met:

• Support for both microprogrammed and pipe-
lined  architectures.
Even though many recent textbooks mainly fo-
cus on pipelined execution, we feel that in-depth
coverage of microprogrammed control is essen-
tial because it can provide valuable insight on
the internal operation of the processor.

• Custom-made yet configurable architectures.
Register file size, the number of temporary reg-
isters (for microprogrammed control), memory
access time, ALU functionality, forwarding,
delay slot usage, etc. should not be fixed.

• Easy-to-use, highly interactive interface.
Simulation of the architecture should be possible
on a cycle-per-cycle basis, with an option for
rewinding the clock. The state of the architec-
ture (registers, memory, multiplexers, bus
behavior etc.) must be visualized. On-the-fly
trace generation and pipeline activity diagrams
will further clarify the way the architecture op-
erates.

• Supporting the collection of  quantitative data,
by enabling single click multiple cycle simula-
tions with breakpoints.

In the following sections, we shall present ESCAPE.
A working version of this tool is already available,
though we hope to add some functionality over time.

3 Introducing ESCAPE.
The ESCAPE environment consists of two simula-
tors. The instruction set architecture (ISA) is
essentially identical for both machines, even though
the micro-architectural aspects are very different (a
microprogrammed processor versus a pipelined
processor with simple pipeline).

The (extendible) ISA is inspired by Hennessy
and Patterson’s DLX [2,3]. The three distinguished
types of instructions (I-type, R-type and J-type) are
shown in figure 1. Contrary to the DLX architecture
the size of the bitfields is not fixed, but depends on
the maximum number of instructions and the size of
the register file. All instructions have a 32-bit en-
coding, hence the length of the immediate fields (ni1

and ni2) can be derived from the bitfield sizes of the
opcode and formals (no and nr). R-type instructions
can have up to 6 formals (assuming nr is sufficiently
small). This can be useful for implementing more
advanced operations in the microprogrammed
architecture, a popular homework assignment.
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Figure 1: instruction encoding
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3.1 Microprogrammed Architecture
The architecture consists of a control unit and a
datapath (figure 2). The datapath consists of a reg-
ister file, two read registers (A, B) and a write
register (C), a memory interface with address (MAR),
data (MDR) and instruction (IR) registers, a number
of extra registers (typically IAR, PC and a few
temporary registers) and an ALU.  The different
parts are connected by two input buses (S1 and S2)
and a result bus. The ALU can perform a number of
basic operations in a single cycle (table 1). A built-
in comparator does zero and sign detection on the
result.

The memory interface can load and store bytes,
halfwords (16 bit) or words (32 bit), with adjustable
access time. Both instructions and data are stored in
the same memory (von Neumann architecture).

The control unit is microcoded. The microcode
address is kept in a special register (µAR). During
each cycle µAR is either incremented or replaced
with a new value (i.e. a jump to a new microinstruc-
tion). Typical jump conditions are: memory busy,
ALU output zero, ALU output negative and inter-
rupt pending. The jump address is either in the
microcode, or read from a jump table (indexed by
the opcode field in IR). The latter is useful for
instruction decoding. The number of jump tables is
adjustable from 1 to 4. It is easy to add more spe-
cific instructions to the ISA by providing the
necessary microprograms for the instructions.

The microprogrammed architecture (both
control unit and datapath) has deliberately been kept
simple. There is no microcode pipelining register, it
only has basic single-cycled operations, and virtu-
ally no microcoding tricks have been used [5]. The
datapath is very lean, and could be improved on
several counts. This deliberate simplicity leaves
ample room for the students to suggest improve-
ments for the architecture.

3.2 Pipelined Architecture
Both the control unit and the datapath are pipelined
into the five traditional stages (figure 3): IF (in-
struction fetch), ID (instruction decode), EX
(execute and effective address calculation), MEM
(memory) and WB (write back). Because there are at
least three cycles between reading the register file
and write back, a forwarding mechanism is imple-
mented to prevent the pipe from unnecessary
stalling. The register file is read in the ID stage, but
written during the WB stage. Write through is
explicit by the use of multiplexers.

