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Abstract: Because of the complexity of the thermodynamic phenomena which govern the dynamic behavior of
thermal power plants, the modelling problem is still with a great interest. This paper deals with the modelling
of a steam generator, which complexity results in the existence of several problems, such as shrink-and-swell
phenomena which introduce a non minimum phase.
In this work, the only required hypotheses are the thermodynamical equilibrium and the incompressibility of
the supply fluid. In general, in the literature relative to this field [1], the modelling hypotheses are more
constraining and the dynamics are described by means of ordinary differential equations (ODEs). Here, more
realistic partial differential equations (PDEs) are considered.
After a presentation of the notations, the first part of the paper establishes the thermodynamical equation with
the theoretical resolution of the energy equation applyied to the heat propagation phenomenon [2]. This first
result (and related simulations) makes appear a propagation delay, that confirms the classical understanding of
such plants.
Then, the second part provides an original contribution by taking into account the dynamic behaviors (this
means, time varying inputs) with a homogeneous diphasic mixture. This leads to a models with partial
differential equations (PDE), with a mathematical input/output form that is adapted to control issues:

dx/dt = f(x, u, k, t, z)
     y = g(x, u, k, t, z)

Where f is an infinite dimensional function (depending on the spatial position z in the boiler), x the state
(pressure, liquid and steam velocities), u the input (control: delivery pump flow, electrical heating,
disturbances: charge variations) and k are environnemental variables (external temperature,…).
An other interesting point is that this a nonlinear distributed parameter model allows estimating the «steam
quality» (steam-liquid mass ratio) in relation with the position z in the boiler. This last point constitutes a
practical progress since such a variable cannot be directly measured on the plant.
Lastly, a third part deals with the numerical implementation of the related PDEs.
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1   Introduction
The problem of modelling (and therefore of control)
of thermodynamic systems still stays open, even if
this type of process is present in a many industries
with risk (nuclear, chemical, etc...). There is a real
need of some control models that can be at the same
time operable and precise [3].
The present work concerns the modelling of a steam
generator, implemented at the L.A.I.L. (Laboratoire
d'Automatique et d'Informatique de Lille) [1], which

replicates, in a reduced scale, the working of a
thermal power station. This technological process is
mainly made up of a delivery pump, a water-steam
boiler and a servovalve which represents the charge
variations of an electric alternator. It presents
several delay effects due to the heat transfer in the
boiler and to the transit of the steam in the pipe.
To the best authors knowledge, the literature
devoted to such processes mainly involves
"localized parameters" systems [3], [4], [5], [6] and
[7]. However, the information such approach can
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provide is limited to the spatial average of the
evolution of the variables in the steam generator. For
this reason, it is interesting to look for an alternative
approach leading to informations about the variables
every where in the boiler: this means, partial
differential equations. In this aim, a method was
suggested [8], relying on the PDEs that govern the
thermodynamic exchanges between two separated
phases (liquid / steam). Unfortunately, such laws of
exchange between phases are not well known. To
overcome such difficulty, a method [9] available for
the diphasic flows was applied, leading to statistical
equations [8]. In this case, the production and the
flow of the steam bubbles is considered as a random
phenomenon, such model is not adapted to control.
The first part of this work concerns a theoretical
study of the resolution of the energy equation
applied to the heat propagation phenomenon. It
reveals the delay effects linked to the heat
propagation (Volterra equations [2]), as the
simulations will confirm.
In the second part, a practical application to the
steam generator leads to the homogeneous diphasic
mixture model. This approach appears to be more
effective and represents an original contribution of
the paper.
Finally, the numerical implementation of this last
model is discussed: the PDEs of the hydrodynamics
(mass, energy and moment conservation) are
transformed, by time and space discretization, into
finite-difference equations, and numerically
integrated without being linearized. Such approach
allows determining the response of the system with
high amplitude boundary conditions. Of course, it is
also possible, starting from this nonlinear model, to
derive a linear one valid around a working point.

2   Theoretical delay in the heat
transfer equations
2.1 Heat transfer equation
In the usual applications, the energy equation
written in integral form and with vector notation, for
some volumic domain )(tVm  (Fig.1), is:
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with the following notations,
ρ , fluid density,

pC , fluid calorific capacity,

u , local fluid velocity,

)(tSm , boundary surface of the studied domain,
P , power of heat source,

cdq , conduction heat flux,
rq , radiance heat flux.

