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Preface 

The objective of the present book entitled “Information Theoretic Models and Their 

Applications” is to acquaint the readers with the quantitative measure of information 

theoretic entropy discovered by well known American Mathematician C.E. Shannon. This 

discovery has played an increasingly significant role towards its applications in various 

disciplines of Science and Engineering. On the other hand, peculiar to information theory, 

fuzziness is a feature of imperfect information which gave birth to fuzzy entropy, loosely 

representing the information of uncertainty, and was introduced by an eminent American 

Electrical Engineer, Lofti Zadeh. The measures of entropy for probability and fuzzy 

distributions have a great deal in common and the knowledge of one may be used to enrich 

the literature on the other and vice-versa. The present manuscript provides the contribution 

of both types of entropy measures. 

The two basic concepts, viz, entropy and coding are closely related to each other. In 

coding theory, we develop optimal and uniquely decipherable codes by using various 

measures of entropy, and these codes find tremendous applications in defense and banking 

industry. Another idea providing a holistic view of problems comes under the domain of 

Jaynes “Maximum Entropy Principle” which deals with the problems of obtaining the most 

unbiased probability distributions under a set of specified constraints. The contents of the 

book provide a study of uniquely decipherable codes and the maximum entropy principle. 

It is worth mentioning here that engineers, scientists, and mathematicians want to 

experience the sheer joy of formulating and solving mathematical problems and thus have 

very practical reasons for doing mathematical modeling. The mathematical models find 

tremendous applications through their use in a number of decision-making contexts. This is 

to be emphasized that the use of mathematical models avoids intuition and, in certain cases, 

the risk involved, time consumed and the cost associated with the study of primary 

research. The book provides a variety of mathematical models dealing with discrete 

probability and fuzzy distributions. 

I am thankful to Guru Nanak Dev University, Amritsar, India, for providing me 

sabbatical leave to write this book. I am also thankful to my wife Mrs. Asha, my daughter 

Miss Tanvi and my son Mr. Mayank for their continuous encouragements towards my 



 

academic activities and also for providing the congenial atmosphere in the family for 

writing this book. I would like to express my gratitude to my research scholars, Mr. 

Mukesh and Ms. Priyanka Kakkar, Department of Mathematics, Guru Nanak Dev 

University, Amritsar, India, for their fruitful academic discussions and efforts made in 

meticulous proof reading for the completion of the book project. I shall be failing in my 

duty if I do not thank the WSEAS publishing team for their help and cooperation extended 

in publishing the present book. 

I have every right to assume that the contents of this reference book will be useful to 

the scientists interested in information theoretic measures, and using entropy optimization 

problems in a variety of disciplines. I would like to express my gratitude for the services 

rendered by eminent reviewers for carrying out the reviewing process and their fruitful 

suggestions for revising the present volume. I sincerely hope that the book will be a source 

of inspiration to the budding researchers, teachers and scientists for the discovery of new 

principles, ideas and concepts underlying a variety of disciplines of Information Theory. 

Also, it will go a long way, I expect, in removing the cobwebs in the existing ones. I shall 

be highly obliged and gratefully accept from the readers any criticism and suggestions for 

the improvement of the present volume.                                                                                                                         

                                                                                                                               Om Parkash  

                                                                                     Professor, Department of Mathematics 

                                                                           Guru Nanak Dev University, Amritsar, India 



 

Forward 
 

The book “Information Theoretic Models and their Applications” written by Dr. 

Om Parkash, Professor of Mathematics, Guru Nanak Dev University, Amritsar, India, is 

an advanced treatise in information theory. This volume will serve as a reference material 

to research scholars and students of mathematics, statistics and operations research. The 

scholarly aptitude of Dr. Om Parkash is evident from his high rated contributions in the 

field of information theory. He is a meticulous, methodical and mellowed worker, with an 

in depth knowledge on the subject. 

                                         
                                                                                                            Dr. R.K.Tuteja                                                 
                                                                                     Ex-Professor of Mathematics 

Maharshi Dayanand University, Rohtak, India 
                                                                   President, Indian Society of Information 
                                                                                           Theory and Applications 

 
 
 



Table of Contents 
Preface                                                                                                                                                   (iii) 

Forward                                                                                                                                                   (v) 

1. Information Theoretic Measures Based Upon Discrete Probability Distributions                       1 

1.1 Introduction                                                                                                                                         1 

1.2 A new generalized probabilistic measure of entropy                                                          7 

1.3 New generalized measures of weighted entropy                                                                               10 

1.4 Probabilistic measures of directed divergence                                                                                  17   

 

2. Generalized Measures of Fuzzy Entropy-Their Properties and Contribution                            28 

2.1 Introduction                                                                                           28 

2.2 New measures of fuzzy entropy for discrete fuzzy distributions                                                      31 

2.3 Monotonic character of new measures of fuzzy entropy                                                                   35 

2.4 Partial information about a fuzzy set-a measurement                                                                       38 

2.5 Generating functions for measures of fuzzy entropy                                                                        42 

2.6 Normalizing measures of fuzzy entropy                                                                                            45

  

3. New Generalized Measures of Fuzzy Divergence and Their Detailed Properties                       50 

3.1 Introduction                                                                                                 50 

3.2 New generalised measures of weighted fuzzy divergence                                                                52 

3.3 Generating measures of fuzzy entropy through fuzzy divergence measures                                    60 

3.4 Some quantitative-qualitative measures of crispness                                                                        65 

3.5 Generating functions for various weighted measures of fuzzy divergence                                       68 

 
4. Optimum Values of Various Measures of Weighted Fuzzy Information                                     73 

4.1 Introduction                                                                                                               73 

4.2 Optimum values of generalized measures of weighted fuzzy entropy                                              76 

4.3 Optimum values of generalized measures of weighted fuzzy divergence                                        82 



5. Applications of Information Measures to Portfolio Analysis and Queueing Theory                  94 

5.1 Introduction                                                                                                     94 

5.2 Development of new optimization principle                                                                                     99 

5.3 Measuring risk in portfolio analysis using parametric measures of divergence                             102 

5.4 Applications of information measures to the field of queueing theory                                           104 

 

6. New Mean Codeword Lengths and Their Correspondence with Information Measures        114 

6.1 Introduction                                                                                                          114 

6.2 Development of exponentiated codeword lengths through measures of divergence                      120 

6.3 Derivations of well known existing codeword lengths                                                                   125 

6.4 Development of information theoretic inequalities via coding theory and measures of                 130 

      divergence                                                                                                                                         

6.5 Generating possible generalized measures of weighted entropy via coding theory                        133 

6.6 Measures of entropy as possible lower bounds                                                                               145 

 

7. A Study of Maximum Entropy Principle for Discrete Probability Distributions                     151 

7.1 Introduction                                                                                                          151 

7.2 Maximum entropy principle for discrete probability distributions                                        156 

7.3 Maximum entropy principle for approximating a given probability distribution                           171 

 

Index                                                                                                                                                     178 



   

CHAPTER-I 

INFORMATION THEORETIC MEASURES BASED UPON DISCRETE 
PROBABILITY DISTRIBUTIONS 

 

ABSTRACT       

In this chapter, we have investigated and introduced a new generalized parametric measure of 

entropy depending upon a probability distribution and studied its essential and desirable properties. By 

taking into consideration the concept of weighted entropy, we have proposed some new generalized 

weighted parametric measures of entropy depending upon a probability and weighted distribution and 

studied their important properties. We have explained the necessity for a new concept of distance for 

the disciplines other than science and engineering and taking into consideration the application areas of 

distance measures, we have investigated and developed some new parametric and non-parametric 

measures of divergence for complete finite discrete probability distributions. 

Keywords: Entropy, Cross entropy, Concave function, Additivity, Convex function, Symmetric 
directed divergence, Hessian matrix.  

1.1 INTRODUCTION     

Introduced by well known American mathematician cum communication engineer Claude 

Shannon, also known as the father of the digital age, information theory is one of the few scientific 

fields fortunate enough to have an identifiable beginning. The path-breaking work of Shannon who 

published his first paper “a mathematical theory of communication” in 1948 is the Magna Carta of the 

information age.  In the beginning of his paper, Shannon acknowledged the work done before him, by 

such pioneers as Harry Nyquist and RVL Hartley, working at the American Bell Laboratories in 1920s. 

Though their influence was profound, the work of those early pioneers had limited applications in their 

fields of interest. It was Shannon’s unifying vision that revolutionized communication, and spawned a 

multitude of communication research that we now define as the field of Information Theory.  

This theory is not just a product of the Shannon’s [24] work only but the result of crucial 

contributions made by many well known distinct individuals, from a variety of disciplines. The 

direction of these pioneers, their perspectives and interests had provided a well behaved shape to 

“Information Theory” dealing with uncertainty, and was sponsored in anticipation of what it could 

provide. This perseverance and continued interest eventually resulted in the multitude of technologies 
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we have today. Before Shannon’s theory, there was only the fuzziest idea about a message and 

rudimentary understanding of how to transmit a waveform but there was essentially no understanding 

of how to turn a message into a transmitted waveform. After the publication of his first paper, Shannon 

[24] showed how information could be quantified with absolute precision, demonstrated the essential 

unity of all information media, and proved that every mode of communication could be encoded in 

bits. This paper provided a “blueprint for the digital age”. 

Information theory has mainly two primary objectives: The first one is the development of the 

fundamental theoretical limits on the achievable performance when communicating given information 

source over a given communication channel using coding schemes. The second object is the 

development of coding schemes providing reasonably good performance. Shannon’s [24] original 

paper contained the basic results for simple memoryless sources and channels. Zadeh [27] remarked 

that uncertainty is an attribute of information and the theory provided by Shannon which has profound 

intersections with Probability, Statistics, Computer Science, and other allied fields of Science and 

Engineering, has led to a universal acceptance that information is statistical in nature. A logical 

consequence of Shannon’s theory of uncertainty, in whatever form it is, is that it should be dealt with 

through the use of probability theory. Thus, information theory can be viewed as a branch of applied 

probability theory and it studies all theoretical problems connected with the transmission of 

information over communication channels. It was Shannon [24] who firstly developed a mathematical 

function to measure the uncertainty contained in a probabilistic experiment. By associating uncertainty 

with every probability distribution  1 2, , ..., nP p p p , Shannon introduced the concept of information 

theoretic entropy and developed a unique function that can measure the uncertainty, given by  

)(PH = 
1

log
n

i i
i

p p


                                                                                                            (1.1.1) 

This is to be noted that unless specified, all logarithms are taken to the base 2. Shannon [24] called the 

expression (1.1.1) as entropy and the inspiration behind adopting the nomenclature “entropy” came 

from the close resemblance between Shannon's mathematical formula and very similar known 

formulae from thermodynamics. In statistical thermodynamics, the most general formula for the 

thermodynamic entropy S of a system is the Gibbs entropy, given by 

1
log

n

B i i
i

S k p p


                                                                                                                          (1.1.2) 

where Bk  is the Boltzmann constant, and pi is the probability of a microstate.  
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Practically speaking, the links between information theoretic entropy and thermodynamic 

entropy are not very much evident. The researchers working in various disciplines of Physics and 

Chemistry are usually more interested in entropy changes as a system spontaneously evolves away 

from its initial conditions, in accordance with the second law of thermodynamics, rather than an 

unchanging probability distribution. The presence of Boltzmann's constant Bk  indicates, the changes in 

S/kB for even small amounts of substances in chemical and physical processes represent amounts of 

entropy which are extremely large compared to anything seen in data compression or signal 

processing. Moreover, thermodynamic entropy is defined in terms of macroscopic measurements and 

makes no reference to any probability distribution, which is central theme to the definition of 

information theoretic entropy. However, the possibility of connections between the two different types 

of entropies, that is, thermodynamic entropy and information entropy cannot be ruled out. In fact, it 

was Jaynes [14], who pointed out that thermodynamic entropy should be seen as an application of 

Shannon's information theory and this thermodynamic entropy should be interpreted as being 

proportional to the amount of Shannon information needed to define the detailed microscopic state of 

the system, that remains uncommunicated by a description solely in terms of the macroscopic variables 

of classical thermodynamics. 

When Shannon [24] introduced the concept of entropy, it was then realized that entropy is a 

property of any stochastic system and the concept is now used widely in many fields. The tendency of 

the systems to become more disordered over time is best described by the second law of 

thermodynamics, which states that the entropy of the system cannot spontaneously decrease. Any 

discipline that can assist us in understanding it, measuring it, regulating it, maximizing or minimizing 

it and ultimately controlling it to the extent possible, should certainly be considered an important 

contribution to our scientific understanding of complex phenomena. Today, information theory which 

is one of such disciplines, is principally concerned with communication systems, but there are 

widespread applications in statistics, information processing and computing. A great deal of insight is 

obtained by considering entropy equivalent to uncertainty, where we attach the ordinary dictionary 

meaning to the later term. A generalized theory of uncertainty, playing a significant role in our 

perceptions about the external world has well been explained by Zadeh [27].  

The measure of entropy (1.1.1) possesses a number of interesting properties as discussed below: 

1. Non-negativity 

( )H P is always non-negative, that is,  
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1

( ) log 0
n

i i
i

H P p p


                                                         

Since log 0i ip p   for all i , the result is obvious. It is zero, if one 1ip  and rest are zeros. 

2. Maxima 

1 2( , ,..., ) log ,nH p p p n  with equality if, and only if  1 ,ip
n

 for all i . 

3. Minima 

Its minimum value is zero and it occurs when one of the probabilities in unity and all others are zero. 

4. Continuity 

1 2( , ,..., )nH p p p  is a continuous function of ip ’s, that is, a slight change in the probabilities  ip   results 

in the uncertainty measure also. 

5. Symmetry 

1 2( , ,..., )nH p p p  is a symmetric function of ip ’s, that is, it is invariant with respect to the order of the 

outcomes. 

6. Grouping or Branching Property  

1 2 1 1( , ,..., ) ( ... , ... )n r r nH p p p H p p p P       

 

   1 1
1 2 1

1 1 1 1

... ,..., ... ,..., nr r
r r nr r n n

i i i i
i i i r i r

pp p pp p p H p p H
p p p p




     

   
   
        
   
   
   
   

for 1, 2,..., 1.r n   

7. Additivity 

If  1 2, ,..., nP p p p  and  1 2, ,..., mQ q q q are two independent probability distributions, then 

( * ) ( ) ( ),H P Q H P H Q                                                                                                 

where *P Q  is the joint probability distribution.  

The entropy measure has many other additional properties, for example: 

(i) The maximum value increases with n , that is, we do expect uncertainty to increase with the number 

of outcomes. 

(ii)    1 1 2 1 2, , ..., ,0 , , ...,n n n nH p p p H p p p  , that is, uncertainty measure is not changed by adding 

an impossible outcome. 
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(iii)  
1

     +
n

i i
i

H ( P* Q ) H ( P ) p H Q A


  ,  

where  iAQH is the conditional entropy of Q  when the ith outcome iA  corresponding to P  has 

happened.  

Immediately, after Shannon introduced his measure, researchers realized the potential of its 

applications in a variety of disciplines and a large number of other information theoretic measures were 

investigated and characterized.  

Firstly, Renyi [23] defined entropy of order , given by  

1 1

1( ) log
1

n n

i i
i i

H P p p
   

 
     

  ,   1,  > 0                                                                       (1.1.3) 

The entropy measure (1.1.3) includes Shannon’s [24] entropy as a limiting case as  1. Zyczkowski 

[28] explored the relationships between the Shannon’s entropy and Renyi’s entropies of integer order. 

The author established lower and upper bound for Shannon entropy in terms of Renyi entropies of 

order 2 and 3. 

