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Abstract: - The problem of identifying nonlinear subsystems structured by Wiener-Hammerstein models is
addressed. The two linear are of structure totally unknown. Presently, the nonlinear element is allowed to be
noninvertible. The system identification problem is dealt by developing a two-stage frequency identification
method such that a set of points of the nonlinearity are estimated first. Then, the frequency gains of the two
linear subsystems are determined at a number of frequencies. The method involves Fourier series
decomposition and only requires periodic excitation signals. All involved estimators are shown to be consistent.
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1 Introduction
Wiener-Hammerstein systems consist of a series
connection including a nonlinear static element
sandwiched with two   linear subsystems (Fig.1).
Clearly, this model structure is a generalization of
Hammerstein and Wiener models and so it is
expected to feature a superior modelling capability.
This has been confirmed by several practical
applications e.g. paralyzed skeletal muscle
dynamics (Bai et al., 2009). As a matter of fact,
Wiener-Hammerstein (WH) systems are more
difficult to identify than the simpler Hammerstein
and Wiener models. The complexity of the former
lies in the fact that these systems involve two
internal signals not accessible to measurements,
whereas the latter only involve one. Then, it is not
surprising that only a few methods are available that
deal with WH system identification. The available
methods have been developed following three main
approaches i.e. iterative nonlinear optimization
procedures (e.g. Marconato et al., 2012), stochastic
methods (Pillonetto et al., 2011); frequency methods
(Brouri et al., 2014).

In this paper, the problem of identifying WH
systems is addressed, for simplicity, in the
continuous-time. Unlike many previous works, the
model structure of the two linear subsystems is
entirely unknown. Furthermore, the static
nonlinearity is also of unknown structure and is not
required to be invertible. This is only supposed to be
well approximated, within any subinterval
belonging to the working interval, with a
polynomial of unknown order and parameters. The

order p and the parameters of the polynomial can
vary from one subinterval to another. It turns out
that the complexity of the identification problem lies
in: (i) the fact that the internal signals iu and ou are
not accessible to measurement (Fig.1); (ii) the
nonparametric and nonlinear nature of the system.
Given the system nonparametric nature, the
identification problem is presently dealt with by
developing a two-stage frequency identification
method, involving periodic inputs. First, a set of
points of the nonlinearity is identified using simple
experiments; the size of this set is arbitrarily chosen
by the user. Then, the frequency responses of the
two linear subsystems are estimated for a number of
frequencies; in turn, this number can be made
arbitrarily large. The frequency gain estimator
design relies on input/output Fourier series
expansions.

This paper is organized as follows: the
identification problem is formally described in
Section 2; then, the identification of the nonlinearity
is coped with in Section 3; the identification of the
linear subsystems is dealt with in Section 4.
Simulation examples are provided in Section 5 to
illustrate the performances of the whole
identification method.

( )v t
(.)f ( )oG s( )iG s

( )y t( )iu t ( )ou t ( )w t

Fig.1. Wiener-Hammerstein System Model

( )t
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2 Identification problem statement
We are interested in systems that can be described
by the Wiener-Hammerstein model of Fig.1 where
the different blocs are analytically described as
follows:
 ξwy   

 ( )o ow G s u  

 ( )o iu f u  ( )i iu G s v  

where ( )iG s and ( )oG s are the transfer functions of
the linear subsystems, (.)f denotes the static
nonlinearity, and  is an external noise. As, the
signals iu , ou , w and  are not accessible to
measurements, the identification procedure of the
nonlinear system must only relay on the external
signals v and y . The signal  is supposed to be a
zero-mean stationary sequence of independent
random variables and ergodic. The static nonlinear
element (.)f has any shape and, in particular, may
be noninvertible. It is only assumed that (.)f is
smooth so that it can be accurately represented,
within any finite interval, with a polynomial of
finite order. Of course the polynomial order depends
on the interval length.