Fig.1 : Studied volumic domain

In any medium without heat source, radiance nor
material transfer, the heat equation written in a local
form is:
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where µ = λ (ρ Cp)
-1 denotes the heat diffusivity and

λ represents the heat transfer conduction coefficient.

2.2 Boundary and initial conditions
The initial temperature of the medium is in general
depending on the space variable z :

)()0,( zFzT =   (3)
Considering that the medium is delimited by the
boundaries z=a and z=b, the two imposed
temperatures on these boundaries are:
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Remark : Equations (4) are Dirichlet boundary
conditions, but heat equation (2) can also be
considered to satisfy Neumann boundary conditions.
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For instance, such Neuman conditions shall be
considered for the simulation.

2.2 General solution
The general solution of heat equation, is expressed
as a sum of three integrals :
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Functionsφ , 1ψ and 2ψ , which define integration
variables of equation (2), must be such that (5)
satisfies the initial condition (3) and the boundary
conditions (4). Since second and third integral in
equation (5) tend to zero as t tends to zero [2], then:
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Then boundary conditions (4) hold if and only if the
unknown functions 1ψ and 2ψ  satisfy the following
Volterra equation system (7)-(8):
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The kernels of these two equations are defined and
continuous for all t > τ and they tend to zero when t
tends to τ.
According to the investigations on the Volterra
integral systems [2], system (7)-(8) has a unique
solution ( )(1 tψ , )(2 tψ ) defined for all t > 0. The

functions )(1 tψ  and )(2 tψ could be expressed as
sums of absolutely and uniformly convergent series.
Equations (7) and (8) include some aftereffect, since
functions (.)1ψ  and (.)2ψ  are expressed at instants

belonging to [ [t,0 . By introducing these functions in

(5), we obtain the final solution ( )tzT , satisfying the
imposed conditions (3)-(4).

2.3 Simulation
As an example, the heat equation (2) has been
simulated for a 1 meter column of water with 1m2

section, submitted at the bottom to a homogeneous
heating flux (1kw), and set free to the ambient air at
the top. A loss of heat by convection with the
atmosphere (Neumann boundary Conditions) was
then foreseen. Fig. 2 and 3 represent the evolution of
the temperature at the bottom and top of the water
(this means, the temperature at the point in contact
with the heat flux and the temperature at the point in
contact with the ambient air.

Fig.2: Temperature evolution

Fig.3: Temperature evolution (zoom)

Fig.3 shows the time delay bettween the input an the
output temperature (about 380sec).

3   Modelling of the steam generator
by PDEs
3.1 Description of the platform
The above Fig. 4 depicts a mini thermal power
station (60 KW) that the L.A.I.L. has built so to
reproduce, in a reduced scale, the same
thermodynamic phenomena as a real power station.
A large number of sensors and actuators equip the
platform for control and supervision purposes.
The installation includes a boiler which produces a
pressurized water steam. The size of the installation
does not permit the working of a turbine: this steam
is therefore relaxed by two modulated servovalves.
The relaxed steam is cooled by a condenser coupled
with a heat exchanger. The condensates are routed
toward the tank to which are connected pumps that
supply the boiler.
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Fig.4: Test board of steam process

3.2 Modelling hypotheses
Two classical hypotheses will be adopted here:
H1. The water and the steam are in
thermodynamic equilibrium, and the thermodynamic
properties are calculated at the equilibrium state.
This hypothesis, generally admitted in the models of
steam generators, is justified because the flow in the
industrial steam generators is turbulent and produces
a good homogenization of the emulsion (we shall
consider here a homogeneous diphasic flow). This
hypothesis H1 allows applying the global equations
simultaneously to the two phases.
H2. The supplying liquid is incompressible
(water at ambient temperature).
Note that conduction heat losses (from the boiler
looses to the outside) are not neglected.