Havrada and Charvat [12] introduced first non-additive entropy, given by 

1
1

1
( ) , 1, 0

2 1

n

i
i

p
H P




  


 
 

    



                                                                                               (1.1.4)  

Aczel and Daroczy [1] developed the following measures of entropy: 

1
1

1

log
( )

n
r
i i

i
n

r
i

i

p p
P

p
 



 



,   0r  ,                                                                                                         (1.1.5) 

  1 1
2

1

( ) log , , 0, 0

n
r
i

i
n

s
i

i

p
P s r r s r s

p
  



 
       
 
  




                                                                            (1.1.6) 

The following measures of entropy are due to Sharma and Taneja [25]: 

1
3

1
( ) 2 log , 0

n
r r

i i
i

P p p r 



   ,                                                                                                    (1.1.7) 

   11 1
4

1
( ) 2 2 , , 0, 0

n
r s r s

i i
i

P p p r s r s
 



                                                                          (1.1.8) 
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Kapur [15] introduced a generalized measure of entropy of order ‘’ and type ‘’, viz., 

1 1

1( ) 2 , 1, 1 1, 1
2

n n

i i
i i

H P p p or  
    

   

 
          

                                                 (1.1.9)                                                                   

Kapur [16] also introduced the following non-additive measures of entropy: 

1 1
( ) log [(1 ) log (1 ) ], 0

n n

a i i i i i
i i

H P p p ap ap ap a
 

                                                         (1.1.10) 

1 1

( ) log [(1 ) log (1 ) (1 ) log (1 )]
n n

b i i i i
i i

H P p p bp bp b b
b 


         , b > 0                          (1.1.11) 

In his theory, Burgin [4] claimed that it is not the measure of information that counts, but the 

operational significance given to such measures by the development of certain theorems such as the 

source coding theorems and channel coding theorems due to Shannon and his other successors. 

Similarly, some of the other theories have solid applications, including the Fisher information in 

statistics and the Renyi information in some noiseless source coding problem. Brissaud [3] defined that 

“Entropy is a basic physical quantity that has led to various, and sometimes apparently conflicting, 

interpretations”. It has been successively assimilated to different concepts such as disorder and 

information. In his communication, the author considered these conceptions and established the 

following results:  

(1) Entropy measures lack of information; it also measures information. These two concepts are 

complementary. 

(2) Entropy measures freedom and this allows a coherent interpretation of entropy formulas and 

experimental facts. 

      (3) To associate entropy and disorder implies defining order.  

Dehmer and Mowshowitz [7] described methods for measuring the entropy of graphs and to 

demonstrate the wide applicability of entropy measures. The authors discussed the graph entropy 

measures which play an important role in a variety of problem areas, including biology, chemistry and 

sociology, and moreover, developed relationships between certain selected entropy measures, 

illustrating differences quantitatively with concrete numerical examples. Some applications of the 

entropy measures to the field of linguistics have been extended by Parkash, Singh and Sunita [20] 

whereas certain important and desirable developments regarding entropy measures and their 

classification have been provided by Hillion [13] and Garrido [10]. 

Information Theoretic Models and Their Applications
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1.2 A NEW GENERALIZED PROBABILISTIC MEASURE OF ENTROPY   

In this section, we investigate and propose a new generalized parametric measure of entropy 

depending upon a probability distribution  1 2
1

, , ..., , 0, 1
n

n i i
i

P p p p p p


 
   
 

 and study its essential 

and desirable properties. This new generalized measure of entropy of order   is given by the 

following mathematical expression:  

 
log

1
log

, 1, 1
log

D i

n
p

D i
i

D

p
H P


 


   


                                                                                        (1.2.1) 

Obviously, we have 
1

lim ( )H P
=

1
log

n

i D i
i

p p


  

Thus,  H P  can be taken as a generalization of Shannon’s [24] well known measure of entropy. 

Next, to prove that the measure (1.2.1) is a valid measure of entropy, we have studied its essential 

properties as follows: 

(i) Clearly   0H P    

(ii)  H P  is permutationally symmetric as it does not change if 1 2 3, , ,..., np p p p  are re-ordered 

among themselves. 

(iii)  H P  is a continuous function of ip  for all ip ’s. 

(iv) Concavity: To prove concavity property, we proceed as follows:  

Let   logD ip
ip p  . Then    log' 1 logD ip

Dp     

   log1'' log 1 log 0D ip
D D

i

p
p

      for all 1   

Thus,  p  is a convex function of .p  Now, since the sum of convex functions is also a convex 

function, log

1

D i

n
p

i
i

p 

  is a convex function of 1 2 3, , ,..., np p p p . Also, since log of a convex function is  

convex, log

1
log D i

n
p

D i
i

p 


  is a concave function of 1 2 3, , ,..., np p p p .  

Thus  
log

1
log

, 1, 1
log

D i

n
p

D i
i

D

p
H P


 


   


 is a concave function.  
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Moreover, with the help of numerical data, we have presented  H P as shown in the following Fig.-

1.2.1 which shows that the generalized measure (1.2.1) is concave. 

                                                    
 

Fig.-1.2.1  Concavity of  H P  with respect to P . 

Hence, under the above conditions, the function  H P is a correct measure of entropy. 

Next, we study the some most desirable properties of  H P . 

(i)  1 2 3, , ,..., ,0nH p p p p   1 2 3, , ,..., nH p p p p  

That is, the entropy does not change by the inclusion of an impossible event. 

(ii) For degenerate distributions,   0H P  .  

This indicates that for certain outcomes, the uncertainty should be zero. 

(iii) Maximization of entropy: We use Lagrange’s method to maximize the entropy measure (1.2.1) 

subject to the natural constraint
1

1
n

i
i

p


 .  

In this case, the corresponding Lagrangian is given by  

log

1

1

log
1

log

D i

n
p

D i n
i

i
iD

p
L p









 
    

 


                                                    (1.2.2) 

Differentiating equation (1.2.2) with respect to 1 2 3, , ,..., np p p p and equating the derivatives to zero, we 

get 1 2 ... np p p   . This further gives 1
ip i

n
   

Thus, we observe that the maximum value of  H P arises for the uniform distribution and this result 

is most desirable. 

H
β(

P)
 

                                      p 
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(iv) The maximum value of the entropy is given by 

1 1 1, ,..., logDH n
n n n

   
 

 

Again, 1 1 1, ,...,H
n n n

 
 
 

 is an increasing function of n, which is again a desirable result as the maximum 

value of entropy should always increase. 

(v) Additivity property: Let  1 2, ,..., nP p p p  and  1 2, ,..., mQ q q q be any two independent discrete 

probability distributions of two random variables X and Y, so that  

 i iP X x p  ,          j jP Y y q    

and  

     ,i j i j i jP X x Y y P X x P Y y p q       

For the joint distributions of X  and Y , there are nm possible outcomes with probabilities i jp q ; 

1, 2,...,i n  and 1, 2,...,j m , so that the entropy of the joint probability distribution, denoted by 

P Q , is given by 

 

log

1 1
log

log

D i j
n m

p q
D i j

i jmn

D

p q
H P Q




   


 

                     

log log

1 1
log

log

D i D j
n m

p q
D i j

i j

D

p q 





  


                                                 

                     

loglog

1 1
log

log

D jD i

n m
qp

D i j
i j

D

p q  


  


                                                                                                              

                      

loglog

1 1
log

log

D jD i

n m
qp

D i j
i j

D

p q 


 

 
 
  
 

 

                       

loglog

11

loglog

log log

D jD i

mn qp
D jD i

ji

D D

qp 

 
  


 

Thus, we have the following equality: 
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 mnH P Q  =    n mH P H Q                                                                                                         (1.2.3) 

Equation (1.2.3) shows that for two independent distributions, the entropy of the joint distribution is 

the sum of the entropies of the two distributions. 

Thus, we claim that the new generalized measure of entropy of order   introduced in (1.2.1) satisfies 

all the essential as well as desirable properties of being an entropy measure; it is a new generalized 

measure of entropy. 

Proceeding as above, many new probabilistic measures of entropy can be developed. 

1.3 NEW GENERALIZED MEASURES OF WEIGHTED ENTROPY   

          It is to be noted that the measure of entropy introduced by Shannon [24] takes into account only 

the probabilities associated with the events and not their significance or importance. But, there exist 

many fields dealing with random events where it is necessary to take into account both these 

probabilities and some qualitative characteristics of the events. For instance, in two-handed game, one 

should keep in mind both the probabilities of different variants of the game, that is, the random 

strategies of the players and the wins corresponding to these variants. Thus, it is necessary to associate 

with every elementary event both the probability with which it occurs and its weight.   

Innovated by the idea, Belis and Guiasu [2] proposed to measure the utility or weighted aspect 

of the outcomes by means of weighted distribution  1 2, , ...., nW w w w where each of iw  is a non-

negative real number accounting for the utility or importance or weight of its outcome. Weighted 

entropy is the measure of information supplied by a probabilistic experiment whose elementary events 

are characterized both by their objective probabilities and by some qualitative characteristics, called 

weights. To explain the concept of weighted entropy, let 1 2, , ..., nE E E  denote n possible outcomes with 

1 2, , ..., np p p  as their probabilities and let 1 2, , ...., nw w w  be non-negative real numbers representing their 

weights. Then, it was Guiasu [11], who developed the following qualitative-quantitative measure of 

entropy: 

1
( : ) log

n

i i i
i

H P W w p p


                                                                                                 (1.3.1) 

and called it weighted entropy.  

Some interesting results regarding weighted information have been investigated by Parkash and Singh 

[19], Parkash and Taneja [21], Kapur [16] etc.  
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Kapur [16] remarked that the expression given in equation (1.3.1) should be an appropriate measure of 

weighted entropy, if it satisfies certain desirable and important properties, given below: 

(i) It must be continuous, and permutationally symmetric function of 

     1 1 2 2, ; , ;....; ,n np w p w p w .  

(ii) ( : ) 0H P W  . 

(iii)     It must be maximum subject to 1
1




n

i
ip when each pi is some function of iw  that is, when 

     1 1 2 2; ;....; .n np g w p g w p g w    

(iv) Its minimum value should be zero and this should arise for a degenerate distribution. 

(v) It should be a concave function of 1 2, , ..., np p p  because entropy function should always be 

concave. 

(vi) When iw ’s are equal, it must reduce to some standard measure of entropy.   

(vii) When it is maximized subject to linear constraints, the maximizing probabilities should be 

non-negative.   

In this section, we have proposed some new generalized weighted parametric measures of 

entropy depending upon a probability distribution  1 2
1

, , ..., , 0, 1
n

n i i
i

P p p p p p


 
   
 

  and the 

weighted distribution   1 2, , ..., , 0n iW w w w w  , and studied their important properties.  

I. A new generalized measure of weighted entropy of order   

          We first introduce a new weighted generalized measure of entropy of order   given by the 

following mathematical expression:  

 
1 1

1; , 1, 0
1

n n

i i i i
i i

H P W w p w p   
  

 
      

                                                                        (1.3.2)  

To prove that the measure (1.3.2) is a valid measure of weighted entropy, we study its essential 

properties as follows: 

(i)  WPH ;  is a continuous function of ip  for all ip ’s. 

(ii)  WPH ;  is permutationally symmetric function of nn wwwppp ,,,;,,, 2121  in the sense that it 

must not change when the pairs      nn wpwpwp ,,,,,, 2211  are permuted among themselves. 
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(iii) For degenerate distributions,   0; WPH  . 

Thus,   0; WPH  . 

(iv) Concavity: To prove concavity property, we proceed as follows: 

We have   

   1;
1

1
i

i
i

H P W w p
p







 
 

 

and  

 2
2

2

;
0i i

i

H P W
w p

p


 

   


  

Thus,  WPH ;  is a concave function of 1 2, ,..., np p p . 

(v) Maximization: We use Lagrange’s method to maximize the weighted entropy (1.3.2) subject to the 

natural constraint 
1

1
n

i
i

p


 .  In this case, the corresponding Lagrangian is  

1 1 1

1 1
1

n n n

i i i i i
i i i

L w p w p p 
   

   
          

                                                                                      (1.3.3) 

Differentiating equation (1.3.3) with respect to 1 2, ,..., np p p and equating the derivatives to zero, we get 

 11
1

1
1 0

1
wL p

p
 




   
 

 

 

 12
2

2
1 0

1
wL p

p
 




   
 

 

                                

 

 

From the above set of equations, we have 
1/( 1)

1
1

1 (1 ) 1p
w


 




 

  
 

 

1/( 1)

2
2

1 (1 ) 1p
w


 




 

  
 

 

                  

 1 1 0
1

n
n

n

wL p
p

 



   

 
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1/( 1)
1 (1 ) 1n

n
p

w


 




 

  
 

 

that is, each ip is a function of iw . 

In particular, when the weights are ignored, then 

1 2 np p p    and applying the condition that 
1

1
n

i
i

p


 , we get 1
ip i

n
   

Now   1 1
1

nf n n 


   

where  nf denotes the maximum value. 

Then  ' 1 0f n
n

    

which shows that the maximum value is an increasing function of n and this result is most desirable. 

Moreover, with the help of numerical data, we have presented  WPH ; as shown in Fig.-1.3.1 which 

clearly shows that the measure (1.3.2) is a concave function in nature. 

 

 

 
 

 

Fig.-1.3.1  Concavity of  WPH ;  with respect to P . 

 

Note: If iwi  1 , then 

 
1

1 1 ; 1, 0
1

n

i
i

H P p   
 

 
      

 which is Havrada- Charvat’s [12] measure of entropy. 

Hence, under the above conditions, the function  WPH ;  proposed in equation (1.3.2) is a correct 

generalized measure of weighted entropy. 

H
α (P

;W
) 

p 
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II. A new generalized measure of weighted entropy of order  and type   

We now introduce a new generalized weighted measure of entropy of order   and type  , given by  

  1,1,1;
11












 









n

i
ii

n

i
ii pwpwWPH  or 1,1                                               (1.3.4)  

To prove that the measure (1.3.4) is a valid measure of weighted entropy, we study its essential 

properties as follows: 

(i)  WPH ;
  is a continuous function of ip  for all ip ’s. 

(ii)  WPH ;
  is permutationally symmetric function of nn wwwppp ,,,;,,, 2121  in the sense that it 

must not change when the pairs      nn wpwpwp ,,,,,, 2211  are permuted among themselves. 

(iii) For degenerate distributions   0; WPH 
 . 

Thus,   0; WPH 
 . 

(iv) Concavity: To prove concavity property, we proceed as follows: 

We have  
   11;  





 


 

 ii
i

i

pp
w

p
WPH

 

and  

       011
; 22

2

2







  

 

 ii
i

i

pp
w

p
WPH

 for all 1,1    or 1,1   . 

Thus,  WPH ;
  is a concave function of 1 2, ,..., np p p . 

(v) Maximization: We use Lagrange’s method to maximize the weighted entropy (1.3.4) subject to the 

natural constraint 
1

1
n

i
i

p


 .  In this case, the corresponding Lagrangian is  





















 



11
111

n

i
i

n

i
ii

n

i
ii ppwpwL 


                                                                               (1.3.5) 

 

Differentiating equation (1.3.5) with respect to 1 2, ,..., np p p and equating the derivatives to zero, we get 
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  01
1

1
1

1

1






  


 ppw

p
L  

 

  01
2

1
2

2

2






  


 ppw

p
L  

 

                                                       

  011 




  



nn

n

n

ppw
p
L  

From the above set of equations, we have 

 
1

1
1

1
1 w

pp   
   

 
2

1
2

1
2 w

pp   
   

                                   

 
n

nn w
pp   

  11  

that is, each ip is a function of iw . 

In particular, when the weights are ignored, then 
111

2
1

2
1

1
1

1
    nn pppppp   

which is possible only if  

n
ppp n

1
21   . 

Now    


 


 111 nnnf  

Then  

  1,10111' 



 





 


  nn

nf or 1,1     

which shows that the maximum value is an increasing function of n and this result is most desirable 

since the maximum value of entropy should always increase. 

Moreover, the graphical presentation of  WPH ;
  as shown in Fig.-1.3.2 clearly shows that the 

measure (1.3.4) is a concave function of ip . 
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Fig.-1.3.2  Concavity of  WPH ;
  with respect to P . 

Hence, under the above conditions, the function  WPH ;
 is a correct measure of weighted entropy. 

Note: If iwi  1 , then 

  










 



n

i
i

n

i
i ppPH

11

1 
 

 

which is Sharma and Taneja’s [25] entropy. 