The transfer functions ( )iG s and ( )oG s are of
unknown structures. There are only supposed to be
asymptotically stable and with nonzero static gain
(i.e. (0) 0iG  and (0) 0oG  ). System stability is
coherent with open-loop system identification. Also,
note that the nonzero static-gain requirement is
satisfied by most real life systems. In fact, only
derivative systems make an exception that can be
coped with using ad-hoc adaptations of the method
developed in this paper. The problem complexity
also lies in the fact that the (unavailable) internal
signals ( iu , ou , w and  ) are not uniquely defined
from an input-output viewpoint. In effect, if
( ( ), ( ), ( ))i oG s f x G s is representative of the system
then, any model of the form

1 2 1 2( ( ) / , ( ), ( ) / )i oG s k k f k x G s k is also representative
whatever the real numbers 1 20, 0k k  . Therefore,
the fact that (0) 0iG  and (0) 0oG  implies that,
without reducing the problem generality, one can
assume (0) (0) 1i oG G  .

3 Identification of static nonlinearity

In this section, we want to treat the problem of
identifying a set of points belonging to non-
linearity. In Section 2 it was shown that, if 1k and 2k

are any nonzero real numbers, then any model of the
form 1 2 1 2( ( ) / , ( ), ( ) / )i oG s k k f k x G s k is representative
of the system. Accordingly, the system to be
identified is described by the transfer functions:

 ( ) ( ) / (0)i i iG s G s G  ( ) ( ) / (0)o o oG s G s G  a

  ( ) (0) (0)o if x G f G x  b

Then, (0) (0) 1i oG G  . Under these conditions, if
)(tv is constant then the steady-state undisturbed

output )(tw depends only on the input value and the
nonlinearity (.)f . The number n of points is
arbitrary. Let 1 2m n MV v V V v     be the
selected abscissas. To determine the points
( , ( ))j jV f V , letting:

 ( ) jv t V  )0( t for nj 1  

As the linear subsystem ( )iG s is asymptotically
stable, therefore the internal signal ( )iu t is constant,
and one has ( ) j

ii t
u t U


 , then in the steady-state:

 (0)j
i i jU G V for nj 1 and rt NT  

where rT should be comparable to the system rise
time i.e. the time that is necessary for a system step
response to reach %90 of its final value. Then, as
the system is asymptotically stable, its step response
settles down (i.e. gets very close to final value) after
a transient period of rNT seconds with 1N .
As the linear subsystem ( )oG s is asymptotically
stable, it follows that the steady-state of the internal
signal ( )ou t is constant i.e. ( ) j

oo t
u t U


 , and is

written for rNTt  :

 ( ) ( (0) )i j
j j

o iU f U f G V  for nj 1  

In which case, the undisturbed output )(tw is also
constant (in the steady-state) i.e. ( ) jW

t
w t


 . It

readily follows from (4b) and (7) that jW can be
expressed as follows:

 (0) ( )j
j o o jW G U f V  for nj 1  

Finally, notice that the steady-state undisturbed
output jW )1( nj  can simply be estimated using
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the fact that )()()( ttwty  and )(t is zero-mean.
Specifically, jW can be recovered by averaging )(ty

on a sufficiently large interval. Hence, a number of
points of the nonlinear function (.)f can thus be
accurately estimated by repeating the above
experiment successively for 1V to nV .
These ideas are formalized in the two-stage
identification procedure of Table 1.

TABLE I. NONLINEARITY IDENTIFICATION (NI)

1. Data acquisition
Apply the piecewise signal analytically defined as follows,

for all  ( 1) r rt j NT jNT  with nj 1

( ) jv t V (9)

Record the resulting output )(ty ,  0 rt nNT .

2. Nonlinearity points estimation

Compute the (undisturbed output) mean value on each

interval  ( 1) r rj NT jNT with nj 1

( 1)

1ˆ ( ) ( )
jNT

j NT

r

r
j

r
W N y t dt

NT 
  (10)

Then, the set of couples  ˆ, ( )j jV W N with nj 1 , are

estimates of n points all belonging to the trajectory of

nonlinearity (.)f .

Proposition 1. The points of coordinates
 ˆ, ( ) ,j jV W N for nj 1 , obtained from the data

collected on the time interval  0 rnNT , converge
(in probability) to the trajectory of nonlinearity (.)f
as N .