The EX stage consists of an ALU and a com-
parator. The ALU can perform the same operations
as the one for the microprogrammed architecture.
During the execution of a branch the comparator
evaluates the branch condition while the ALU
calculates the effective address. Depending on the
settings of the simulator the two instructions fol-
lowing the branch can be executed (i.e., a double
delay slot), nullified (no delay slot), or only the
instruction in the IF stage is nullified (single delay
slot).

There are two separate memory interfaces: one
for instructions and one for data (Harvard architec-
ture).  Access to the data memory occurs during the
MEM stage. The data memory access time is adjust-
able. The SMDR and MAR registers can be frozen to
mitigate stalling.

Operation Result Note
+ S1 + S2 add
– S1 – S2 subtract
–r S2 – S1 reverse subtract
& S1 & S2 bitwise and
| S1 | S2 bitwise or
^ S1 ^ S2 bitwise xor

<< S1 << S2 shift left
>> S1 >> S2 shift right logical
>>a S1 >>a S2 shift right arithmetic
S1 S1 pass S1
S2 S2 pass S2

Table 1: basic ALU operations



3.3 Implementation details
The ESCAPE environment has been implemented in
Borland’s Delphi®. Because the code is compatible
with Delphi 1.0, we have both 16- and 32-bit ver-
sions, which makes the application run on every
Windows® based operating system. A copy of the
latest version, further documentation as well as
sample exercises can be downloaded from the web:
http://www.elis.rug.ac.be/escape.

After starting the simulator an architecture
specific form appears. The layout of this form is
based on the structural representation of the archi-
tecture (figures 2 and 3). Having all the key
elements of the architecture on one single form
makes it possible to understand the processor opera-
tion without having to swap back and forth between
windows. Screenshots of these forms are shown in
figures 4 and 5.
A number of other forms exist. The memory can be
viewed and/or edited in two ways. The data form
acts as a memory monitor/editor that allows you to
examine or edit the memory content in groups of
bytes, halfwords or words, and different number
bases (unsigned hexadecimal and unsigned or signed
decimal). The code form behaves as an assem-
bler/disassembler that allows easy writing of
assembly code.

For the microprogrammed architecture a form
similar to the code form exists to edit the microin-
structions and jump tables. This is the so-called
microcode form. Another important form is the
configuration form that allows one to configure the
two architectures.

Key features of the simulation environment are:
• easy-to-use interface;
• partially configurable, easy-to-understand cus-

tom-made architectures;
• cycle-per-cycle simulation, or multi-cycle

simulation with breakpoints;
• clock rewind, can be disabled to increase simu-

lation speed;
• memory monitor and assembler/disassembler;
• microcode editor;
• on-the-fly trace generation;
• on-the-fly generation of pipeline activity and

pipeline usage diagrams;
• all files are in ASCII format, which allows them

to be altered with external editors.

A pipeline activity diagram plots for each instruction
the current pipeline stage versus time, as shown in
figure 6. A pipeline usage diagram plots for each
pipeline stage the current instruction (if any) versus
time, as shown in figure 7.

4 A microprogramming assignment
We have prepared a number of assignments that can
be used to familiarize the students with the different
aspects of microprogrammed and pipelined execu-
tion. We are presenting here one such exercise on
microprogramming issues.

The basis of the exercise is a high-level algo-
rithm, in this case a heap sort implementation by
Williams [6], also documented by H. Stone [7]. The
students are given the Pascal-like pseudo-code
shown in figure 8.