Thus, we claim that under the above conditions, the function  WPH ;
 proposed in equation (1.3.4) is 

a valid generalized measure of weighted entropy. 

Note: In Biological Sciences, we have observed that researchers frequently use a single measure, that 

is, Shannon’s [24] measure of entropy for measuring diversity in different species. But, if we have a 

variety of information measures, then we shall be more flexible in applying a standard measure 

depending upon the prevailing situation. Keeping this idea in mind, Parkash and Thukral [22] have 

developed some information theoretic measures depending upon well known statistical constants 

existing in the literature of statistics and concluded that for the known values of arithmetic mean, 

geometric mean, harmonic mean, power mean, and other measures of dispersion, the information 

content of a discrete frequency distribution can be calculated and consequently, new probabilistic 

information theoretic measures can be investigated and developed. Some of the measures developed by 

the authors are: 

 1H P  log Gn
nM

 
 
 

                                                                                                                     (1.3.6) 

H
αβ (P

;W
) 

 

p 
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 2H P
2

1

1n

i i

n

p




                                                                                                                             (1.3.7) 

 3H P 
2 2

2

M
nM

                                                                                                                          (1.3.8) 

 4               
r

pM
H P

M
 

  
 

                                                                                                              (1.3.9) 

where the notations 2, , and pM G M  stand for arithmetic mean, geometric mean, power mean and 

standard deviation respectively.  

It is to be further observed that in statistics, the coefficient of determination 2r  is used in the 

context of statistical models whose main purpose is the prediction of future outcomes based upon 

certain related information. The coefficient of determination is the proportion of variability in a data 

set that is accounted for by the statistical model which provides a measure of how well future 

outcomes are likely to be predicted by the model. On the other hand, the coefficient of non-

determination, 21 r , the complement of the coefficient of determination, gives the unexplained 

variance, as against the coefficient of determination which gives explained variance as a ratio of total 

variance between the regressed variables. Since coefficient of determination measures association 

between two variables, there is a need to develop a measure which gives the randomness in linear 

correlation. Keeping this idea in mind, Parkash, Mukesh and Thukral [18] have proved that the 

coefficient of non-determination can act as an information measure and developed a mathematical 

model for its measurement.  

1.4 PROBABILISTIC MEASURES OF DIRECTED DIVERGENCE 

The idea of probabilistic distances, also called divergence measures, which in some sense 

assess how ‘close’ two probability distributions are from one another, has been widely employed in 

probability, statistics, information theory, and other related fields. In information theory, the Kullback–

Leibler’s [17] divergence measure, also known as information divergence or information gain or 

relative entropy, is a non-symmetric measure of the difference between two probability distributions P 

and Q. Specifically, the Kullback-Leibler (KL) divergence of Q from P is a measure of the information 

lost when Q is used to approximate P. Although it is often intuited as a metric or distance, the KL 

divergence is not a true metric- for example, it is not symmetric: the KL divergence from P to Q is 

generally not the same as the KL divergence from Q to P.  
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To make the proper understanding of the concept of distance in probability spaces, let 

 1 2, , , nP p p p   and  1 2, , , nQ q q q   be any two probability distributions, then we can use the 

following distance measure as usually defined in metric spaces: 

   
1
221

1
1

;
n

i i
i

D P Q p q


 
  
 
                                                                                                             (1.4.1) 

But, the Kullback–Leibler’s [17] divergence measure defined in probability spaces is given by  

 1
2

1
; log

n
i

i
i i

pD P Q p
q

                                          (1.4.2) 

We, now observe some special features related with both types of measures (1.4.1) and (1.4.2) as 

discussed below: 

(i) 1 2, , , np p p ; 1 2, , , nq q q are not any n  real numbers, these have to lie between 0  and 1 and also 

satisfy
1 1

n n

i i
i i

p q
 

  whereas in metric spaces, the coordinates are always any n  real numbers. 

(ii) The condition of symmetry essential for metric spaces is not so necessary in probability spaces. 

This is because of the reason that we have one distribution fixed and we have to find the distance of 

other distribution from it. Thus, we are essentially interested in the distances or divergences in one 

direction only. Hence, the condition of symmetry is restricted and we should not necessarily impose it 

on the distance measure in probability spaces. 

(iii) We do not have much use for the triangle inequality because this inequality arises from the 

geometrical fact that the sum of the lengths of two sides of a triangle is always greater than the length 

of the third side. Here, since we are not dealing with geometrical distances, but with social, political, 

economic, genetic distances etc., we need not to satisfy the triangle inequality. 

(iv) We want to minimize the distances in many applications and as such we should like the distance 

function to be convex function so that when it is minimized subject to linear constraints, its local 

minimum is global minimum. Thus, we want the distance measure to be minimized subject to some 

linear constraints on ip ’s by the use of Lagrange’s method and the minimizing probabilities should 

always be non-negative. In case Lagrange’s method gives negative probabilities, we have to minimize 

this measure subject to linear constraints and non-negative conditions 0ip   and for this purpose; we 

have to use more complicated mathematical programming techniques. 
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We now compare the two measures, that is, (1.4.1) and (1.4.2). 

 (i) Both are 0  and vanish iff i ip q i  , that is, iff P Q . 

(ii)  1
1 ;D P Q  is symmetric but  1

2 ;D P Q  will not in general be symmetric. 

(iii)  1
1 ;D P Q  satisfies triangle inequality but  1

2 ;D P Q  may not. 

(iv) Both are convex functions of 1 2, , , np p p  and 1 2, , , nq q q . 

(v) When minimized subject to linear constraints on ip ’s by using Lagrange’s method,  1
1 ;D P Q  can 

lead to negative probabilities but due to the presence of logarithmic term,  1
2 ;D P Q  will always lead 

to positive probabilities. 

(vi) Because of the presence of square root in the expression  1
1 ;D P Q , it is more complicated in 

applications than the expression  1
2 ;D P Q . 

(vii) Both measures do not change if the n  pairs      1 1 2 2, , , , , ,n np q p q p q  are permuted among 

themselves. 

From the above comparison, we conclude that in geometrical applications, where symmetry of 

distance and triangle inequality are essential, the first measure is to be used but in probability spaces, 

when these conditions are not essential, the second measure is to be preferred. In the present book, 

since we have to deal with probability spaces only, we shall always use Kullback-Leibler’s [17] 

divergence measure only. 

 

Recently, Cai, Kulkarni and Verdu [5] remarked that Kullback-Leibler’s [17] divergence is a 

fundamental information measure, special cases of which are mutual information and entropy, but the 

problem of divergence estimation of sources whose distributions are unknown has received relatively 

little attention.  

Some parametric measures of directed divergence are:  

1

1

1( ; ) log , 1
1

n

i i
i

D P Q p q 
 






 
  ,  > 0                                                                       (1.4.3) 

which is Renyi’s [23] probabilistic measure of directed divergence. 

1

1

1( ; ) 1 , 1
1

n

i i
i

D P Q p q   






 
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   
 ,  > 0                                                                       (1.4.4) 
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which is Havrada and Charvat’s [12] probabilistic measure of  divergence. 

1 1

(1 )1( ; ) log (1 ) log , 1
1

n n
i i

a i i
i ii i

p apD P Q p ap a
q a aq 


    

                                                 (1.4.5) 

which is Kapur’s [16] probabilistic measure of  divergence. 

1

11( ; ) (1 ) log
1

n
i

i
i i

pD P Q p
q




 


 

 ,  > 0                                                                       (1.4.6) 

which is Ferreri’s [9] probabilistic measure of  divergence. 

Eguchi and Kato [8] have remarked that in statistical physics, Boltzmann-Shannon entropy 

provides good understanding for the equilibrium states of a number of phenomena. In statistics, the 

entropy corresponds to the maximum likelihood method, in which Kullback-Leibler’s [17] divergence 

connects Boltzmann-Shannon entropy and the expected log-likelihood function. The maximum 

likelihood estimation has been supported for the optimal performance, which is known to be easily 

broken down in the presence of a small degree of model uncertainty. To deal with this problem, the 

authors have proposed a new statistical method. 

         Recently, Taneja [26] remarked that the arithmetic, geometric, harmonic and square- root means 

are all well covered in the literature of information theory. In this paper, the author has constructed 

divergence measures based on non-negative differences between these means, and established an 

associated inequality by use of properties of Csiszar’s f-divergence. An improvement over this 

inequality has also been presented and comparisons of new mean divergence measures with some 

classical divergence measures are also made. Chen, Kar and Ralescu [6] have observed that divergence 

or cross entropy is a measure of the difference between two distribution functions and in order to deal 

with the divergence of uncertain variables via uncertainty distributions, the authors introduced the 

concept of cross entropy for uncertain variables based upon uncertain theory and investigated some 

mathematical properties of this concept. Today, it is well known that in different disciplines of science 

and engineering, the concept of distance has been proved to be very useful but its application areas can 

be extended to other emerging disciplines of social, economic, physical and biological sciences by the 

modification of the concept of distance. To explain the necessity for a new concept of distance for the 

disciplines other than that of science and engineering, we consider the following typical problems 

which are usually encountered in these emerging fields: 

1. Find the distance between income distributions in two countries whose proportions of 

persons in n income groups are  1 2, , ..., np p p  and  1 2, , ..., nq q q . 
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2. Find the distance between balance sheets of two companies or between balance sheets of 

same company in two different years. 

3. Find a measure for the improvement in income distribution when income distribution 

 1 2, , ..., nq q q is changed to  1 2, , ..., nr r r  by some government measures when the ideal 

distribution is assumed to be  1 2, , ..., np p p . 

4. Find a measure for comparing the distribution of industry or poverty in different regions of 

a country. 

5. Find a measure for comparing the distribution of voters among different political parties in 

two successive general elections. 

Taking into consideration the above mentioned problems, we now introduce some new parametric and 

non-parametric measures of directed divergence by considering the following set of all complete finite 

discrete probability distributions: 

 


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1,0:,,,
1

21

n
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iinn pppppP  , 2n                                                                        

New parametric measures of directed divergence     

I. For nQP , , we propose a new measure of symmetric directed divergence given by 
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1 2; .                                                                                                      (1.4.7) 

Some of the important properties of this directed divergence are: 

(1)  QPD ;1  is a continuous function of 1 2, , , np p p  and of 1 2, , , nq q q . 

(2)  QPD ;1  is symmetric with respect to P  and Q . 

(3)   0;1 QPD  and vanishes if and only if P Q . 

(4) We can deduce from condition (3) that the minimum value of  QPD ;1  is zero. 

(5) We shall now prove that  QPD ;1  is a convex function of both P  and Q . This result is important 

in establishing the property of global minimum. 
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and
2

0
i j

f
p p



 

 for , 1, 2, , ;i j n i j   

Similarly, 
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Hence, the Hessian matrix of second order partial derivatives of f  with respect to 1 2, , , np p p  is 

given by 
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which is positive definite. A similar result is also true for the second order partial derivatives of f with 

respect to 1 2, , , nq q q . Thus, we conclude that  QPD ;1  is a convex function of both 1 2, , , np p p  and 

1 2, , , nq q q .  

 

                                             
 

 

Fig.-1.4.1: Convexity of  QPD ;1  with respect to P . 

D
1(

P;
Q

) 

p 
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Moreover, with the help of numerical data we have presented  QPD ;1  as shown in the Fig.-1.4.1 

which clearly shows that  QPD ;1  is convex. 

Under the above conditions, the function  QPD ;1  proposed above is a valid measure of symmetric 

directed divergence. 

II. For any nQP , , we propose a new parametric measure of cross-entropy given by the following 

expression: 
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where   is a real parameter.  

To prove that (1.4.8) is an appropriate measure of cross-entropy, we study its following properties: 

(1) Clearly,  ;D P Q  is a continuous function of 1 2, , , np p p  and 1 2, , , nq q q . 

(2) We shall prove that  ;D P Q  is a convex function of both P  and Q .  

Let    1 2 1 2; , , , ; , , ,n nD P Q f p p p q q q   
1

1
1

log











n

i

q
p

i
i

i

p
. 

Thus
i

f
p





 
1

log1
log





 i

i

q
p

,  

 
  i

q
p

i pp
f i

i

1
log1log

log

2

2









 , 1, 2, ,i n   , 

and 
2

0
i j

f
p p



 

 , 1, 2, , ;i j n i j  . 

Similarly, 

  i

i
q
p

i q
p

q
f i

i

1
log

log










, 
 
  2

log

2

2

1
log1log

i

i
q
p

i q
p

q
f i

i











 1,2, ,i n   , 

and 
2

0
i j

f
q q



 

, 1, 2, , ;i j n i j   . 

Probabilistic Information Measures

23



24                                                                                                            Information Theoretic Models and Their Applications  

Hence, the Hessian matrix of the second order partial derivatives of f  with respect to 1 2, , , np p p  is 

given by 
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which is positive definite. Similarly, we can prove that the Hessian matrix of second order partial 

derivatives of f  with respect to 1 2, , , nq q q  is positive definite. Thus, we conclude that  ;D P Q  is a 

convex function of both 1 2, , , np p p  and 1 2, , , nq q q . Moreover, with the help of numerical data we 

have presented  ;D P Q  as shown in the Fig-1.4.2. 

 
 
 
  

Fig.-1.4.2: Convexity of  ;D P Q  with respect to P . 

(3) Since P  and Q  are two different probability distributions, their difference or discrepancy or 

distance will be minimum only if i iq p . Thus, for i iq p , equation (1.4.8) gives   0;D P Q  .  
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Moreover, since  ;D P Q is a convex function and its minimum value is zero, we must have 

  0;D P Q  .  

Under the above conditions, the function  ;D P Q  is a valid parametric measure of cross-entropy. 

Note: We have 
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log
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i
i
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pp
q

 , which is Kullback-Leibler’s [17] measure of cross-

entropy. 

Thus,  ;D P Q  is a generalized measure of cross-entropy.  

Concluding Remarks: In the existing literature of information theory, we find many probabilistic, 

weighted, parametric and non-parametric measures of entropy and directed divergence, each with its 

own merits, demerits and limitations. It has been observed that generalized measures of entropy and 

divergence should be introduced because upon optimization, these measures lead to useful probability 

distributions and mathematical models in various disciplines and also introduce flexibility in the 

system. Moreover, there exist a variety of innovation models, diffusion models and a large number of 

models applicable in economics, social sciences, biology and even in physical sciences, for each of 

which, a single measure of entropy or divergence cannot be adequate from application point of view. 

Thus, we need a variety of generalized parametric measures of information to extend the scope of their 

applications. But, one should be interested to develop only those measures which can be successfully 

applied to various disciplines of mathematical, social, biological and engineering sciences. Keeping 

this idea in mind, we have developed only those measures which find their applications in next 

chapters of the present book.  
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CHAPTER-II 
GENERALIZED MEASURES OF FUZZY ENTROPY-THEIR PROPERTIES 

AND CONTRIBUTION 
   

ABSTRACT      
In the existing literature of theory of fuzzy information, there is a huge availability of 

parametric and non-parametric measures of fuzzy entropy each with its own merits and limitations. 

Keeping in view the flexibility in the system and the application areas, some new generalized 

parametric measures of fuzzy entropy have been proposed and their essential and desirable properties 

have been studied. Moreover, we have measured the partial information about a fuzzy set when only 

partial knowledge of fuzzy values is given. The generating functions for various measures of fuzzy 

entropy have been obtained for fuzzy distributions. The necessity for normalizing measures of fuzzy 

entropy has been discussed and some normalized measures of fuzzy entropy have been obtained. 

Keywords: Uncertainty, Fuzzy set, Fuzzy entropy, Concave function, Monotonicity, Partial 
information, Generating function. 
 

2.1 INTRODUCTION   
It is often seen that in real life situations, uncertainty arises in decision-making problem and 

this uncertainty is either due to lack of knowledge or due to inherent vagueness. Such types of 

problems can be solved using probability theory and fuzzy set theory respectively. Fuzziness, which is 

a feature of imperfect information, results from the lack of crisp distinction between the elements 

belonging and not belonging to a set. However, the two functions measure fundamentally different 

types of uncertainty. Basically, the Shannon’s [19] entropy measures the average uncertainty in bits 

associated with the prediction of outcomes in a random experiment.  