4 Linear subsystem identification
In this section, an identification method is proposed
to obtain estimates of the complex gain
corresponding to the two linear subsystems ( )iG s

and ( )oG s at the frequencies k ( 0,1, )k   whatever
0 . From the NI procedure (Table 1), one gets

estimates of n different points on the path of
nonlinearity (.)f . Furthermore, the larger the
parameter N is, the better the estimation accuracy.
For simplicity, we presently suppose that the
estimated points have been exactly determined.

Recall that, the static nonlinearity (.)f can be
accurately represented, within any finite interval,
with a polynomial of finite order, where the
polynomial order depends on the interval
length.Then, one has for all  m Mx v v :


0

( )
p

l
l

l
f x c x


  with p    a

Then, it is readily seen, using (4b) and (11a), that
(.)f can be developed as follows:


0

( )
p

l
l

l
f x c x


  b

with (0) (0)l
o il lc G G c ( 0 )l p  . All along this

Section, the identified system is submitted to a
given sine input:
 0( ) sin( )v t x V t   0  

where the amplitude 0V and x0 is any point in the
working interval, this latter may be chosen equal to
zero. Let T be the corresponding period )/2( T .
As the linear subsystem ( )i sG is asymptotically
stable with unit static gain, it follows from (3)-(4a)
that the internal signal ( )iu t turns out to be (in
steady state):

  0( ) ( ) sin ( )i i iu t x V G j t       

with  ( ) arg ( )i iG j   . Also, it is readily obtained
using (3), (11a-b) and (13):

   0
0

( ) ( ) sin ( )
p l

o l i i
l

u t c x V G j t   


    

The factor multiplying lc in (14) is written as:


  

  
0

0
0

( ) sin ( )

         ( ) sin ( )

l

i i

l l rl r
r i i

r

x V G j t

C x V G j t

   

   




 

 
 a

where the value of the binomial coefficient l
rC is

given explicitly by:


!)!(

!
rrl

lC l
r 
  b

Indeed, it is readily obtained by combining (14)-
(15b):

   0
0 0

( ) ( ) sin( ( ))
p l l r l rl r

o l r i i
l r

u t c C x V G j t   
 

 

  



Furthermore, the power formulas l2)(sin and
12)(sin l can also be given respectively as

  



 



1

0

2
12

2
2

2 )(2cos)1(
2

)1(
2
1)(sin

l

r

l
r

r
l

l
l

ll
l rlCC  a

  


 



l

r

l
r

r
l

l
l rlC

0

1212 )212(sin)1(
4

)1()(sin   b
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Finally, the internal signal )(tuo can be expressed
as:

    
0 0

( ) ( ) sin ( ( ))
p l

o l k i k i
l k

u t c A G j k t k    
 

    

where the amplitude kA particularly depends on
( )iG j . The phase k depends on the term )(i .

We note that, (18) may have the following form:

    
0

( ) ( ) sin ( ), ( )
p

o k i k i i
k

u t B G j k t G j     


  

The amplitude kB particularly depends on ( )iG j

and coefficients lc ( 0,..., )l p . The phase k
depends on all these parameters in addition to the
phase )(i . As the linear subsystem ( )o sG is
asymptotically stable with (0) 1oG  , let

 ( ) arg ( )o oG j   . The final output of system is
written:

  
0

( ) ( ) sin ( ) ( )
p

k o k o
k

y t B G jk k t k t     


     

On the other hand, one can notice that the steady-
state undisturbed output )(tw is periodic of same
period as the input, it can be developed in Fourier
series:

 )sin()cos(
2

)(
1

0 tkbtkaatw k
k

k   




 

with:

  T
k dttktw

T
a

0
)cos()(

2
   T

k dttktw
T

b
0

)sin()(
2

 

where ,...2,1,0k . One immediately gets from (21):

 )()sin()cos(
2

)(
1

0 ttkbtkaaty k
k

k   




 

The right side of (23) simplifies to:

 )()sin()(
1

0 ttkssty
k

kk   




 

with:

 22
kkk bas  for 1, 2, ...k   a










 

k

k
k b

a1tan for 1, 2, ...k   b

 
T

dttw
T

as
0

0
0 )(1

2
 c

Knowing that:

