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Abstract :- Optimum matching of loads to Photovoltaic (PV) generator is most desirable for more
accurate sizing. Because of the relatively high cost of the PV generator, the system designer is mainly
interested in its full utilisation by optimum matching  of the system components during the entire
operating period.

To achieve an optimum matching of the output characteristics of the PV source to the input
characteristics of electromechanical loads, controlled converters are used. The converters topologies are
function of optimal PV array and load parameters.

Application of PV power to electromechanical loads requires an understanding of the dynamics of
such systems. As a very convenient and powerful tool for dynamic modelling, bond graph technique
was used. The application of bond graph technique for the modelling of PV systems is not yet
widespread.

The purpose of this work is to study the dynamic behaviour of a class of PV systems composed  of
a PV generator, a DC motor, and a boost DC-DC converter. The graphical approach based on bond
graph  methodology is used to formulate the dynamic model of this PV system. To develop that model,
we take into account the non-linear device volt-ampere characteristic PV generator and we use
averaged model DC-DC converter. Causality problems are discussed and a simplified model is deduced
in order to give information from control loop point of view.
Time responses are simulated and stability domain is computed. A performance comparison between
buck and boost converters showed disadvantages of these latter topologies in such application. In fact,
results showed the existence of non minimal phase responses caused by  positive real roots in the
transfer function velocity numerator. This situation leads to mechanical problems hardly bearable by
electromechanical machines.                            IMACS/IEEE  CSCC'99  Proceedings, Pages:2591-2599
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1  Introduction
The photovoltaic system technologies have
increasing roles in electric power technologies,
providing more secure power sources and
pollution-free electric supplies. However in PV
systems, the PV arrays costs are still relatively
high and the energy conversion efficiency is quite

low. Therefore the electric power generated by the
PV arrays should be efficiently utilised.

In a direct coupled (with no battery storage) PV
system, the solar cell array is directly connected to
the motor load couple. These systems are relatively
simple and inexpensive to operate. A direct coupled
system may include a maximum power point
tracker   (MPPT) to improve its performance at
starting and at steady state operation whenever it is
needed [12].



The system under study consists of three different
components; the PV generator, the DC-DC
converters and the DC motor. Each component has
its own operating characteristics which is the volt
ampere characteristics  for the PV generator and
DC motor, torque speed for the mechanical load
and the switch duty-cycle for the DC-DC
converters.
The DC motor is supplied from the PV generator
whose volt-ampere characteristics depend non-
linearly on the solar insulation and temperatures
variations and on the current drawn by the DC
motor. To match the point  at which the PV
generator power is maximum, two solutions are
generally available to the system designer. A)
Carefully select the DC motor and the pump so
that they match as closely as possible the
maximum power line of the PV generator, or B)
Use an electronic device (converters) known as
MPPT, which continuously matches the output
characteristics of the PV generator to the input
characteristics of the DC motor [ 1].
The system under study in this paper  is an
application of the second option.
Before reaching the problem of controlled DC-DC
converters we require understanding of the
dynamics of such PV systems.

Investigations [4],[7], into the dynamic
behaviour  of PV systems have been conducted.
Classical modelling and simulation  have been done
to predict the dynamic response of several
photovoltaic system designs.

Due to its  ease in handling dynamic systems
and as a power tool for modelling we used the bond
graph technique to study the dynamic behaviour of
our PV systems.

The PV generator is characterised by a strongly
non-linear current-voltage characteristics. A
nonlinear state equation deduced from bond graph
is given and a linearised model was then performed
around the peak power point of the I-V
characteristic.
From the state equation  we deduce the transfer
function and we study the PV system stability. We
compute  non minimal phase responses for a
limited voltage PV generator area.

2 Bond graph model of the PV system
The bond graph approach has been developed in
recent years as a powerful tool for modelling
dynamic systems. It essentially focuses on the
exchange of energy between the system and its

environment and between different elements within
the system. It is this energy exchange that
determines the dynamics of any system [10].

To make the bond graph model we focus on the
energetical structure of the PV system involved.
Thereafter, a causality analysis is done in order to
obtain  a mathematical representation that fits into
our need which is the study of dynamic behaviour
from control loop point of view.

In order to develop a suitable bond graph of the
PV system shown in figure 3, it’s necessary to
understand the operating mode and the dynamics of
each component

2.1.  PV generator
A PV generator consists of an array of
photovoltaic cell modules connected in series
parallel combination to provide the desired DC
voltage and current.
Simulation of PV array operation can be described
using a complete physical-mathematical model as
shown in figure 2.