The concept of fuzzy entropy which  is peculiar to mathematics, information theory, computer 

science, and other branches of mathematical sciences tracing to the fuzzy set theory of Iranian-born 

American electrical engineer and computer scientist Lotfi Zadeh, who extended the Shannon’s [19] 

entropy theory to be applied as a fuzzy entropy of a fuzzy subset for a finite set, is the entropy of a 

fuzzy set, loosely representing the information of uncertainty. After the introduction of the theory of 

fuzzy sets, it received recognition from different quarters and a considerable body of literature 
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blossomed around the concept of fuzzy sets. A fuzzy set “A” is a subset of universe of discourse U, 

characterized by a membership function )(xA  which associates to each xU, a membership value 

from [0, 1], that is, )(xA  represents the grade of membership of x in “A”. When )(xA  takes a value 

only 0 or 1, “A” reduces to a crisp or non fuzzy set and )(xA  represents the characteristic function of 

the set “A”. The role of membership functions in probability measures of fuzzy sets has well been 

explained by Singpurwalla and Booker [21] whereas Zadeh [24] defined the entropy of a fuzzy event 

as weighted Shannon [19] entropy. Kapur [8] explained the concept of fuzzy uncertainty as follows: 

The fuzzy uncertainty of grade x is a function of x with the following properties: 

I.      f x = 0 when x = 0 or 1. 

II.    f x  increases as x goes from 0 to 0.5 

III.   f x  decreases as x goes from 0.5 to 1.0 

IV.  f x =  1f x  

It is desirable that  f x should be a continuous and differentiable function but not necessarily.  

Some Definitions 

Consider the vector       1 2, ,...,A A A nx x x                                                                

If  A ix = 0 then the ith element certainly does not belong to set A and if  A ix =1, it definitely 

belongs to set A. If  A ix = 0.5, there is maximum uncertainty whether ix  belongs to set A or not. A 

vector of the type in which every element lies between 0 and 1 and has the interpretation given above, 

is called a fuzzy vector and the set A is called a fuzzy set. 

          If every element of the set is 0 or 1, there is no uncertainty about it and the set is said to be a 

crisp set. Thus, there are 2n  crisp sets with n  elements and infinity of fuzzy sets with n  elements. If 

some elements are 0 and 1 and others lie between 0 and 1, the set will still said to be a fuzzy set. 

With the ith element, we associate a fuzzy uncertainty   A if x , when  f x  is any function which 

has the four properties mentioned above. If the n  elements are independent, the total fuzzy uncertainty 

is given by the following expression:  

  
1

n

A i
i

f x

 .  

This fuzzy uncertainty is very often called fuzzy entropy.  
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Keeping in view the fundamental properties which a valid measure of fuzzy entropy should 

satisfy, a large number of measures of fuzzy entropy were discussed, investigated, characterized and 

generalized by various authors, each with its own objectives, merits and limitations.  

Thus, De Luca and Termini [2] suggested that corresponding to Shannon’s [19] probabilistic entropy, 

the measure of fuzzy entropy should be: 

         
1

( ) log 1 log 1
n

A i A i A i A i
i

H A x x x x   


                                                            (2.1.1) 

Bhandari and Pal [1] developed the following measure of fuzzy entropy corresponding to Renyi’s [17] 

probabilistic entropy:  

1

1( ) log [ ( ) (1 ( )) ], 1, 0
1

n

A i A i
i

H A x x 
    

 

    
                                                           (2.1.2) 

Kapur [8] took the following measure of fuzzy entropy corresponding to Havrada and Charvat’s [6] 

probabilistic entropy: 

 1

1

( ) (1 ) ( ) (1 ( )) 1 , 1, 0
n

A i A i
i

H A x x      



                                                        (2.1.3) 

Parkash [13] introduced a new measure of fuzzy entropy involving two real parameters, given by 

 1

1

( ) [(1 ) ] ( ) (1 ( )) 1 , 1, 0, 0
n

A i A i
i

H A x x
  

       



                                         (2.1.4) 

 and called it ( , )   fuzzy entropy which includes some well known measures of fuzzy entropy. 

Rudas [18] discussed elementary entropy function based upon fuzzy entropy construction and 

fuzzy operations and also defined new generalized operations as minimum and maximum entropy 

operations. Hu and Yu [7] presented an interpretation of Yager’s [22] entropy from the point of view 

of the discernibility power of a relation and consequently, based upon Yager’s entropy, generated some 

basic definitions in Shannon’s information theory. The authors introduced the definitions of joint 

entropy, conditional entropy, mutual entropy and relative entropy to compute the information changes 

for fuzzy indiscernibility relation operations. Moreover, for measuring the information increment, the 

authors proposed the concepts of conditional entropy and relative conditional entropy. Yang and Xin 

[23] introduced the axiom definition of information entropy of vague sets which is different from the 

ones in the existing literature and revealed the connection between the notions of entropy for vague 

sets and fuzzy sets and also provided the applications of the new information entropy measures for 

vague sets to pattern recognition and medical diagnosis. 
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Guo and Xin [5] studied some new generalized entropy formulas for fuzzy sets and proposed 

new idea for the further development of the subject. After attaching the weights to the probability 

distribution, Parkash, Sharma and Mahajan [15, 16] delivered the applications of weighted measures of 

fuzzy entropy for the study of maximum entropy principles. Osman, Abdel-Fadel, El-Sersy and 

Ibraheem [11] have provided the applications of fuzzy parametric measures to programming problems. 

Li and Liu [10] have extended the applications of fuzzy variables towards maximum entropy principle 

and proved that the exponentially distributed fuzzy variable has the maximum entropy when the non-

negativity is assumed and the expected value is given in advance whereas the normally distributed 

fuzzy variable has the maximum entropy when the variance is prescribed. 

Some other developments, proposals and other interesting findings related with the theoretical 

measures of fuzzy entropy and their applications have been investigated by Ebanks [3], Klir and Folger 

[9], Kapur [8], Pal and Bezdek [12], Hu and Yu [7], Parkash and Sharma [14], Singh and Tomar [20] 

etc. In section 2, we have introduced some new generalized measures of fuzzy entropy and studied 

their detailed properties. 

2.2 NEW MEASURES OF FUZZY ENTROPY FOR DISCRETE FUZZY 
DISTRIBUTIONS 

           In this section, we propose some new generalized measures of fuzzy entropy. These measures are 

given by the following mathematical expressions: 

               I) ( ) (1 ( ))
1

1

1( ) ( ) (1 ( )) 2 ; 0A i A i

n
x x

A i A i
i

H A x x     






 
        

 
                                                       (2.2.1) 

Under the assumption 10 .0  , we study the following properties: 
  
(i) When ( ) 0 1A ix or  ,  1 ( ) 0H A    

(ii) When
2
1)( iA x ,  

2

1
2

2 2 1
( )

2

n
H A








 
 

    

                                                   

Hence, 1 ( )H A is an increasing function of )( iA x  for 
2
1)(0  iA x  

(iii) 1 ( )H A is a decreasing function of )( iA x  for 1)(
2
1

 iA x  

(iv) 1 ( ) 0H A   
 
(v) 1 ( )H A does not change when ( )A ix  is changed to ))(1( iA x . 
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(vi) Concavity: To verify that the proposed measure is concave, we proceed as follows: 

We have  

     (1 ( ))( )1 ( ) 1 log ( ) 1 ( ) 1 log(1 ( ))
( )

A iA i
xx

A A i A i A i
A i

H A x x x
x


    


         

 

Also 

   

   

2 (1 ( )) 1( ) 1 ( )

2
1

2
(1 ( )) 2

1 log ( ) 1 ( )
( ) 0

( )
1 ( ) 1 log(1 ( ))

A iA i A i

A i

xx x
A A A i A i

A i x
A i A i

x x
H A

x
x x

  



 

    


  

 



    
 

   
  

     

 

             

            Hence, 1 ( )H A is a concave function of )( iA x .  

Under the above conditions, the generalized measure proposed in equation (2.2.1) is a valid measure of 

fuzzy entropy. Next, we have presented the generalized measure 1 ( )H A graphically in Fig.-2.2.1 

which clearly shows that the fuzzy entropy is a concave function.  

 

 
 

 
 

Fig.-2.2.1 Concavity of 1 ( )H A  with respect to )( iA x  

Next, we study a more desirable property of the generalized measure of fuzzy entropy 1 ( )H A .  

Maximum value  

Taking 1 ( ) 0
( )A i

H A
x









, we get
2
1)( iA x  

H
1α (A

) 

µA(xi) 
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Also
 

 
1
2

2 2 1 21 2 2
2

( ) 2 .2 1 log 2 0
( )

xA i
A i

H A
x



 






   
         

 

Hence, the maximum value exists at
2
1)( iA x . If we denote the maximum value by  f n , we get 

22( ) 1 2nf n



 

  
 

 

Also ' 22( ) 1 2 0f n



 

   
 

   

Thus, the maximum value is an increasing function of n and this result is most desirable. 

  

            II)
 

   

(1 ( ))( )

1
1

1 ( ) 2 ( ) log ( )
1( ; ) ; 0, 0

1 ( ) log 1 ( )

A iA i
xx

A A i A i A in

i i
i

A i A i

x x x
H A W w w

x x

 



   




 





     
        

        

   (2.2.2) 

          
Under the assumption that 10 .0  , we study the following properties 

(i) When ( ) 0 1A ix or  ,  1 ( ; ) 0H A W   

(ii) When
2
1)( iA x ,     

2

1
12

2 2 1
1( ; ) log 2 0

.2

n

i
i

H A W w




 

 

  
  

     
 
  

  

Hence, 1 ( ; )H A W is an increasing function of )( iA x  for 
2
1)(0  iA x  

(iii) 1 ( ; )H A W is a decreasing function of )( iA x  for 1)(
2
1

 iA x  

(iv) 1 ( ; ) 0H A W   

(v) 1 ( ; )H A W does not change when ( )A ix  is changed to ))(1( iA x   . 

(vi) Concavity: To verify that the proposed weighted measure is concave, we proceed as follows: 

We have 
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     (1 ( ))( )

1

1 log ( ) 1 ( ) 1 log (1 ( ))
( ; ) 1
( )

log ( ) log(1 ( ))

A iA i
xx

A A i A i A i

i
A i

A i A i

x x x
H A W w

x
x x

 


     

 
 

     
 

   
      

 

 

Also 

   

   

2 (1 ( )) 1( ) 1 ( )2

2
1

2

(1 ( )) 22

1 log ( ) 1 ( )
( ; ) 1 0
( )

1 11 ( ) 1 log(1 ( ))
( ) 1 ( )

A iA i A i

A i

xx x
A A A i A i

i
A i

x
A i A i

A i A i

x x
H A W w

x
x x

x x

  



 

     

 
  

 

 



 
    
 

   
  

      
  

 

 

Hence, 1 ( ; )H A W  is a concave function of )( iA x . 

Under the above conditions, the generalized measure proposed in equation (2.2.2) is a valid measure of 

weighted fuzzy entropy. Next, we have presented the fuzzy entropy 1 ( ; )H A W  in Fig.-2.2.2 which 

clearly shows that the fuzzy entropy is a concave function. 

 

 
 
 

Fig.-2.2.2 Concavity of 1 ( ; )H A W  with respect to )( iA x  

Moreover, we have studied the following desirable property of the generalized measure of fuzzy 

entropy: 

Maximum value 

Taking 1 ( ; ) 0
( )A i

H A W
x









 , we get
2
1)( iA x  

H
1α (A

;W
) 

µA(xi) 
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Also
1( )
2

2
1

2

( ; ) 0
( )

xA i
A i

H A W
x








 
  

  

Hence, the maximum value exists at
2
1)( iA x  and is given by 

2
1

1

2 log 2. ( ; ) 1 2
n

i
i

Max H A W w




 




       
   

                                                                       (2.2.3) 

Note: If we ignore the weights and denote the maximum value of the fuzzy entropy by ( )f n , then 

equation (2.2.3) becomes 

22 log 2( ) 1 2f n n


 
  

    
   

 

Then  

' 22 log 2( ) 1 2 0f n


 
  

     
   

 

Thus, the maximum value is an increasing function of n and this result is most desirable. 

2.3 MONOTONIC CHARACTER OF NEW MEASURES OF FUZZY ENTROPY  

In this section, we discuss the monotonic character of the measures of fuzzy entropy proposed in the 

above section. 

I. From equation (2.2.1), we have 

 
( ) 1 (1 ( )) 11

1

( ) 1 ( ) log ( ) (1 ( )) log(1 ( ))A i A i

n
x x

A i A i A i A i
i

dH A x x x x
d


     

 
  



 
       

 
                  

                                                ( ) (1 ( ))
2

1

1 ( ) (1 ( )) 2A i A i

n
x x

A i A i
i

x x   






                                      

or 

( ) 1 (1 ( )) 12 1

1

( ) ( ) log ( ) (1 ( )) log(1 ( ))A i A i

n
x x

A i A i A i A i
i

dH A x x x x
d


       


  



 
       

 
                          

                                                                                  ( ) (1 ( ))

1

( ) (1 ( )) 2A i A i

n
x x

A i A i
i

x x    



     
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 

 

( )

1 (1 ( ))

( ) 1 ( ) log ( )

(1 ( )) 1 (1 ( )) log(1 ( )) 2

A i

A i

x
A i A i A in

i x
A i A i A i

x x x

x x x



 

  

   
 

  
  

   
         

                             (2.3.1) 

Let    (1 )( ) 1 log (1 ) 1 (1 ) log(1 ) 2x xf x x x x x x x            ; 1x   

Also, we have the following inequality: 

log 1 0x x x   ,                                                                                                                              (2.3.2) 

Rewriting equation (2.3.1) and applying the inequality (2.3.2), we get 

   (1 ) (1 ) (1 )( ) log 1 (1 ) (1 ) log(1 ) 1 0x x x x x xf x x x x x x x                    

Hence equation (2.3.1) gives that 1 ( ) 0dH A
d




    

Thus, 1 ( )H A   is a monotonically decreasing function . 

II. From equation (2.2.2), we have  

 

   (1 ( )) 1( ) 11

1

( ; ) 1 ( ) log ( ) 1 ( ) log 1 ( )A iA i

n
xx

i A i A i A i A i
i

dH A W w x x x x
d


    

 
 



         
  

 

                 
 

   

(1 ( ))( )

2
1

( ) 1 ( ) 2
1

( ) log ( ) 1 ( ) log 1 ( )

A ii
xx

A i A in

i
i

A i A i A i A i

x x
w

x x x x

  


   





    
      

         

                               

or 

 

 

     

   

( )

(1 ( ))2 1

1

( ) 1 ( ) log ( )

( ; ) 1 ( ) 1 (1 ( ) log 1 ( )

( ) log ( ) 1 ( ) log 1 ( ) 2

A i

A i

x
A i A i A i

n
x

i A i A i A i
i

A i A i A i A i

x x x

dH A W w x x x
d

x x x x




 

  

    


   





  
  
  
         
  
  
        

  

                                                                                                                                                          (2.3.3) 
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Taking  (1 )( ) (1 log ) (1 ) 1 (1 ) log(1 ) log (1 ) log(1 ) 2x xg x x x x x x x x x x x              ; 1x   

Rewriting the above equation, we get 

   

 

(1 ) (1 ) (1 )log 1 (1 ) (1 ) log(1 ) 1

( )
log (1 ) log(1 )

x x x x x xx x x x x x

g x
x x x x

               
 

  
      

                                (2.3.4) 

Further, let ( ) log (1 ) log(1 )f x x x x x    , then 

)1()( xfxf   and )1()( '' xfxf   

Also 0)1()0(  ff . Since ( )f x is convex, we have 

0)( xf    for all  10  x                                                                                                               (2.3.5) 

Applying (2.3.2) and (2.3.5), we get ( ) 0g x  . 

Hence equation (2.3.3) gives that 1 ( ; ) 0dH A W
d




  

Thus, 1 ( ; )H A W  is a monotonic decreasing function of  . 