 0lim 


ks
k

 d

Remark 1. a) Considering the above assumptions,
practically, it is reasonable to limit the development
in Fourier series of y(t) to those frequencies for
which the Fourier series coefficients are significant.
Furthermore, it readily follows from (24)-(26d) that

2

1

0
2
k

k p

s

 

 as p .

b) The choice of the polynomial order p is as
follows:
For any point x0 in the working interval and a given
error  ( 1%,  2%,  ... ), let tP and pP denote,
respectively, the total power and the power of the
first p components of the output signal. Using the
Parseval’s identity (e.g. Ljung, 1987):

 


 








dtty
T

ssbaaP
T

k

k

k

kk
t 0

2

1

2
2
0

1

222
0 )(1

224
 a

 


 


p

k

k
p

k

kk
p

ssbaaP
1

2
2
0

1

222
0

224
 b

Finally, for 1, 2,...p  , we seek the minimum order
p satisfying the following condition:

 tp PP 









100

100 
 

for some 0 100 %  that is chosen by the user.
The amplitude V of the input signal is reduced if
necessary. 

If the condition (28) holds, then the right side of
(24) simplifies to

 )()sin()(
1

0 ttkssty
p

k
kk   



 

By using (20) and (29), we deduce the following
relations:

  ( ) ( )k i o kB G j G jk s   for 1...k p  a

  ( ), ( ) ( )k i i o kG j k       

for 1...k p  b

Accordingly, equations (20) and (29) show how
to obtain the complex amplitudes ( )i jG  and

( )o jkG  using the two couples  kkB , and  kks ,
( 0,1, ..., )k p . This is performed noticing that the
right side of (20) is nothing other than the Fourier
series expansion of the output signal )(ty , up to
noise )(t . Consequently, the procedure to estimate
the output )(ty is as follows: First, we assume that
the condition (28) holds, so the equation (29) is
maintained. Next, given that all deterministic terms
on the right side of (29) are periodic, with common
period T , and )(t is a zero-mean ergodic white
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noise, the effect of the latter can be filtered
considering the following trans-period averaging of
the output:

 



M

i
f Tity

M
Mty

1
))1((1),(  Tt 0  

Indeed, it is readily obtained using (29) and (31):


0

1
lim ( , ) sin( )

p

f k kM k
y t M s s k t 




    

That is, the ks ’s and k ’s turn out to be (w.p.1) the
limits of Fourier series parameters of ),( Mty f as

M . These parameters are given by the usual
expressions:

 22 )()()( MMM kkk bas   ),...,2,1( pk   a










 

)(

)(
)( 1tan

M

M
M

k

k
k b

a  ),...,2,1( pk   b


2

)(
),(

1
)( 0

0 0

Ma
dtMt

T
Ms T

fy    c

where:











T
k

T
k

dttkMty
T

Mb

dttkMty
T

Ma

f

f

0

0

)sin(),(
2

)(

)cos(),(
2

)(




( 0 ... )k p  

Then, it follows from (32)-(34) that:

 kk
M

sMs 


)(lim  w.pfor ( 0 ... )k p  a

 kk
M

M  


)(lim w.pfor ( 1 ... )k p  b

Proposition 2. The estimates ),(ˆ MjGi  and
ˆ ( , )oG jk M obtained by the FGI procedure are

consistent i.e. ˆ ( , ) ( )iiG j M jG  and
ˆ ( , ) ( )o oG jk M jkG  w.p.1 as M . 

5 Simulation
The system to be identified is analytically described
by equations (1)-(3) with:

0.01( )
( 0.1)( 0.5)iG s
s s


 

 0.1( )
( 0.2)( 0.01)oG s
s s


  

a

( ) exp( )f x x  b

Then, the parameterized system will be identified:

0.05( )
( 0.1)( 0.5)iG s
s s


 

 0.002( )
( 0.2)( 0.01)oG s
s s


  

a

 ( ) (0) (0) 50 exp(0.2 )o if x G f G x x   b

The above system is submitted to piecewise
constant input (Fig.2). Fig.2 also shows the output
signal. Fig.3 shows the nonlinearity (.)f considered
in simulation and the couples estimates  )(ˆ, NWV jj

.