3.3 Homogeneous diphasic mixture
The global thermodynamic rules give the mass,
momentum and energy equations. In diphasic
mixture, they will be completed by the emptiness
ratio correlation [10].
Equation of the mass conservation:
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ρ , average density of mixture,

G , density of mean rate flow,
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sρ  and wρ  are the density of (respectively) steam
and water in the boiler (given by the saturated
water/steam tables) [7].

v and u are the velocity of the two phases, and α
represents the emptiness ratio.
Equation of the momentum conservation:
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where ( ) 22 1 uv ws ρααρϕ −+= , and g is the
gravity. The variation of pressure by friction, F,
calculated by the Fanning Equations [11], is given
by:
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where f is the pressure loss coefficient and Dh is the
hydraulic diameter.
Equation of the energy conservation:
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the conduction heat coefficient, sh  and wh  are the
specific enthalpy of (respectively) steam and water
in the boiler (given by the satureted water\steam
tables) [7] and X is the steam quality:
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3.3.1 Emptiness ratio correlation
In local equilibrium, we consider that the emptiness
ration is null, since we suppose the thermodynamic
equilibrium between phases. In reality (see [11]),
steam bubbles are formed in the overheated liquid
layer at the neighborhood of the heat flux (ϕ)
position and condensed in the under saturated
remaining liquid.
In mass-boiling zone, we use the Armand
correlation modified by Massena [12], which was
found on theoretical and experimental bases:
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Where γ representes the sliding coefficient.
The three quantities α, X, and γ are bounded by the
following relation, since the two phases are in
thermodynamic equilibrium:
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The sliding coefficient γ keeps moderate values
(between 1 and 3) [8].
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3.3.2 The pressure loss coefficient
In simple phase, the pressure loss coefficient is
calculated by the E.C.Koo correlation (cited by
W.H. Mac Adams [11]) valid for a Reynolds
number between 3000 and 3.106:

32.05.00056.0 −+= eRf   (16)
However, in homogeneous diphasic flow, we have
to use the Armand correlation [13] (here for a
pressure 8>p bars and a steam quality 9.0<X ),
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3.4 Partial differential equations
In solving the system (13)-(14) in X and α, we
notice that these two variables depend on u, v, wρ
and sρ . Examining the water and steam saturation

tables, we remark that these last two variables ( wρ
and sρ ) and the specific enthalpy wh  and sh , are
function of the only pressure p . This remark allows
us to finally write system (10), (11), (12) as function
of the three variables u, v and p which turn to be, in
our case, the state variables. This allow obtaining,
after resolution of this system, all the other
thermodynamic variables in the boiler from a state
equation as:
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where,

   [ ]Tpvux ,,=

[ ]Tval mmi ϕ,, &&=  is the input vector including:

alm& , feedwater flow (control),

vm& , outlet steam flow (perturbation),
ϕ , electrical heating flux (control),

[ ]Talex TTk ,=  is an environment vector with:

exT , ambient temperature,

alT , feedwater temperature.
The diagram corresponding to such relations is
represented by the following figure:

Expressing all variables in function of u, v and p, the
system (10),(11),(12) becomes:
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Inverting the matrix in (19) leads to the final system
to be discretized:
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Using water/steam tables [7], steam quality can be
expressed as function of state x, after solving system
(20):
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Remark: in [1], the expected state equation of the
nonlinear system had a different type. The

state [ ]TGmG mTTx ,,= was composed with:

GT , emulsion temperature,

mT , body boiler temperature

Gm , liquid mass in the boiler.
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3.5 Numerical implementation
The principle of simulation is based on the
discretization of system (20) into a finite difference
equations.
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where t∆  and z∆  are respectively, the time and the
space steps. Unfortunately, the theoretical approach
of the choice of t∆  and z∆  necessitates a stability
criterion which, in our case (non linear equations) is
absent. However, in practice, we used an iterative
scheme so to adapt, at each step of discretization, the
space and time steps enabling the stability.

4   Conclusion
An original contribution was provided by taking into
account the dynamic behaviors with a homogeneous
diphasic mixture leading to a model with partial
differential equations, with an input/output form that
is adapted to control.
An other interesting point is that this nonlinear PDE
model allows estimating the "steam quality"
relating to the position in the boiler: this constitutes
a practical progress, since no such sensor is
available. Furthermore, this variables allows to
modelize the shrink and swell effect [4], wich
introduces a non minimum phase in the vapor
generator.
Besides, the initial motivation for this study was to
obtain a possible bentchmark for the control of delay
systems [14]. The theoretical resolution of the heat
equation has shown the existence of an aftereffect
phenomenon in the heat propagation, which was
confirmed by the simulation of the equation (2) (Fig.
2-3). This result encouraged us to make a more
complete study of the heat propagation equation in
the steam generator. A second cause of delay effect
lays in the boiler output pipe (transportation time lag
from the boiler to the modulated servovalves, see
Fig. 4). This lengh will be increased on the plant.
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