Next, we have presented 1 ( ; )H A W graphically and obtained the following figures 2.3.2 and 2.3.3.  

Case-I: For 1  , we have 

 

 
 

Fig.-2.3.2 Monotonicity 1 ( ; )H A W for 1   
 

Case-II: For 0 1   , we have 

 

H
1α (A

;W
) 

α 
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Fig.-2.3.3 Monotonicity 1 ( ; )H A W for 0 1    

The above figures clearly show that the generalized weighted fuzzy entropy 1 ( ; )H A W  is a 

monotonically decreasing function of for each . 

2.4 PARTIAL INFORMATION ABOUT A FUZZY SET-A MEASUREMENT 

We know that if we know all the fuzzy values 1 2 3( ), ( ), ( ),..., ( )A A A A nx x x x    of a fuzzy set A , 

then we have the complete knowledge or full information about the fuzzy set A . If we have some 

knowledge about these fuzzy values 1 2 3( ), ( ), ( ),..., ( )A A A A nx x x x    , then this knowledge will not 

enable us to determine these fuzzy values uniquely. Thus, we have only partial information about the 

fuzzy set. We know that the information supplied by this incomplete knowledge is always less than the 

full information and this gives birth to a new problem that how to find a quantitative measure for this 

information which will show how less is this partial information. To solve this problem, we make use 

of the parametric measure of fuzzy entropy introduced in equation (2.2.1).  

We know that the fuzzy entropy (2.2.1) is maximum when each 1( )
2A ix  , that is, when the fuzzy set 

A  is most fuzzy set. Also, it is minimum when ( )A ix = 0 or 1, that is, when the set is crisp set. Thus, 

we see that the model (2.2.1) measures the fuzziness of the set A . 

Now, if we do not know 1 2 3( ), ( ), ( ),..., ( )A A A A nx x x x    , each of these can take any value 

between 0 and 1. In this case, the maximum value of the fuzzy entropy is given by 

H
1α (A

;W
) 

α 
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1 / 2max

2 1( ) 1
2

nH A


        
                                                                                                             (2.4.1) 

and the minimum entropy is given by 

1 min
( ) 0H A                                                                                                                                    (2.4.2) 

Thus, the expression for fuzziness gap is given by 

Fuzziness gap= 1 1 / 2max min

2 1( ) ( ) 1
2

nH A H A 


            
                                                              (2.4.3)                    

Now, if we are given some knowledge about the fuzzy values, it can only decrease 1 max
( )H A    

and increase 1 min
( )H A   . From this discussion, it is obvious that this knowledge reduces the fuzziness 

gap and this reduction is due to the information given by the partial knowledge. Thus, we conclude that 

the information given by the partial knowledge is the difference between fuzziness gap before and after 

we use this information. Thus, the information provided by the partial knowledge can be calculated 

and to calculate this information, we discuss the following cases: 

Case-I: When one or more fuzzy values are known 

 Suppose only one fuzzy value ( )A kx  is known and all others are unknown. Then, we have 

 ( ) (1 ( ))
1 / 2max

1 2( 1) 1( ) ( ) (1 ( )) 2 1
2

A k A kx x
A k A k

nH A x x  
 

 
               

                             (2.4.4) 

and 

 ( ) (1 ( ))
1 min

1( ) ( ) (1 ( )) 2A k A kx x
A k A kH A x x    


                                                                     (2.4.5) 

From equations (2.4.4) and (2.4.5), we have 

1 1 / 2max min

2( 1) 1( ) ( ) 1
2

nH A H A 


             
                                                                               (2.4.6) 

Thus, from equations (2.4.3) and (2.4.6), we have 

Reduction in fuzziness gap / 2
2 11

2
    

 

Thus, the fuzzy information received by the partial knowledge, when only one fuzzy value is known, is 

given by the following equation:                                                                                                                                                                                                                                                                            

1 / 2
2 1( ) 1

2
I A 

    
                                                                                                                         (2.4.7) 
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Case-II: When only a range of fuzzy values is known 

 Suppose we are given only that ( )A kx  lies between two fuzzy values a  and b , and no other 

knowledge about the fuzzy values is given. Then, the maximum fuzzy information is given by  

 ( ) (1 ( ))
1 / 2max ( )

1 2( 1) 1( ) max ( ) (1 ( )) 2 1
2

A k A k

A k

x x
A k A ka x b

nH A x x  


 
 



 

                   
        (2.4.8)                                      

and the minimum fuzzy information is given by 

 ( ) (1 ( ))
1 min ( )

1( ) min ( ) (1 ( )) 2A k A k

A k

x x
A k A ka x b

H A x x  


 




 

           
                                            (2.4.9)                                          

Thus fuzziness gap  1 2/ 2
2( 1) 11 ( ) ( )

2
n H A H A
       

                                                          (2.4.10) 

where 

 ( ) (1 ( ))
1 ( )

1( ) max ( ) (1 ( )) 2A k A k

A k

x x
A k A ka x b

H A x x  


 




 

       
 

and 

 ( ) (1 ( ))
2 ( )

1( ) min ( ) (1 ( )) 2A k A k

A k

x x
A k A ka x b

H A x x  


 




 

       
 

Now, as shown in Fig.-2.4.1, the following three cases arise: 

(a) If 0.5a  and 0.5b  , then the maximum value arises when ( )A kx b   and the minimum 

value arises when ( )A kx a  . 

 

 

 
 
 
      1 ( )H A  
    
 
    
 
 
                                
       0      a       b      0.5       a     b    1     
      ( )A kx    

                                                   Fig.-2.4.1  Presentation of 1 ( )H A for optimality  
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(b) If 0.5a  and 0.5b  , then the maximum value arises when ( )A kx a  and the minimum value 

arises when ( )A kx b  . 

(c)  If 0.5a  and 0.5b  , and also a - b< 0.5, then 

(i) The maximum occurs at a if 1a b  and at b  if 1a b  . 

(ii) The minimum occurs at a if 1b a  and at b  if 1b a  . 

Thus, we see that in every case, the optimum values can be calculated and consequently, the fuzziness 

gap can be obtained. 

Example: For 10n  and 2  , let ( )A kx  lies between 0.1 and 0.7 , then maximum will take place at 

( ) 0.7A kx   and the minimum will take place at ( ) 0.1A kx  . 

Thus 1 max
( ) 4.95375H A     and 

1 min
( ) 0.27095H A     

Thus, the fuzziness gap 4.6828  

Hence, we see that the fuzzy information received by the partial knowledge, when only a range of 

fuzzy values is known, is given by the following equation:                                                                                                                                                               

2 / 2
2 1( ) 1 4.68345 0.3172

2
nI A 
      

                                                                     

whereas 

1 / 2
2 1( ) 1 0.5

2
I A 

     
 

Thus 2 1( ) ( )I A I A  

Hence, we conclude that the information supplied by the partial knowledge of the range of fuzzy value 

( )A kx  is always less than the information supplied by the exact value of ( )A kx  and this result finds 

total compatibility with real life problems.  

Case-III: When a relation is specified between the fuzzy values 

Suppose that the fuzzy values are connected by the following relation: 

1 2 3( ) ( ) ( ) ... ( )A A A A nx x x x k                                                                                             (2.4.11) 

In this case, we see that, maximum value arises when 

1 2 3( ) ( ) ( ) ... ( )A A A A n
kx x x x
n

                                                                                            (2.4.12) 

and this maximum value is given by 
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1

1 max
( ) 1 2

k k
n nn k kH A

n n

 




  
 

 
                  
 

                                                                              (2.4.13) 

For obtaining the minimum value, we consider the following two cases: 

(a) The minimum value of this entropy arises when some of the values are unity and the others are 

zero, that is, when the set is a crisp set and this is possible only if k is positive integer. 

Thus, we have 1 min
( ) 0H A    .  

Hence, in this case, we have 
1

1 1max min
( ) ( ) 1 2

k k
n nn k kH A H A

n n

 
 



  
 

 
                      
 

                  

Consequently, the weighted information supplied by the constraint (2.4.11) is given by the following 

relation: 

1

3 / 2

2 1 1( ) 1 1 2
2 2

k k
n nn k kI A

n n

 



  
 

  
                             

                                                            (2.4.14)                                                 

(b) In case, k is not an integer, then minimum value is obtained by 

        1
1 min

( ) 1 2
k k k knH A k k k k

 


                          

 

Thus, we have  

       
1

1
1 1max min

( ) ( ) 1 1
k k
n nk k k kn k kH A H A k k k k

n n

 
  



  
         

  
                                       

                                                  
Consequently, the information supplied by the constraint (2.4.11) is given by the following relation: 

       
1

1
4 / 2

1( ) 2 1 1 1
2

k k
n nk k k kn k kI A k k k k

n n

 
 



  
         

  
                                       

       (2.4.15) 

Proceeding on similar lines, the partial information about a fuzzy set can be measured by using various 

measures of fuzzy entropy.  

2.5 GENERATING FUNCTIONS FOR MEASURES OF FUZZY ENTROPY 
Golomb [4] defined an information generating function for a probability distribution, given by 
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  



n

i

t
iptf

1
                                                                               (2.5.1) 

with the property that,  

 '

1
1 log

n

i i
i

f p p


                                                                                      (2.5.2) 

which is Shannon’s [19] measure of entropy for the probability distribution P and thus showed 

that ( )f t  gives the expression for the generating function for Shannon’s [19] measure of entropy. 

Similar expressions of generating functions for measures of fuzzy entropy can be obtained upon 

extending the idea for fuzzy distributions. Let the fuzzy information scheme defined on the fuzzy set 

A  is given by 

 

1 2

1

1 2

...

( ) ( ) ... ( )

n

A A A n

E E E

S

x x x  

 
 
 
 
 
 

  

 

where ( ); 1, 2,...,A ix i n  is a membership function.  

We define     
1

( ) 1
n tt

A i A i
i

f t x x 


       so that 

         '

1
(1) log 1 log 1

n

A i A i A i A i
i

f x x x x   


        

Thus, ( )f t  gives the expression for the generating function for De Luca and Termini’s [2] measure of 

fuzzy entropy. 

Below, we discuss some generating functions for different measures of fuzzy entropy: 

I. Generating function for Kapur’s [8] measure of fuzzy entropy of order  and type   

We know that Kapur’s [8] measure of fuzzy entropy of type ,  is given by 

 
 ,

1

( ) (1 ( ))1( ) log ; 1, 1 1, 1
( ) (1 ( ))

n
A i A i

i A i A i

x x
H A or

x x

 

   

 
   

   

 
    

  
                                    (2.5.3) 

Let us now consider the following function: 

               



 


 



;111
1

,

n

i

t

iAiA

t

iAiA xxxxtf                      (2.5.4) 
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Taking 1t  , equation (2.5.4) gives 

           ,
1

11 1 1 ;
n

A i A i A i A i
i

f x x x x
  

       
  

                                      (2.5.5) 

which is fuzzy  entropy  introduced  by  Kapur [8]. 

Now differentiating equation (2.5.4) with respect to t , we have 

             
           









iAiA

t

iAiA

n

i
iAiA

t

iAiA

xxxx

xxxxtf






 


1log1

1log11
1

,
'

                            (2.5.6) 

Taking 0t  , equation (2.5.6) gives the following expression: 

             '
,

1

10 log 1 log 1
n

A i A i A i A i
i

f x x x x
  

     
  

           

which is fuzzy entropy (2.5.3) introduced by Kapur [8]. Thus,  tf  , can be taken as a generating 

function for Kapur’s [8] measure of fuzzy entropy. 

Also we have the following results: 

(a)        






n

i
iAiA xxf

1
1, 11

1
11 

 


                 

which is Kapur’s [8]  fuzzy entropy. 

(b)        






n

i
iAiA xxf

1
1,

' 1log
1

10 
 


 

which is Bhandari and Pal’s [1] measure of fuzzy entropy. 

II. Generating function for Bhandari and Pal’s [1] measure of fuzzy entropy  

We have already expressed Bhandari and Pal’s [1] measure of fuzzy entropy in equation (2.1.2). 

Let us now consider a function 

       //
,

1

1 1 ; , 1, 0
n t

A i A i
i

f t x x
  

        
  

 
         

                                (2.5.7) 

Then    

 ,1
1

11 ( ) (1 ( )) 1 ; 1
1

n

A i A i
i

f x x 
   

 

                                                                                  (2.5.8) 

which is a measure of fuzzy entropy introduced by Kapur [8] and it corresponds to Havrada Charvat’s 

[6] probabilistic entropy. 
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Now differentiating equation (2.5.7) with respect to t , we have 

             / /' / /
,

1

1 1 log 1
n t

A i A i A i A i
i

f t x x x x
      

     
  

 
       

             (2.5.9) 

Taking 0, 1t    , equation (2.5.9) gives the following expression: 

       '
,1

1

10 log 1
1

n

A i A i
i

f x x


  
 

        

which is Bhandari and Pal’s [1] measure of fuzzy entropy and it corresponds to Renyi’s [17] measure 

of probabilistic entropy. 

Thus, the function  tf  , can be taken as a generating function for Bhandari and Pal’s [1] measure of 

fuzzy entropy. 

Proceeding on similar lines, the generating functions for various measures of fuzzy entropy can be 

developed.  

2.6 NORMALIZING MEASURES OF FUZZY ENTROPY 
         We first of all discuss the need for normalizing measures of fuzzy entropy. We know that De 

Luca and Termini’s [2] measure of fuzzy entropy is given by 

         
1

( ) log 1 log 1
n

A i A i A i A i
i

H A x x x x   


                                                            (2.6.1) 

This entropy measures the degree of equality among the fuzzy values, that is, the greater the equality 

among, 1 2( ), ( ),..., ( )A A A nx x x   , the greater is the value of ( )H A  and this entropy has its maximum 

value log 2n  when all the fuzzy values  are equal, that is, when each 1( )
2A ix  . 

Thus, we have 

( ) log 2H F n                                                                                                                         (2.6.2) 

where 1 1 1, ,...,
2 2 2

F    
 

 is the most fuzzy distribution. 

The entropy (2.6.1) also measures the uniformity of A  or ‘closeness’ of A  to the most fuzzy 

distribution F , since according to Bhandari and Pal’s [1] measure, the fuzzy directed divergence of A  

from F is given by  

( , )D A F
1

( ) 1 ( )( ) log (1 ( )) log
1/ 2 1/ 2

n
A i A i

A i A i
i

x xx x 
 



 
   

 
  

     = log 2 ( )n H A                                                                           (2.6.3) 
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(This is to be remarked that we shall discuss Bhandari and Pal’s [1] measure of fuzzy directed 

divergence in Chapter-III) 

Thus, greater the value of entropy ( )H A , the nearer is A  to F . This entropy provides a measure of 

equality or uniformity of the fuzzy values 1 2( ), ( ),..., ( )A A A nx x x    among themselves. Now, let us 

consider the following fuzzy distributions: 

 ( ) 0.4,0.4,0.4,0.4A ix  and  ( ) 0.3,0.3,0.4,0.4,0.4B ix   

Then, we have 

  1.2734H A   and    1.5825H B H A   

 We want to check which fuzzy distribution is more uniform or in which distribution the fuzzy values 

are more equal? The obvious answer is that fuzzy values of A  are more equal than the fuzzy values of 

B . Thus, A  is more uniformly distributed than B but still    H A H B . 