TABLE II. FREQUENCY GAINS IDENTIFICATION (FGI)

1. Data acquisition
 Choose a frequency  N ,...,, 21 , let  /2T .

 Apply the sine signal, with period T, defined as follows:

)sin()( 0 tVxtv  0t (38)

 Take a sufficiently long record of the output signal.

2. Estimate of the filtered output

 Fix a given error  ( 1%, 2%, ... ), select an order p
satisfying the following condition:

tp PP 









100

100  (39)

where tP is the total power output signal and pP is the

power of the first p harmonics of )(ty .
 If necessary, vary the point x0 and reduce the amplitude V.
 Generate the filtered output ),( Mty f using (31) and

compute its Fourier series coefficients )(Mka and )(Mkb .

3. Data processing

 From the input sequence v(t), using the equations (11a)-
(19), w(t) may have the following expression:

 
0

( ) ( ) sin ( )
p

k o k o
k

w t B G jk k t k    


   (40)

where the parameter kB (resp. k ), for pk 1 ,

depends on ( )iG j (resp. )(i and ( )iG j ).

 Compute the estimates ),(ˆ MjGi  and ),(ˆ MjkGo  :

 ( ) ( ) ( )k i o kB G j G jk s M   (41a)

 ( ), ( ) ( ) ( )k i i o kG j k M        (41b)

4. Estimation for all frequencies

 Repeat steps 1 through 3 for all frequencies  1,..., N  .

Fig.2. Shape of the resulting disturbed output signal.
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Fig.3. Nonlinear element (.)f and  )(ˆ, NWV jj
.

For an error 0.6%  and 1.5V  , the condition (39)
is satisfied if 3p  . Let fix 3p  . Then, it follows
from the power formulas (17a-b), the standard
trigonometric formulas and using the procedure as
explained in Section 4, one immediately gets:

 

 

 
 

2

0 0 2

2

1 1 3

2

2 2

3

3 3

1 ( )
2

3( ) ( ) ( )
4

1 ( ) ( 2 )
2
1 ( ) ( 3 )
4

i

i o i

i o

i o

s c c V G j

s V G j G j c c V G j

s c V G j G j

s c V G j G j



  

 

 

 

   
 

 

 

 a

1

2 3

( ) ( ) ( ) ;

( ) 2 ( ) (2 ) ; ( ) 3 ( ) (3 )
2

i o

i o i o

     
           

 

    

 b

The coefficients lc ( 0,...,3)l  can be estimated using

the NI procedure for 4 values 1.5jV  ( 1,...,4)j  :

0
ˆ 49.7c   1

ˆ 10.1c  
2

ˆ 0.97c   3
ˆ 0.075c   

Finally, for 0.01 /rd s  and 40M  , the
following results are obtained:

( , ) ( , ) ( 2 , )

( 3 , ) ( , ) ( , )

( 2 , ) ( 3 , )

( 3 , ) ( 4 , ) ( 6 , )

ˆ ˆ ˆ1.03; 0.74; 0.41;

ˆ ˆ ˆ0.29; 0.11; 0.85;

ˆ ˆ ˆ0.27; ( 2 , ) 1.18; 0.33;

ˆ ˆ ˆ1.42; 1.55; 1.64;

ˆ

i o o

o o

o

o o o

o

i

i i

j M j M j M

j M j M j M

j M j M

j M j M j M

G G G

G

j M

  

  

 

  

 

   

  



  

    

     

     

( 9 , ) 1.85                               (44)j M  



6 Conclusion
We have developed a new two-stage frequency
identification method to deal with WH systems
identification. The originality of the present study
lies in the fact that the phases of the two linear
subsystems can be separated, also both linear
subsystems are nonparametric and of unknown
structure. Accordingly, the linear subsystems are not

necessarily finite order. The nonlinear element (.)f
has any form and, in particular, may be
noninvertible. This is only supposed to be accurately
represented, within any finite interval, with a
polynomial of finite order. Another feature of the
method is the fact that the excitation signals are
easily generated and the estimation algorithms can
be simply implemented, compared with several
published approaches. Finally, we note that the
choice of the frequency band of interest is not
required.
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