The  current_voltage characteristic, strongly non-
linear, can be represented by the following
equation:
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Fig. 2. Complete physical-mathematical PV array model
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where I p  is the current, I ph is the photo current,

Is is the reverse saturation current, q is the electron

charge, Vp is the terminal voltage , Rs is the serial

resistance , A  is the idealité factor , k is the
Boltzman constant, T is the absolute temperature
and Rsh is the shunt resistance.

Under stable atmospheric conditions, the modelled
PV generator I_V and P_V characteristics are
given by figure 3. These ones are function of solar
radiation
PL, and panel temperature T. An identification
algorithm was used to determine the PV array
model parameters: Rs Rsh Is I ph, , , ...
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For the PV generator two resistances are often
defined:
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where Rst represents the instantaneous PV array

resistance and Rd the PV  array dynamic

resistance.
If  Rst  and Rd  are known, it is possible to

establish whether the array voltage is greater or
less than the peak power voltage.
The condition of a maximum power point is given
by:

d

dV p

Vp I p[ ] 0                              (4)

The corresponding voltage Vpo and current I po  are

determined by solving equation (4) with an iterative
method. At Vpo , Rst  is equal to Rd .

The bond graph representation of the PV array is
given in figure 6. This device is modelled by a flow
source S f I ph in parallel with the R elements

which represent respectively the PV diode with its
non-linear current voltage characteristic noted RD

and shunt resistance Rsh . With the later elements,

we add the PV array serial resistance Rs .

2.2  MPPT converter
To attempt the optimal point, the DC motor is
matched to the solar array by means of maximum
power point tracker ( MPPT). The  MPPT consists
of a power processing  circuit, as buck or boost
converters (Fig. 4), controlled by a signal source
unit. In classical modelling this power processing
circuit of the MPPT is often modelled by a
controlled time variable transformer in which the
transformation ratio m is changed continuously,
corresponding to a variation in the load operating
point [12]. The input/output equations of the time

variable transformer are: 
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(5)
where m is the transformation ratio .

For theses MPPT electronic devices (buck and
boost converters), we used averaged bond graph
models based on causality analysis proposed by
B.Allard et al in  [2]. The buck and boost
converters are modelled by modulated transformers

MTF ( )
1

and MTF ( )1  respectively.  is the

controlled -switch duty cycle. We used this
averaged bond graph model because it gives
information about the behaviour from control loop
point of view. In fact, since  our  great interest is to
match the maximum power point when both solar
insulation level and temperature change. This
graphical representation will be helpful and easily
used for the design and optimisation of the
converter controls.

2.3   DC motor

Fig. 4. Ideal switch model of boost (a)
and buck (b) converters

Fig.3. PV generator current -voltage (C1) and
power_voltage (C2) characteristics

(a) (b)

drivedrive



The motor is a permanent-magnet DC motor
represented by e.m.f Em , the armature circuit
resistance Rm  and inductance Lm  , the inertia J,

and the friction coefficient F. The DC motor is
assumed to drive a centrifugal pump characterised
with a torque proportional to angular  velocity
[4][7]:

K
T

 and  E
m

K
b

.                          (6)

  is the applied shaft torque,  the shaft angular
velocity, KT , Kb are the proportionality factor
between shaft torque, back emf and angular
velocity respectively.
This permanent-magnetic DC motor  is represented
by a classical bond graph model in which the flows
at the junctions (1 - 20 21 22 53) and (1- 31
32,33,34) represent the armature current and the
mechanical rotation speed respectively. The
mechanical load, characterised by proportional
torque to angular velocity (centrifugal pump), is
represented by an R element R:KT.

2.4  Storage Capacitor
High power is temporarily required to overcome
the break away torque and to start up the system.
This power can not be delivered by the PV array
and has to be provided by a storage device
(electrolytic capacitor) C p . Further more a

minimum speed is necessary to guarantee the
lubrication of rotor and stator start.

The equivalent electrical circuit and the  bond
graph model corresponding to the PV system under
study are shown in Fig.5 and Fig.6 respectively.

From this model, it can be seen that the resistance
Rsh , and RD  introduce uncertainty in the causal

structure. If the conductance  causality is assigned
to Rsh , then RD will have a resistance one. This

introduces an algebraic loop between Rsh and RD

as the flow in Rsh  depends upon the effort given by

RD , which in turn, is a function of the flow given

by Rsh [9][10].