From the values of the two fuzzy entropies, it appears that B  is more uniform than A which is 

obviously wrong and this fallacy arises due to the fact that the fuzzy entropy depends not only on the 

degree of equality among the fuzzy values; it also depends on the value of n . So long as n is the same, 

entropy can be used to compare the uniformity of the fuzzy distributions. But, if the number of 

outcomes are different, then fuzzy entropy is not a satisfactory measure of uniformity. In this case, we 

try to eliminate the effect of n by normalizing the fuzzy entropy, that is, by defining a normalized 

measure of fuzzy entropy as 

( )H A = ( )
max ( )

H A
H A

                                                                                        (2.6.4) 

It is obvious that  

0  H (A)  1                                                                                       (2.6.5) 

For De Luca and Termini’s [2] measure of fuzzy entropy, we have 

H (A)
 

4

A i A i A i A i
1

  ( )  log ( )  (1 ( )) log(1 ( ))

4log2
i

x x x x   


  
 


 = 1.05754 

and 

H (B) = 1.05149 

Obviously, H (A) > H (B) 

Thus, A  is more uniform than B . This gives the correct result that B  is less uniform than A . Thus, to 

compare the uniformity, or equality or uncertainty of two fuzzy distributions, we should compare their 
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normalized values and not the exact ones. Some of the normalized measures of fuzzy entropy are 

discussed below: 

I. Normalization of Parkash’s [13] measure of fuzzy entropy  

Parkash [13] introduced the following measure of fuzzy entropy: 

 1

1

( ) [(1 ) ] ( ) (1 ( )) 1 , 1, 0, 0
n

A i A i
i

H A x x
  

       



                                         (2.6.6) 

The maximum value of (2.6.6) is given by 

 (1 )

max
2 1

(1 )
( ) nH A  

  
     

                                                                                                 (2.6.7) 

Thus, the expression for Parkash’s [13] normalized measure is given by 

 
 

1
(1 )

( ) (1 ( )) 1

2 1
( )

n

A i A i
i

N

x x
H

n
A

 


  

 




     
    


                                                                          (2.6.8) 

II. Normalization of Parkash and Sharma’s [14] measure of fuzzy entropy of order a  

Parkash and Sharma [14] introduced the following measure of fuzzy entropy:  

          
1

log 1 log 1 1 log 1 ; 0
n

a A i A i
i

H A a x a x a a 


                                            (2.6.9) 

The maximum value of (2.6.9) is given by 
2

max

2
2log                         

1
( )a

a

H n
a

A

 
 
    

                                                                                (2.6.10) 

Thus, the expression for Parkash and Sharma’s [14] normalized measure is given by 

        
1

2

log 1 log 1 1 log 1

2
2log

1

( )

n

A i A i
i

a N

a x a x a
H

a

n
a

A
 



       
    

 
 




                                     (2.6.11) 

Proceeding on similar lines, we can obtain maximum values for different fuzzy entropies and 

consequently, develop many other expressions of the normalized measures of fuzzy entropy. 

Concluding Remarks: Information theory deals with the development of probabilistic and fuzzy 

measures of information. The necessity of developing fuzzy measures arises when the experiment 
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under consideration is non-probabilistic in nature. In such cases, we explore the idea of fuzzy 

distributions instead of probability distributions and consequently, develop fuzzy measures of entropy 

which can be successfully applied to different fields. In the present chapter, we have introduced some 

new parametric measures of fuzzy entropy by considering fuzzy distributions and proved that these 

measures satisfy all the necessary and desirable properties of being measures of fuzzy entropy. 

Moreover, with the help of these measures, we have measured the partial information about a fuzzy set 

when only partial knowledge of the fuzzy values is provided. Regarding these fuzzy distributions, we 

have shown that while comparing two or more fuzzy distributions, we should compare their 

normalized values and not their exact values.  
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CHAPTER-III 
NEW GENERALIZED MEASURES OF FUZZY DIVERGENCE AND THEIR 

DETAILED PROPERTIES 
 

ABSTRACT    

It is known fact that the existing literature of mathematics contains a variety of distance 

measures applicable to various disciplines of science and engineering. Similarly, in the field of 

information theory, especially while dealing with fuzzy distributions, we have a large number of 

mathematical models representing measures of fuzzy divergence, each with its own merits and 

limitations. Keeping in view the application areas of these divergence measures, we have introduced 

some new generalized parametric measures of fuzzy divergence and studied their important properties. 

These fuzzy divergence measures can be used to generate new measures of fuzzy entropy, the findings 

of which have been presented in the present chapter. The concepts of crispness and generating 

functions have been explained, and some crispy measures and the generating functions for some 

divergence measures have been obtained. 

Keywords: Directed divergence, Fuzzy divergence, Cross entropy, Fuzzy entropy, Convex function, 
Probability distribution, Crispness, Generating functions. 
 
3.1 INTRODUCTION   

          In various disciplines of science and engineering, the concept of distance has been proved to be 

very important and useful because of its applications towards the development of various mathematical 

models. In the literature of information theory, one such a measure of distance in probability spaces, 

usually known as directed divergence has been provided by Kullback and Leibler [13]. In case of fuzzy 

distributions, distance measure is a term that describes the difference between fuzzy sets and can be 

considered as a dual concept of similarity measure.  

            Many researchers, such as Yager [23], Kosko [12] and Kaufmann [11] have used distance 

measure to define fuzzy entropy. Using the axiom definition of distance measure, Fan, Ma and Xie [6] 

developed some new formulas of fuzzy entropy induced by distance measure and studied some new 

properties of distance measure. Dubois and Prade [5] defined the distance between two fuzzy subsets 

on a fuzzy subset of R  . Rosenfeld [20] defined the shortest distance between two fuzzy sets as a 

density function on the non-negative reals, and this definition generalizes the definition of shortest 

distance for crisp sets in a natural way.   
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Thus, corresponding to Kullback and Leibler [13] divergence measure, Bhandari and Pal [2] 

introduced the following measure of fuzzy directed divergence: 

 
1

( ) 1 ( )( : ) ( ) log (1 ( )) log
( ) 1 ( )

n
A i A i

A i A i
i B i B i

µ x µ xD A B µ x µ x
µ x µ x

 
    
                                       (3.1.1) 

Corresponding to Renyi’s [19] and Havrada and Charvat’s [9] probabilistic divergence measures, 

Kapur [10] took the following expressions of fuzzy divergence measures: 

( : )D A B = 1 1

1

1 log ( ) ( ) (1 ( )) (1 ( )) ; 1, 0
1

n

A i B i A i B i
i

x x x x        


 



                             (3.1.2) 

and 

1 1

1

1( : ) ( ) ( ) (1 ( )) (1 ( )) 1 ; 1, 0
1

n

A i B i A i B i
i

D A B x x x x         


 



                         (3.1.3)   

          Tran and Duckstein [22] developed a new approach for ranking fuzzy numbers based on a 

distance measure and introduced a new class of distance measures for interval numbers that takes into 

account all the points in both intervals, and then used it to formulate the distance measure for fuzzy 

numbers. The approach has been illustrated by numerical examples. Motivated by the standard 

measures of probabilistic divergence, Parkash and Sharma [17] introduced the following model for 

fuzzy directed divergence corresponding to Ferrari’s [7] probabilistic divergence: 

      
 1

1

1 1 ( )1 ( )1( : ) 1 ( ) log 1 1 ( ) log , 0
1 ( ) 1 1 ( )

n
A iA i

a A i A i
i B i B i

a xa xD A B a x a x a
a a x a x


 

 

  
      

    
    (3.1.4)                                             

Kapur [10] introduced the following measures of fuzzy divergence:  

 

 

1 1

1
2 ,

1 1

1

( ) ( ) (1 ( )) (1 ( ))
1( : ) log ; , 1, 1 1, 1       
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A i B i A i B i
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x x x x
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   

   
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 
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  
     
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


                                                                                                                                                          (3.1.5) 

 
1 1 1
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         (3.1.6)                       

and 

Measures of Fuzzy Divergence

51



 

 

    
 

4
1

1

( ) 1 ( )( : ) ( ) log (1 ( )) log
( ) 1 ( )

1 ( )1 ( ) log
1 ( )1 ;a>0      

1 1 ( )
1 1 ( ) log

1 1 ( )

n
A i A i

a A i A i
i B i B i

A i
A i

n B i

i A i
A i

B i

µ x µ xD A B µ x µ x
µ x µ x

a xa x
a x

a xa a x
a x















 
    

   
  

   
   





         (3.1.7)

          

                                                                                                                                

 

Parkash [16] introduced a new generalized measure of fuzzy directed divergence involving two real 

parameters, given by 

 1 1 1
1

1

( : ) [( 1) ] ( ) ( ) (1 ( )) (1 ( )) 1 ; 1, 0, 0
n

A i B i A i B i
i

D A B x x x x
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           



                                                                                           

                                                                                                                                                          (3.1.8) 

          Many measures of fuzzy divergence have been developed by Kapur [10], Parkash and Sharma 

[17], Pal and Bezdek [15] etc. In fact, Kapur [10] has developed many expressions for the measures of 

fuzzy directed divergence corresponding to probabilistic measures of divergence due to Harvada and 

Charvat [9], Renyi [19], Sharma and Taneja [21] etc. Many other measures of fuzzy divergence have 

been discussed and developed by Lowen [14], Bhandari, Pal and Majumder [3], Parkash [16], Dubois 

and Prade [5], Parkash and Tuli [18] etc. 

In the next section, we have used the concept of weighted information provided by Belis and 

Guiasu [1] and consequently, introduced some new measures of weighted fuzzy divergence depending 

upon some real parameters. The importance of the weighted measures arise because when we have a 

number of fuzzy elements, some of these elements  are supposed to be more important than the others 

for the purpose of decision making. 

3.2 NEW GENERALISED MEASURES OF WEIGHTED FUZZY DIVERGENCE 
We propose the following measures of weighted fuzzy directed divergence:  

I. 
( ) (1 ( ))

1

( ) 1 ( )1( : ; ) 2
( ) 1 ( )

A i A ix xn
A i A i

i
i B i B i

x xD A B W w
x x

  

  
  





    
            

 ; 0                         (3.2.1) 

To prove that (3.2.1) is a correct measure of weighted fuzzy divergence, we study the following 

properties: 
(i) Convexity of ( : ; )D A B W   
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We have
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             which shows that ( : ; )D A B W  is a convex function of  iA x . 

 Similarly, we have 
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which shows that ( : ; )D A B W  is a convex function of  iB x . 

(ii) Non-negativity of ( : ; )D A B W  

Firstly, we find the minimum value of ( : ; )D A B W . For minimum value, we put 

( : ; ) 0
( )A i

D A B W
x









which implies that 
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which is possible only if 
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and ( ) 1 ( )1 log 1 log
( ) 1 ( )

A i A i

B i B i

x x
x x

 
 

   
        

 

that is, only if 

   A i B ix x i    

Now, when    A i B ix x i   , we have  : ; 0D A B W  . Since, the minimum value of the function 

 : ;D A B W is 0 and the function itself is convex, we must have  : ; 0D A B W  .  

Thus,  : ;D A B W satisfies the following properties: 

(i)  : ; 0D A B W   

(ii)  : ; 0D A B W  iff    A i B ix x i    

(iii)  : ;D A B W is a convex function of both  A ix and  B ix  for each  .  

Hence, the proposed measure  : ;D A B W  is a valid measure of weighted fuzzy divergence.  

Next, we have presented the measure (3.2.1) graphically with the help of data and consequently, 

obtained Fig.-3.2.1 which shows that the generalized measure of weighted fuzzy divergence (3.2.1) is a 

convex function. 

 
 
 

Fig.-3.2.1 Convexity of  : ;D A B W  with respect to )( iA x  
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II. Next, we propose another generalized measure of weighted directed divergence, given by  
 

( ) (1 ( ))

1

( ) 1 ( ) ( )4
( ) 1 ( ) ( )

1( : ; )

( ) 1 ( ) 1 ( )log log
( ) 1 ( ) 1 ( )

A i A ix x

A i A i A i

B i B i B i
n

i
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A i A i A i
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



    
          
 
  
 
 

    
   

                               (3.2.2) 

To prove that the expression introduced in (3.2.2) is a correct measure of divergence, we study the 

following properties: 

(i) Convexity of ( : ; )D A B W  

We have  
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  Also                                                                           
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                                      0  
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             which shows that ( : ; )D A B W  is a convex function of  iA x .  

             Similarly, we can show that ( : ; )D A B W  is a convex function of  B ix i   

(ii) Non-negativity of ( : ; )D A B W  

Firstly, we find the minimum value of ( : ; )D A B W and for this purpose, we put 

( : ; ) 0
( )A i

D A B W
x









 

This implies that 

( ) (1 ( ))
( ) ( ) 1 ( ) 1 ( )1 11 log 1 log
( ) ( ) ( ) 1 ( ) 1 ( ) 1 ( )

1 1
( ) 1 ( )

A i A ix x

A i A i A i A i
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x x x x
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 


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 


 

which is possible only iff  

   A i B ix x i    

Now, when    A i B ix x i   , we have ( : ; ) 0D A B W  . Since, the minimum value of the function 

( : ; )D A B W is 0 and the function itself is convex, we must have ( : ; ) 0D A B W  .  

Thus, ( : ; )D A B W satisfies the following properties: 

(i) ( : ; ) 0D A B W   

(ii) ( : ; ) 0D A B W  iff    A i B ix x i    

(iii) ( : ; )D A B W is a convex function of both  A ix and  B ix  for each  .  

Hence, the proposed measure ( : ; )D A B W  is a valid measure of weighted fuzzy divergence.  

Next, we have presented the generalized weighted measure of divergence (3.2.2) graphically and 

obtained the following Fig.-3.2.2 which clearly shows that the measure of weighted divergence (3.2.2) 

is a convex function.  
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Fig.-3.2.2 Convexity of ( : ; )D A B W  with respect to )( iA x  

III. Next, we first introduce a more generalized form of a non-parametric measure of weighted fuzzy 

divergence, given by 

1
1
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              

         (3.2.3) 

where (.)  is a twice differential convex function with (1) 0  . 

Now differentiating (3.2.3) w.r.t. ( )A ix , we get 
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Thus, we observe that, 1 ( : ; )aD A B W is a convex function of ( )A ix . Similarly, we can prove that 

1 ( : ; )aD A B W is a convex function of ( )B ix . Also, for minimum value, we have 
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 which implies that 
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that is, only if    A i B ix x i   and this gives 1. ( : ; ) 0aMin D A B W  . 

Thus, for all values of ( )A ix  and ( )B ix , we have 

 (i)  1 ( : ; )aD A B W  0 

 (ii)  1 ( : ; )aD A B W = 0 when A B  

 (iii) 1 ( : ; )aD A B W is convex. 

 (iv) 1 ( : ; )aD A B W does not change when ( )A ix  is changed to 1 ( )A ix  

Thus, we see that the measure (3.2.3) is a generalized weighted parametric measure of divergence. 

Next, we discuss the following particular cases: 

Case-I: If we take ( ) log 1x x x    in (3.2.3), we get 
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which is a new weighted measure of fuzzy divergence. 

When 1a   , equation (3.2.3) gives 
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                                        (3.2.5) 

which is another form of a generalized weighted divergence measure. 
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Thus, we have 
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           (3.2.6)                                                                                                                  

which is a new weighted measure of fuzzy divergence. 

When 1a   , (3.2.6) gives 
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( 1)

n

i A i B i A i B i
i

D A B W w x x x x      
 





                                  (3.2.7) 

which is another generalized weighted measure of fuzzy divergence. 

Measures of Fuzzy Divergence

59



 

Note-1: Upon ignoring weights, (3.2.6) gives 

 1 1

4
1 1

1

( ) ( ) (1 ( )) (1 ( )) 1
1( : )

( 1)
(1 ( )) (1 ( ))

(1 (1 ( ))) (1 (1 ( ))) 2

A i B i A i B i
n

a

i

A i B i

A i B i

x x x x

D A B

a x a x

a x a x a

   

 

 

   

 
 

 

 

 



 
 
 
    
 
 

  
   
     
          

  

Taking limit as 1  , we get 

   4
1

( ) 1 ( ) 1 ( )( : ) ( ) log 1 ( ) log 1 ( ) log
( ) 1 ( ) 1 ( )

n
A i A i A i
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x x a xD A B x x a x
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       
                 
  

In particular if 0a  , we get 

 4
1

( ) 1 ( )( : ) ( ) log 1 ( ) log
( ) 1 ( )

n
A i A i

B i A i
i B i B i

x xD A B x x
x x

 
 

 

    
          
  

which is Bhandari and Pal’s [2] measure of fuzzy divergence. 