Figure 3: pipelined architecture
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Figure 4: screenshot of the microprogrammed architec-
ture form

Figure 5: screenshot of the pipelined architecture form

Figure 6: screenshot of the pipeline activity diagram

Figure 7: screenshot of the pipeline usage diagram

4.1 Part One
In the first part of the assignment, the students have
to study an incomplete assembler version of the
algorithm that we supplied them with. The assem-
bler code uses function inlining for the functions
intree() and outtree(), as they are called only
once, and also to simplify the exercise. The students
are asked to complete the code, using similar opti-
mization techniques as were already demonstrated in
the existing code, i.e. strength reduction, register
scheduling, induction variable elimination, etc. For
this exercise, they are only supposed to use the
standard, simple set of assembler instructions, given
in table 2. The missing code represents the call to
outtree().

The students are asked to test their code with
the ESCAPE simulator, on a set of 100 randomly
ordered numbers, and measure the execution time
for different memory access times (1–9 cycles),
using the breakpoint facility of ESCAPE.

This part of the assignment, while not delving
deeply in the matters of microprogramming, famil-
iarizes the students with the algorithm and the
environment of the simulations. Having them create
part of the assembler program themselves, should
create a greater variation in the rest of the solutions
later on as well, thereby reducing the possibility of
simply copying other peoples solution.

4.2 Part Two
Secondly, we ‘introduce’ the programmable mi-
crocoded processor, and ask the students to write
microcode for the following instructions:

1. swapld R1, R2, R3

This instruction swaps A[1] and A[i] and
saves the new A[1] in R3, while R1 equals A
and R2 equals 4*i.

2. intree R1, R2

This instruction executes subroutine in-

tree(lim: integer), where R1 equals A and
R2 equals 4*lim.

3. outtree R1, R2, R3

This instruction executes subroutine out-

tree(lim: integer), where R1 equals A, R2
equals 4*lim, and R3 equals A[1].

The students are asked to write microcode that is as
fast as possible (first priority), yet also as small as
possible (second priority). We have created solu-
tions using 11, 17 and 22 lines of microcode,
respectively. We also ask them to use no more
temporary registers than strictly necessary (third
priority).



The students receive the assembler code that
implements the algorithm using these extra instruc-
tions. As before, they are asked to test their code in
ESCAPE and measure the execution time for differ-
ent memory access times (1–9 cycles) when sorting
the same sequence of 100 integers. Another question
that needs to be answered is whether they see spe-
cific architectural enhancements that would make
even faster microprograms possible for the three
instructions above. Given the simplicity of the
architecture at hand, there are at least some obvious
suggestions, like increasing the number of memory
address and data registers.

4.3 Part Three
In this last part, we ask the students to compare the
two implementations of the heapsort algorithm.
Specifically, we make the assumption that the proc-
essor of part two (µProc2) can only be driven at half
the clock speed of the processor of part one
(µProc1), due to its more complex nature (program-
mable control store, extra temporary registers, etc.).
We then ask to compare the execution speed of the
algorithm on µProc1 and µProc2 for memory access
times of 1, 2 and 3 cycles in µProc2, and assuming
that both processors use similar memory chips. The
trick here of course, is to realize that, when µProc1 is
driven at double clock speeds, the memory access
time in cycles should also be double compared to

procedure treesort(A: array of integer,
                   N: integer)
// array A is declared A[1:N]
begin

  // Phase 1: A[lim] added to heap A[1:lim-1]
  procedure intree(lim: integer) 
  begin
    var in, i: integer;
    in := A[lim];
    i:= lim;
  scan:
    if (i > 1) then
    begin
      j:= i/2;
      if (in > A[j]) then
      begin
        A[i] := A[j];
        i:=j;
        goto scan;
      end;
    end;
    A[i] := in;
  end procedure intree;

  // Phase 2: A[1] pushed down through ’heap’
  procedure outtree(lim: integer)
  begin
    var i, j, copy: integer;

    i := 1;
    copy := A[1];
  loop:
    j := 2*i;
    if (j <= lim) then
    begin
      if (j+1 <= lim) then
      begin
        if (A[j+1] > A[j]) then j := j+1;
      end;
      if (A[j] > copy) then
      begin
        A[i] := A[j];
        i := j;
        goto loop;
      end;
    end;
    A[i] := copy;
  end procedure outtree;