In order to solve the problem of causal uncertainty,
we propose to add an element C:( Ca ) on the bond

graph at the first 0-junction, that is in parallel on
the current source. This element has to be of small
value and will be suppressed in the mathematical
model by applying the singular perturbation
method while considering the state variable
associated with the added element as very fast[6].
The validity of this approach can be physically
interpreted. In fact the capacitor C

a
exists in a

solar cell but its effect is negligible unless the
frequency of the system is very high. Cp is the
diode capacitance due to the depletion region and
the diffusion of carriers. It has a very low
capacitance of the magnitude order of 10-9 F and
is a function of irradiance, cell temperature cell
operating voltage , current, etc.. Unfortunately,
during simulation it was observed that solution
becomes very stiff and simulation with this
representation becomes impractical [10].
Since our objective  is to study, in a first analysis,
the stability of this controlled PV system, we
overcome the difficulty cited above by using the
simple PV array model commonly used in which
the effects of Rsh Rs  are neglected  ( Rs and Rsh are

supposed to be null and infinite
respectively)[4],[7],[3].
The simplified  bond graph model is given by
Figure7.

Fig.5. Equivalent electrical circuit of the PV system
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3  Equation formulation
To further understand the dynamic behaviour of
our PV system, we derive the nonlinear  state
equation from bond graph model (Fig.7).
At a first stage we study this dynamic behaviour in
open loop. The control of the system is made
through the duty cycle  of the converter. The

developed equation set are used for stability
analysis using linear techniques.

3.1  Nonlinear state equation
The bond graph model  preserves the same
causality for the remained elements (fig.7). Once
this simplification is done, the state equation can be
easily obtained.  The state vector x is composed of
the energy variables in integral causality (p on I
elements and q on C elements), that is

x p p p q q
t

pL pLm pJ qcp qcm
t

11 21 31 41 51

(7)
The state equation is:
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3.2  Linearisation of state equation
The equation set (8) is nonlinear. For analysis
purposes, it is useful to linearise these equations
around a given steady-state condition.( peak power
point in our case). There are two stages to this
process:  finding the  steady-state and after that
perform the linearisation, [4],[7].

3.2.1  Finding the steady state
For  PV systems, the operating point is

currently chosen near the peak power point voltage
Vpo. To find  this  steady-state with Vpo voltage, we
must at first solve (4) and later the equation set (9)
corresponding  to &x 0 , and  x x ,
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p

L
, p

Lm
, p

J
, qcp  and q

cm
 represent the state

variables at steady-state. Output variables can

then be deduced at steady state:
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3.2.2  Linearisation of bond graph model
The linearisation can be applied by following two
different ways, which lead to the same linearised
state model:
- directly on the non linear state equation,
- from the bond graph model.
Since we used the bon graph technique we propose
to follow the second way.

To obtain the linearised bond graph model, we
apply the technique introduced in Karnopp[8].
At a first stage we begin by  linearising the non
linear element RD . With affected input effort



causality, the  linearised RD  bond graph model   is

as follows:

R
Dd

 is the PV array diode dynamic resistance.

At a second stage we linearise the modulated
transformer MTF of the boost converter. With
affected input flow causality the  linearised MTF
bond graph model  is as follows:

with m( ) 1 ,  Sf and  Se   are exposed as:

Se
dm

d
e e V

m
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50 50
         (11)
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d
f f I

L
( )

13 13
       (12)

To establish the global linearised bond graph
PV system we take into account just the dynamic
parts  and so constant source Sf I

ph
 is eliminated.

The vector  composed by dynamic sources is
e
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:
, with u the dynamic

control variable.

The linear state equation &x Ax Bu is then
easily deduced from the linearised bond graph
model shown in Figure 10.
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Equation (13) is identical to the result obtained by
the linearisation of the nonlinear equations [11][3].
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4  Study of stability

4. 1  Study of transfer function poles
The stability of this PV system is checked by

computing the roots of the characteristic equation.
Routh-Hurwitz criterion was used and none roots
of the characteristic equation lie in the right half of
the s-plan poles.

P I A a a a a( ) det( )
4

3

3

2

2

1 0
0

(14)
a a a a a a4 3 4 2 1 0, , , , ,  are function of experimental

assembly parameters cited above and especially of
RDd

For this PV system   R
Dd

 is positive and so the

system is always stable. In fact the linearity of the
characteristic shaft torque-velocity ( K

T
)

makes the system analogous to an autonomous load
[4].
Figure 11 shows the variation of dominant poles of
transfer function with PV array voltage (Vp). No
positive real poles then the system is stable for all
PV array voltage area .

Fig. 10.  linearised bond graph model of the PV system

Fig.8. linearised bond graph model of RD
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4.2  Study of transfer function zeros
For monocontrolled system, the zeros are the roots
of transfer function numerator. In this study we are
interested to the angular velocity transfer function
which is the most significant for us. This latter  is
given by:

( )

( )
( ) ( )

s

s
b s b s b s

2

2

1 0

1           (15)

with ( ) det( . )s s I A ,

b
I
L

K
b

J L
m

2 2
.

,                                 (16)

b
V

m
K

b

C
m

J L
m

K
b

I
L

J L
m

R
Dd

C
p

1

1

2 2

( )

.