Note-2: It is observed that 

   
 1 5

1

1 ( )( ). ( : ; ) 2 ( ) log 1 ( ) log
( ) 1 ( )

n
A iA i

i A i A i
i B i B i

xxLt D A B W w x x
x x





 

 


 
    
                               (3.2.8) 

The result (3.2.8) upon ignoring weights gives a measure of fuzzy directed divergence due to Bhandari 

and Pal [2] except for a multiplicative constant. 

Proceeding as above, many new parametric and non-parametric generalized weighted and non-

weighted measures of fuzzy divergence can be investigated. 

3.3 GENERATING MEASURES OF FUZZY ENTROPY THROUGH FUZZY 
DIVERGENCE MEASURES 

In this section, we have used the concept of fuzzy divergence measure to obtain many new 

measures of fuzzy entropy. We know that the greater the distance of a given fuzzy set A  from the 

fuzziest set F , the greater should be the deviation of fuzzy uncertainty of the set A from the maximal 

uncertainty, that is, the smaller is the uncertainty of A . Thus, the fuzzy uncertainty of the set A  can be 

considered as a monotonic decreasing function of the distance of A  from F . In other words  
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( )H A  = { ( : )}f D A F                                                                                                                        (3.3.1) 

where ( )H A is fuzzy entropy of the set A , ( : )D A F  is the divergence of A  from F  and (.)f is any 

monotonic decreasing function. We have chosen the above function (.)f in such a way that it satisfies 

the following desirable properties: 

(i) ( )H A  0  

(ii) ( )H C  = 0 where C  is any crisp set. 

(iii) ( )H A should be a concave function of fuzzy values ( )A ix .  

The simplest function satisfying all the above three conditions is given by  

1( ) ( : ) ( : )H A D C F D A F                                                                 (3.3.2) 

The result (3.3.2) can be used to obtain new measures of fuzzy entropy for every well-known measure 

of fuzzy directed divergence.  

(a) Measures of fuzzy entropy based upon Parkash’s [16] fuzzy divergence of order  and type  

Parkash [16] introduced the following measure of fuzzy divergence: 

              11

1

1: 1 1 1 ;
1

1, 0, 0

n

A i B i A i B i
i

D A B x x x x
   

    
 

  





        
  

                     (3.3.3) 

Next, we use the divergence measure (3.3.3) to generate new measure of fuzzy entropy: 

(1) Using (3.3.3), equation (3.3.2) gives 

      

    

1 1
1

1

1 1

1

1 ( )2 1 ( ) 2 1
1

1 ( )2 1 ( ) 2 1
1

n

C i C i
i

n

A i A i
i

H A x x

x x

  

  

 
 

 
 

 



 



       

       





 

 

              
   

 

    

 

   

1
1 1
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1 1
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 

 
   

   


 

 



              

 
 

 
 

               
   

 

   
   

1
12 .2 1 2

1 1 1
n n n H A

 
  
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
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Thus      1
1 2H A C H A  


                                                                                                      (3.3.4) 

where 
 

 
12 (2 1)

1
nC

  

 

 



 is a positive constant and       

1

1 1 1
1

n

A A
i

H A
 

  
  

         

is a measure of fuzzy entropy introduced by Parkash [16].  

Thus,  1H A introduced in (3.3.4) is a new measure of fuzzy entropy involving Parkash’s [16] measure 

of fuzzy entropy  H A
 .  

(b) Measures of fuzzy entropy based upon Parkash and Sharma’s [17] fuzzy directed divergence   

Here, we consider a more generalized form of fuzzy directed divergence introduced by Parkash and 

Sharma [17]. This measure is given by  

 

 
   

1

( )( ) (1 ) ( )
( ) (1 ) ( )

(A:B)= ;0 1

1 ( )( (1 ( )) (1 ) (1 ( )
1 ( ) (1 ) 1 ( )

A i
A i B i

A i B in

i

A i
A i B i

A i B i

xx x
x x

D

xx x
x x




    

   




    

   



         
 

  
                

        

                                                                                                                                                          (3.3.5) 

Next, we use the divergence measure (3.3.5) to generate the different measures of fuzzy entropy. For 

this, we consider the following cases: 

Case-I: When ( ) logx x x  , then equation (3.3.5) gives 

   

1,
1

( )( ) log
( ) (1 ) ( )

(A:B)=

1 ( )(1 ( )) log
1 ( ) (1 ) 1 ( )

A i
A i

A i B in
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A i
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


   




   



       
 
 
             

                      (3.3.6) 

Now, using (3.3.6), equation (3.3.2) gives 

 

2

1,
1

( ) 1 ( )2(A)= nlog - ( ) log (1 ( )) log1 11+ ( ) 1 ( )
2 2

n
A i A i

A i A i
i

A i A i

x xH x x
x x


 

 
     

    
                      
     

  

                                                                                                                                                          (3.3.7) 

When 0  , equation (3.3.7) gives 
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1,0 (A)= nlog2-H(A)H                                                                                                                         (3.3.8) 

where          
1

( ) log 1 log 1
n

A i A i A i A i
i

H A x x x x   


        is De Luca and Termini’s [4] 

measure of fuzzy entropy. 

Thus, 1,0 (A)H introduced in (3.3.8) is a new measure of fuzzy entropy involving standard measure of 

fuzzy entropy due to De Luca and Termini [4].  

Case-II: When ( ) ; 0,1
( 1)
x xx


 
 


 


, then equation (3.3.5) gives
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       (3.3.9) 

 

Now, using (3.3.9), equation (3.3.2) gives 
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                   (3.3.10) 

When 0  , equation (3.3.10) gives 

 
-1 -1 -1
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Thus 
-1

2,0 (A)=2 ( )H H A                                                                                                                          (3.3.11) 

where 

 
1

1( ) ( ) (1 ( )) 1 , 0,1, 0
( 1)

n

A i A i
i

H A x x     
  

           
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is an extended version of fuzzy entropy undertaken by Kapur [10] and it corresponds to Havrada-

Charvat’s [9] probabilistic entropy. 

Thus, 2,0 (A)H introduced in (3.3.11) is a standard generalized measure of fuzzy entropy ( )H A except 

a multiplicative constant.  

Case-III: When ( ) ; , 1, 1 1, 1
( 1)

x xx or
 

      
 


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
, then equation (3.3.5) gives
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                                                                                                                                                        (3.3.12) 

 

Now, using (3.3.12), equation (3.3.2) gives 
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             (3.3.13) 

 

When 0  , equation (3.3.13) gives 
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Thus, we have 
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           1 2 3( ) ( )C C H A C H A                                                                                                    (3.3.14) 

where 
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        is Kapur’s [10] measure of fuzzy entropy. 

Thus, 3,0 (A)H introduced in (3.3.14) is a new measure of fuzzy entropy involving standard measure of 

fuzzy entropy ( )H A . Proceeding as above, many new generalized measures of fuzzy entropy can be 

generated via fuzzy divergence measures. 

3.4 SOME QUANTITATIVE-QUALITATIVE MEASURES OF CRISPNESS   

 We know that a measure of fuzzy entropy of a fuzzy set is a measure of fuzziness of that set 

and a set is most fuzzy if every element of that set has membership value 1
2

, that is, it is the set having 

fuzzy vector 1 1 1 1, , ,...,
2 2 2 2

F    
 

. If ( : )D A B  represents the distance between any two fuzzy sets A  

and B , then ( : )D A F  gives the distance or divergence between the set A and the most fuzzy set F . 

Thus, we see that lesser the distance between A  and F , fuzzier would be the set A . In the above 

section, we have explained that the fuzzy uncertainty of the set A can be considered as a monotonic 
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decreasing function of the distance of A  from F . In the same way, crispness of a fuzzy set can be 

measured by taking any monotonic increasing function of the distance of A  from F so that larger is the 

distance, less fuzzy would be the set A  and consequently, more crispy. This gives a method of 

obtaining crispy measures. Below, we have obtained some measures of crispness. 

          Let A and B  be any two fuzzy sets with same support points 1 2 3, , ,..., nx x x x and with different 

fuzzy vectors 1 2( ), ( ),..., ( )A A A nx x x    and 1 2( ), ( ),..., ( )B B B nx x x    respectively. Then, we use 

different measures of fuzzy directed divergence to obtain the measures of crispness as follows: 

I. Crispy measures based upon Parkash and Sharma’s [17] fuzzy directed divergence  

To obtain this measure, we consider a more generalized form (3.3.5) of the fuzzy directed divergence 

introduced by Parkash and Sharma [17].  

Taking 1( )
2B ix i   , equation (3.3.5) gives 

 

 

1

( )1( ) 12 ( )
2

1A:
2

1 ( )1(1 ( )) 12 1 ( )
2

A i
A i

A i
n

i

A i
A i

A i

xx
x

D
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x



  
 

  
 



  
          

  
       

  
             
   

                       (3.4.1) 

Now, we discuss the following cases: 

Case-I: When ( ) logx x x  , then equation (3.4.1) gives 

   

1,
1

( ) ( )1( ) log1 12 ( ) ( )
2 2

1A:
2

1 ( ) 1 ( )1(1 ( )) log1 12 1 ( ) 1 ( )
2 2

A i A i
A i

A i A i
n

i

A i A i
A i

A i A i

x xx
x x

D
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x x



  
    

  
    



  
            

  
       

  
                 
   

        (3.4.2) 

(a) When 0  , equation (3.4.2) gives 
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         1,0
1

1A: log 2 1 log 2 1
2

n

A i A i A i A i
i

D x x x x   


          
  

Thus, the first measure of crispness is given by 

         1
1

( ) log 2 log 1 log 1
n

A i A i A i A i
i

C A n x x x x   


                                                (3.4.3) 

(b) When 1
2

  , equation (3.4.2) gives the second measure of crispness as given by 

   
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 
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                 
 (3.4.4) 

Case-II: When ( ) ; 0,1
( 1)
x xx


 
 


 


, then equation (3.4.1) gives 
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1

n

i










 
 
 
 
 



                                                                                                                                                          (3.4.5) 

(a) When 0  , equation (3.4.5) gives the following measure of crispness: 

1

3
1

2( ) ( ) (1 ( ))
(1 ) (1 )

n

A i A i
i

nC A x x


  
   





                                                                     (3.4.6) 

(b) When 1
2

  , equation (3.4.5) gives the following measure of crispness: 

   
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 
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  

 



                
 
 
                     

                   (3.4.7) 
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Moreover, in real life situations, the importance of the events cannot be ignored and thus, the 

expressions for crispy measures can be obtained by attaching weighted distribution introduced by Belis 

and Guiasu [1]. In such cases, the weighted fuzzy information scheme is given by 

 

1 2

1 2

1 2

1 2

...

( ) ( ) ... ( )

( ) ( ) ... ( )

n

A A A n

B B B n

n

E E E

x x x
S

x x x

w w w

  

  

 
 
 
 
 

  
 
 
 
 
 

                                                                                                    (3.4.8) 

Here, we make use of our own weighted measures introduced in (3.2.1) and (3.2.2). Thus, using 

(3.2.1), the first weighted crispy measure is given by 

   ( ) (1 ( ))
5

1

1( ; ) 2 2 ( ) 2(1 ( ))A i A i
n

x x
i A i A i

i
C A W w x x   






                                               (3.4.9) 

Using (3.2.2), the second weighted crispy measure is given by 

   ( ) (1 ( ))
6

1 1

( )2(1 log 2) 1( ; ) 4 2 ( ) 2(1 ( )) log
1 ( )
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i i A i

xC A W w w x x
x

   
 

  


 

 
       

   

                                                                                                                                                        (3.4.10) 

Proceeding on similar lines, many new crispy measures can be constructed. 

3.5 GENERATING FUNCTIONS FOR VARIOUS WEIGHTED MEASURES OF 
FUZZY DIVERGENCE 

             The concept of generating functions for the probability distributions was first discussed by 

Guiasu and Reisher [8]. To explain the concept, the authors considered two probability distributions 

P and Q , and then defined the generating function ( )g t for relative information or cross-entropy or 

directed-divergence of P fromQ  given by 

 
1

tn
i

i
i i

pg t q
q

 
  

 
                                                                                                                            (3.5.1) 

and proved that this function ( )g t gives an expression for the generating function for an important 

measure of directed divergence known as Kullback-Leibler’s [13] probabilistic measure of divergence.  
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But, there are situations where probabilistic measures do not work and we explore the possibility of 

fuzzy measures.  

Below, we have obtained some generating functions for different measures of fuzzy divergence. 

I. Generating function for Kapur’s [10] measure of fuzzy directed divergence 

To develop generating function for Kapur’s [10] measure of fuzzy directed divergence, we consider the 

following function: 

              11
,
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1
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i
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

        
  

                         (3.5.2)  

Clearly for 1t  , we have 
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  

which is a measure of fuzzy divergence introduced by Parkash [16].  

Now 
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Thus 
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which is Kapur’s [10] measure of fuzzy directed divergence.  

Hence,  ,f t  can be taken as an expression of generating function for Kapur’s [10] measure of fuzzy 

divergence and it corresponds to Renyi’s [19] measure of probabilistic directed divergence. Moreover, 

we have the following results: 

(a) From equation (3.5.2), we have 

           11
,1

1

11 1 1 1
1

n

A i B i A i B i
i

f x x x x
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    
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

          

which is Kapur’s [10] measure of fuzzy directed divergence.  

(b)    1, ,1
1 1f Lt f  

  
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which is Bhandari and Pal’s [2] measure of fuzzy directed divergence corresponding to Kullback-

Leibler’s [13] probabilistic measure of divergence. 
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which is a measure of fuzzy divergence introduced by Kapur [10] and it corresponds to Renyi’s [19] 

measure of directed divergence.   

II. Generating function for Parkash and Sharma’s [17] measure of fuzzy directed divergence 

To develop generating function for Parkash and Sharma’s [17] measure of fuzzy directed divergence, 

we consider the following function: 
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                    (3.5.3)  

Differentiating (3.5.3), we have 
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Thus, we have  
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    
             
  

which is Parkash and Sharma’s [17] measure of fuzzy directed divergence. 

Thus, we conclude that the function  f t can be taken as an expression of generating function for 

Parkash and Sharma’s [17] measure of fuzzy directed divergence. 

Concluding Remarks: Information theory deals with two basic concepts, viz, entropy and directed 

divergence. Both the concepts are related to each others and given the one, the other can be calculated. 

In the present chapter, we have used the fuzzy divergence measures to generate new measures of fuzzy 

entropy. The necessity for developing new measures of fuzzy entropy and fuzzy divergence measures 

arises from the point of view that we need a variety of generalized parametric and non-parametric 

measures of information to extend the scope of their applications in a variety of disciplines. The 

measures developed in this chapter deal with discrete fuzzy distributions only but the present work can 

also be extended to continuous type of fuzzy distributions. 
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CHAPTER-IV 
OPTIMUM VALUES OF VARIOUS MEASURES OF WEIGHTED FUZZY 

INFORMATION 
 

ABSTRACT      
           In real life situations as well as in several disciplinary pursuits like coding theory, portfolio 

analysis, linear programming and many other disciplines of operations research, we are frequently 

concerned with the problems of finding optimal solutions of constrained optimization problems. In the 

literature of mathematics, there exist several techniques of optimization including the method of 

inequalities, the method of differentiation, the method of calculus of variation and the Lagrange’s 

method of maximum multipliers. In the present chapter, we have proposed a method different than the 

existing ones to optimize generalized measures of weighted fuzzy information.  

Keywords: Fuzzy set, Crisp set, Fuzzy entropy, Fuzzy cross entropy, Concavity, Piecewise convex.      

4.1 INTRODUCTION      

             In actual practice it is usually observed that exact values of model parameters are rare in most 

of the problems related with engineering sciences and biological systems. Normally, uncertainties arise 

due to incomplete information reflected in uncertain model parameters. This is often the case in price 

and bidding in market oriented power system operation and planning, in internet search engines, and 

with the amount of carbohydrates, proteins and fats in ingested meals and gastroparese factor in human 

glucose metabolic models. A fruitful approach to handle parametric uncertainties is the use of fuzzy 

numbers which capture our intuitive conceptions of approximate numbers and imprecise quantities, 

and play a significant role in applications, such as estimation, prediction, classification, decision-

making optimization and control. 