  // main body
  var i, temp: integer;

  for i:=2 to N do intree(i);
  for i:=N downto 2 do
  begin
    temp := A[1];
    A[1] := A[i];
    A[i] := temp;
    // largest heap element put at end array
    outtree(i-1);
  end;

end procedure treesort;

Figure 8: heapsort algorithm

Instruction Result
NOP -

ADD R1,R2,R3 R3 := R1+R2 (i)

SUB R1,R2,R3 R3 := R1-R2 (i)

MUL R1,R2,R3 R3 := R1*R2 (i)

DIV R1,R2,R3 R3 := R1/R2 (i)

AND R1,R2,R3 R3 := R1 AND R2 (i)

OR  R1,R2,R3 R3 := R1 OR  R2 (i)

X0R R1,R2,R3 R3 := R1 XOR R2 (i)

SLL R1,R2,R3 R3 := R1 << R2 (i)

SRL R1,R2,R3 R3 := R1 >> R2 (i)

SRA R1,R2,R3 R3 := R1 >>a R2 (i)

LDW R1,off(R2) R1 := mem32[R2+off]

STW R1,off(R2) mem32[R2+off] := R1

BRZ  R1,label if(R1==0) PC:=adr(label)

BRNZ R1,label if(R1!=0) PC:=adr(label)

BRGT R1,label if(R1> 0) PC:=adr(label)

BRGE R1,label if(R1>=0) PC:=adr(label)

BRLT R1,label if(R1< 0) PC:=adr(label)

BRLE R1,label if(R1<=0) PC:=adr(label)

Table 2: simple assembler instructions (the instruc-
tions with (i) also have a variant where R2 is an
immediate, e.g. ADDI R1,imm,R3



µProc2 (taking the simplest approach for lack of
exact data on the memory). So, the answer should
compare the execution time of µProc1 using 2 cycles
for memory access with the execution time of
µProc2 using only 1 cycle for memory access, etc.

A final question is whether the students can
deduce from their measurements, how many times
µProc1 should be clocked faster than µProc2 (with
memory access time of 1 cycle) to make both im-
plementation run at equal speed. In fact, given our
implementations and measurements, this is not
possible (we can only indicate it must be more than
9 times faster), but perhaps, given other implemen-
tations in part one and part two, some student may
have totally different, yet correct answers to this
question.

5 Results
This is the second year that we are using ESCAPE in
this course, though last year we worked with a
preliminary version of the environment. Obviously,
given the limited experience we had using ESCAPE
as an educational tool, any conclusions as to its
effectiveness remain premature. While we con-
cluded from last year’s experience with the
homework assignments (in a class of 120 students),
that significant improvement was observed in the
understanding of architectural issues, it will be hard
to quantify this improvement without a larger scaled
and controlled test. Probably the best indication of
the usefulness of this tool is the gratefulness with
which the students make use of it, to better under-
stand the material that they may find dully presented
in the textbooks.

6 Conclusion and future work
In this paper, an interactive graphical simulation
environment has been presented, aimed at the sup-
port of computer architecture education. The
environment allows simulation of simple custom-
made microprogrammed or pipelined architectures.
We also presented a specific homework assignment
on microprogramming that was presented to the
students during this semester.

First experiments have revealed significant
improvements of the teaching effectiveness. Stu-
dents invariantly respond very positively, and the
evaluations indicate a far deeper understanding than
was previously attainable by using only the tradi-
tional textbook-and-paper-problems approach.

At this point the environment simulates either a
microprogrammed or a pipelined machine with

limited configurability. Several extensions and
additions are being formulated. We plan to extend
the simulation model with caches (which will result
in variable instruction memory access), out-of-order
write back, multiple execution units, and possibly
superscalar pipelines with scoreboarding and branch
prediction. This will allow the use of a single envi-
ronment for teaching a wide range, from basic
concepts to more advanced topics in contemporary
computer architecture.
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