,             (17)

b
K

b
V

m

R
Dd

C
p

C
m

J L
m

I
L

K
b

J LL
m

C
p

0

1

2 2

( )

,               (18)

These values can be directly deduced from the
bond graph model (Fig.10) by using Mason’s rule
[5].

The study of these zeros of the transfer function
showed a non minimal phase response, caused by a
positive real roots in the numerator, for operating
limited area PV array voltage. This latter depend
on experimental assembly parameters. To confirm
this idea we give computing results using different
values of the storage capacitor Cp  (Fig.12, 13).

However a same study has been done for  a PV
system with buck converter configuration showing
non minimal phase response corresponding to the
all operating voltage in which Vp<Vpo, [ 3].
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5. Simulation results
To further understand the dynamics of this
experimental PV plant,  computer simulations of
transient responses in several situations were
carried out by using 20-sim packages.

Figure 14 is showing a transient output
variables in the starting-up in direct matching
(without DC-DC converter).  In this figure we
represent all the output variables ( , , )I

Lm
V

p
. At

steady state the corresponding values
are I Lm A5 75. , 115rd s/  and V

p
V162 .

These values are far from the peak power point
corresponding to a PV array voltage Vp V130 .

These results confirm the necessity of the MPPT
converters in that situation.
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Fig.11 Real dominant poles functionVp

Fig.14. transient output variables in the starting-up
in direct matching (without DC-DC converter) .

Fig.12. Real dominant zeros shaft velocity
function Vp With Cp=10-5  F.

Fig.13. Real dominant zeros shaft velocity
function Vp With Cp=10-4   F



Figure 15 shows the transient output variables in
the starting-up by using  the MPPT boost
converter. In this figure we represent all the output
variables. At steady state the corresponding values
are:
I
L

A I Lm A rd s Vp v12 2 7 5 150 130. , , . , / , , 

and Vm v212 .

From these values we deduce that the
electromechanical load is receiving the maximum
power from the PV generator via the MPPT boost
converter.
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Figure 16 (shows the transient response of shaft
velocity  and PV array voltage Vp  in the

operating starting-up and with step disturbance on
 . For  this simulation and above ones  we use

directly the non linear bond graph model (Fig.7).
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To confirm the computing results shown above,
we give finest simulation of the transient response
of velocity ( ) in response to a step disturbance in
the switch duty-cycle  at Vp=Vpo  using different
values of the storage capacitor Cp  with boost

converter   (Fig.17). For these simulations we used
the linearised bond graph model with small
perturbation on . The results are interesting from
a structural, a computational, and a control  point
of view.
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To compare dynamic performances of buck and
boost configurations in such applications, we give
simulation of  the transient response of velocity
( ) in response to a step disturbance in  the switch
duty-cycle  at Vp>Vpo, Vp=Vpo and  Vp<Vpo
with buck converter (Fig.18). For the PV system
with buck configuration, a deep study in [3] has
shown that positive real zeros are obtained for
operating PV array voltage inferior to Vpo  These
results confirm the opinions which stated that a
buck converter does not assure minimal phase
responses whatever the parameter values of this PV
system may be [7].
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From the results given above we deduce that PV
systems, with boost configuration, are  always
stable. However, a Non Minimal Phase Responses
(NMPR), due to  positive real roots in the
numerator of the velocity transfer function are
detected. These NMPR lead to mechanical
problems hardly bearable by electromechanical

Fig.18. Transient response of shaft velocity
G1: Vp>Vpo, G2: Vp=Vpo,  G3 Vp<Vpo
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at Vp=Vpo ( . )0 02 with boost converter
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Fig.15. transient output variables in the starting-up
With MPPT boost converter

Figure. 16. Transient response of  and Vp  in the

operating starting-up and with step disturbance on 



machines. In fact these NMPR are harmful leading
to shaft torque perturbations and then causing
mechanical vibrations and hence the load
destruction. Furthermore, in dynamical regime
these NMPR prevent the optimal transfer of the
electric power from PV sources to loads.
The positive real zeros computed above depend on
experimental assembly parameters. Therefore a
good sizing of the latters will reliably avoid
mechanical problems.

6 Conclusion
A bond graph model of a PV system was
developed. Discussion of problems causality leads
to the use of a simplified model  giving more
facilities to study the dynamic behaviour and the
control of such systems.

Transient responses have been computed and
non minimal phase responses were detected. These
responses were confirmed by a deep  study in
which we establish the linearised state equation and
the  associated transfer function of this PV plant.

At a first stage we have studied the system in
open loop. The study in closed loop will be handled
in a second stage in which we try to develop a
control system that will track the maximum power
point of the PV array. In this study we project the
use of robust control strategies.
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