             A measure of fuzziness often used and citied in the literature of information theory, known as 

fuzzy entropy, was first introduced by Zadeh [25] and the name entropy was chosen due to an intrinsic 

similarity of equations to the ones in the Shannon entropy [22]. However, the two functions measure 

fundamentally different types of uncertainties. Basically, the Shannon entropy measures the average 

uncertainty associated with the prediction of outcomes in a random experiment whereas fuzzy entropy 

is the quantitative description of fuzziness in fuzzy sets. After the introduction of the theory of fuzzy 
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sets by Zadeh [24], many researchers started working around this concept. Thus, keeping in view the 

idea of fuzzy sets, De Luca and Termini [2] introduced a measure of fuzzy entropy corresponding to 

Shannon’s [22] well known measure of probabilistic entropy, given by 

         
1

( ) log 1 log 1
n

A i A i A i A i
i

H A x x x x   


                                                            (4.1.1) 

After this development, a large number of measures of fuzzy entropy were discussed, characterized 

and generalized by various authors. Bhandari and Pal [1] developed the following measure of fuzzy 

entropy corresponding to Renyi’s [20] probabilistic entropy:  

1

1( ) log [ ( ) (1 ( )) ]; 1, 0
1

n

A i A i
i

H A x x 
    

 

    
                                                           (4.1.2) 

Kapur [11] took the following measure of fuzzy entropy corresponding to Havrada and Charvat’s [9] 

probabilistic entropy: 

1

1

( ) (1 ) ( ) (1 ( )) 1 ; 1, 0
n

A i A i
i

H A x x      



                                                        (4.1.3) 

Kapur [11] also introduced the following measure of fuzzy entropy:  

 

 
1

,

1

( ) (1 ( ))
1( ) log ; 1, 1 1, 1

( ) (1 ( ))

n

A i A i
i
n

A i A i
i

x x
H A or

x x

 

 
 

 
   

   





 
    

  




                                  (4.1.4) 

Parkash [14] introduced a new measure of fuzzy entropy depending upon two parameters, given by 

( )H A
  =  1

1

[(1 ) ] ( ) (1 ( )) 1 ; 1, 0, 0
n

A i A i
i

x x
       



                                       (4.1.5) 

and called it ( , )   fuzzy entropy which includes some well known measures of fuzzy entropy. 

Parkash and Sharma [16] introduced two new measures of fuzzy entropy, given by 

 a
1

K ( ) log(1 ( )) log(1 (1 ( ))) log(1 ) ; 0
n

A i A i
i

A a x a x a a 


                                                  (4.1.6) 

and 

         

   

         

a
1

1

H ( ) log 1 log 1

1 ( ) log 1 ( )

1 ; 0
a 1 1 ( ) log 1 1 ( ) 1 log 1

       

n

A A A A
i

A i A i

n

i A i A i

i i i iA x x x x

a x a x

a
a x a x a a

   

 

 





      

  
 
            




               (4.1.7) 
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The detailed properties of measures of fuzziness along with their representations have been 

provided by Ebanks [4] whereas entropy formulas for fuzzy sets have been given by Guo and Xin [8]. 

If the relative importance of the ith element is given by the weight iw  then the weighted measures of 

fuzzy entropy can be obtained. Recently, Parkash, Sharma and Mahajan [18] introduced the following 

two new trigonometric measures of weighted fuzzy entropy, given by 

      
1

1

1
; 1

2 2

n
A iA i

i
i

xx
H A W w Sin Sin

 



 
   

  
                                                                 (4.1.8) 

and 

      
2

1

1
; 1

2 2

n
A iA i

i
i

xx
H A W w Cos Cos

 



 
   

  
                                                               (4.1.9) 

and provided the applications of their findings for  the  study   of  maximum weighted  fuzzy entropy 

principle. Further, Parkash, Sharma and Mahajan [19] using the existing weighted measures of fuzzy 

entropy, studied the principle of maximum weighted fuzzy entropy with unequal constraints. For this 

purpose, the authors explained their algorithm with the two techniques and proved that both techniques 

lead to the same solution.  

Another important measure of information is the measure of distance or directed divergence 

and it describes the difference between fuzzy sets, and many researchers have used this distance 

measure to define fuzzy entropy. Using the axiom definition of distance measure, Fan, Ma and Xie [5] 

developed some new formulas of fuzzy entropy induced by distance measure and studied some new 

properties of this measure whereas Dubois and Prade [3] and Rosenfeld [21] defined differently the 

measure of distance between two fuzzy subsets. While dealing with fuzzy distributions and keeping in 

view the probabilistic measure of divergence due to Kullback and Leibler [13], Bhandari and Pal [1] 

introduced a new measure of fuzzy directed divergence and studied its important properties. This 

measure of fuzzy divergence is given by the following mathematical model: 

 
1

( ) 1 ( )( : ) ( ) log (1 ( )) log
( ) 1 ( )

n
A i A i

A i A i
i B i B i

µ x µ xD A B µ x µ x
µ x µ x

 
    
                                     (4.1.10) 

Corresponding to Renyi’s [20] probabilistic divergence, Bhandari and Pal [1] took the following 

mathematical expression for the measure of fuzzy divergence:  

( : )D A B = 1 1

1

1 log ( ) ( ) (1 ( )) (1 ( )) ; 1, 0
1

n

A i B i A i B i
i

x x x x        


 



                           (4.1.11) 
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Corresponding to Havrada and Charvat’s [9] probabilistic divergence measures, Kapur [11] took the 

following expressions of fuzzy divergence measures:  

1 1

1

1( : ) ( ) ( ) (1 ( )) (1 ( )) 1 ; 1, 0
1

n

A i B i A i B i
i

D A B x x x x         


 



                       (4.1.12)   

Parkash [15] introduced a generalized measure of fuzzy divergence, given by 

 1 1 1

1

( : ) [( 1) ] ( ) ( ) (1 ( )) (1 ( )) 1
n

A i B i A i B i
i

D A B x x x x
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        



         ; 1, 0, 0                                                                                                            

                                                                                                                                                        (4.1.13) 

Motivated by the standard measures of divergence, Parkash and Sharma [17] introduced the following 

measure of fuzzy directed divergence corresponding to Ferrari’s [6] probabilistic divergence: 

1
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1 ( )
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1 (1 ( ))[1 (1 ( ))]log
1 (1 ( ))
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A i
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








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

   
   

     
   

         (4.1.14)                                                                 

Many other desirable measures of fuzzy directed divergence satisfying the necessary properties 

have been discussed and developed by various authors. Keeping in view the existing measures of 

probabilistic divergence, such as Sharma and Taneja’s [23] measure, Ferreri’s [6] measure etc., Kapur 

[11] has developed many expressions for the measures of fuzzy directed divergence to be used while 

dealing with fuzzy distributions. Related with optimization principles, some work has been done by 

Guiasu and Shenitzer [7] whereas a large number of applications of maximum entropy principle and 

minimum cross entropy principle in science and engineering have been investigated by Kapur [10] and 

Kapur and Kesavan [12]. In the next section, we have introduced a measure of weighted fuzzy entropy, 

obtained its optimum values, and the results so obtained have been presented graphically.  

4.2 OPTIMUM VALUES OF GENERALIZED MEASURES OF WEIGHTED 
FUZZY ENTROPY 

           Consider a given fuzzy set A with n supporting points  1 2, ,..., nx x x  corresponding to the fuzzy 

vector       1 2, ,...,A A A nx x x    where  A ix  is the degree of membership of the elements ix  of 

the set A. Our purpose is to find the maximum and minimum values of generalized measures of 

weighted fuzzy entropy subject to the constraint of total fuzziness, that is,  
1

, 0
n

A i
i

x k k n


   . For 
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this purpose, we first propose a generalized measure of weighted fuzzy entropy corresponding to 

Havrada and Charvat’s [9] probabilistic entropy given by 

      
1

1; 1– –1 ; 1, 0
1–

n

i A i A i
i

H A W w x x
    

 

                                                        (4.2.1) 

where iw are non-negative real numbers. 

To prove its authenticity, we study the following properties: 

(i)  We have  
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w x x
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   


 

    


 

Thus  ;H A W  is a concave function of  A ix   i 

(ii)  ;H A W is an increasing function of  A ix for 0   A ix  ½ because 

    ; / 0 0A iH A W x     and      
1
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2 1; / 1/ 2 0
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
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   

(iii)  ;H A W is decreasing function of  A ix for ½   A ix  1 because 

    
1

1

2 1; / 1/ 2 0
1

n

A i i
i

H A W x w


 






 
    

 and     ; / 1 0A iH A W x     

(iv)  ;H A W = 0 for  A ix = 0 or 1 

(v)   ;H A W  0 

(vi)  ;H A W is permutationally symmetric. 

Under these conditions,  ;H A W is a valid measure of weighted fuzzy entropy.  

Next, we find the optimum values of the weighted measure (4.2.1). 

(a) Maximum value of  ;H A W  

Since  ;H A W  is a concave function of  A ix  for each  , its maximum value exists. 

For maximum value, we put 
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 

;
0

A i

H A W
x
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




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2 A i

k x
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Therefore, the maximum value of  ;H A W  occurs at 
2
nk   and is given by 
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, where 

   – –h k k n k n   ; 

    –1–1 – –h k k n k   ; 

 h k     –22 –2– –k n k     

Now, we consider the following cases: 

(i) When 1  ,   0h k    h k  is a convex function of k for each 1   
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i
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w
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

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(ii) When 0 1  ,   0h k    h k  is a concave function of k for each 0 1   
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

is a concave function of k for each 0 1   

Hence,  . ;Max H A W  is a concave function of k. Therefore, its maximum value exists and for 

maximum value, we put  
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n
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Thus, the maximum value of  . ;Max H A W  exists at 
2
nk   and is given by  
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1

1 2 – 2
–1 2

n

i
i

w


 

 
  

 
  

Further, when  

(i)         0, . ; 0k Max H A W   and    
1

0, 1
. ;

0, 0 1( –1)

n

i
i

d Max H A W w
dk n

 
 

 
   

  

(ii)  , . ;
2
nk Max H A W

1

1 2 – 2
–1 2

n

i
i

w


 

 
  

 
  and   . ;d Max H A W

dk
  0  

(iii)  , . ; 0k n Max H A W    and  
1

0, 1
. ;

0, 0 1(1– )

n

i
i

d Max H A W w
dk n

 
 

        
   

Thus, we see that  . ;Max H A W  increases from 0 to 
1

1 2 – 2
–1 2

n

i
i

w


 

 
 
 

  as k increases from 0 to 
2
n  

and it decreases from 
1

1 2 – 2
–1 2

n

i
i

w


 

 
 
 

  to 0 as k further increases from 
2
n  to n. Thus, 

 . ;Max H A W  against the values 0 k n   is depicted in the following Fig.-4.2.1. 

                                         

Fig.-4.2.1  . ;Max H A W  

From Fig.-4.2.1, we conclude that  . ;Max H A W  is a concave function of  0k k n  . 

(b) Minimum value of  ;H A W   

To obtain the minimum value of  ;H A W , we consider the following cases:  

    0 1  2                n/2               n      

1

1 2 2
1 2

n

i
i

w


 

 
   

  

M
ax

. H
α (A

;W
) 

k 

Optimization of Fuzzy Measures

79



80                                                                                                            Information Theoretic Models and Their Applications  

 

 

 

Case-I: When k is any non-negative integer, say, k m , then we can have m values of  A ix  as 

unity, and other  –n m  values of  A ix  as zero, that is,    1,1,...,1,0,0,...,0A ix  . 

In this case, the minimum value of  ;H A W  can be obtained as follows: 

From equation (4.2.1), we have 

           
1 1

1; 1– –1 1– –1
1–

m n

i A i A i i A i A i
i i m

H A W w x x w x x
      

   

            
   

Thus,  . ; 0Min H A W   

Case-II: When k is any fraction, then we can write k m   , where m is any non-negative integer and 

  is a positive fraction.  Then, we can choose m values  A ix  as unity,  1 thm  value as   and the 

 remaining  – –1n m  values of  A ix  as zero, that is,    1,1,...,1, ,0,...,0A ix  . 

 In this case, the minimum value of  ;H A W  can be obtained as follows: 

From equation (4.2.1), we have  

 
          

    
1 1 1

1

2

1– –1 1– –1
1;

1–
1– –1

m

i A i A i m A m A m
i

n

i A i A i
i m

w x x w x x
H A W

w x x

  





   


 

  


 

      
 
      




 

Thus,    1
1. ; 1– –1

1– mMin H A W w   
 

           

           1

1–
mw k 

 , where    1– –1k       

    –1–1 – 1–k          ;       –22 –2– 1–k           

(i) When 1  , then   0k        k   is a convex function of   

  1

1–
mw k 

  is a concave function of   for each 1  . 

Therefore, in this case,  . ;Min H A W  is a concave function of   for each 1   

(ii) When 0 1  ,   0k       k   is a concave function of   

  1

1–
mw k 

  is a concave function of   for each 0 1  . Hence, we see that  . ;Min H A W  is a 

concave function of   for each  and its maximum value exists. For maximum value, we put 
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  . ; 0d Min H A W
d




 , which gives   

  –1–1
1 – 1– 0

1– mw   
   

1
2

   

Thus, the maximum value of  . ;Min H A W  exists at 1
2

   and is given by 

  1 1 1. . ; –1
1– 2 2

mwMax Min H A W
 





         
       

1(2 – 2)
2 –1
mw 

 
  

Further, when  (i) 0  ,  . ; 0Min H A W   

             (ii) 1
2

  ,    
1(2 – 2). ;

2 –1
mwMin H A W




 
  

            (iii) 1  ,  . ; 0Min H A W   

From the above numerical values, we observe that as   increases from 0  to 1
2

, the value of 

 . ;Min H A W  increases from 0 to 
 

1(2 – 2)
2 –1
mw 

 
 and when   further increases from 1

2
 to1, the value 

of  . ;Min H A W  decreases from
 

1(2 – 2)
2 –1
mw 

 
  to 0.  

The presentation of  . ;Min H A W  against the values 0 1   is shown in Fig.- 4.2.1 which 

proves that the  . ;Min H A W  is a concave function of k when k is any non-negative fractional value.  

                                

Fig.-4.2.1  . ;Min H A W  
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From the above discussion, we see that  . ;Min H A W  is a concave function of k which vanishes for 

every non-negative integer k and has a maximum value of 
 

1(2 – 2)
2 –1
mw 

 
  which occurs for every 

positive fractional value of k.  

Proceeding on similar lines, the optimum values of various existing measures of fuzzy entropy can be 

obtained. 

In the next section, we have considered a generalized weighted measure of fuzzy cross entropy, 

obtained its optimum values and presented the results graphically.  

4.3 OPTIMUM VALUES OF GENERALIZED MEASURES OF WEIGHTED 
FUZZY DIVERGENCE 

           Let A be any fuzzy set with n supporting points  1 2, ,..., nx x x corresponding to the fuzzy 

vector       1 2, ,...,A A A nx x x   , and B is any fuzzy set with the same n supporting points 

corresponding to the fuzzy vector       1 2, ,...,B B B nx x x   . Our purpose is to find the optimum 

values of some well known measures of generalized weighted fuzzy cross entropy subject to the 

constraint of total fuzziness, that is,  
1

,0
n

A i
i

x k k n


   .             

For this purpose, we first introduce a weighted measure of fuzzy directed divergence which 

corresponds to Havrada and Charvat’s [9] measure of probabilistic divergence. This measure of fuzzy 

cross entropy is given by the following mathematical expression: 

           11

1

1: ; 1– 1– 1 ; 1, 0
1

n

i A i B i A i B i
i

D A B W w x x x x
        






                (4.3.1)  

where iw are non-negative real numbers. 

We first claim that the proposed measure given by equation (4.3.1) is a valid measure of weighted 

fuzzy cross entropy. To prove its authenticity, we study the following properties: 

I. Convexity of  : ;D A B W  

To prove the convexity of the measure (4.3.1), we proceed as follows: 

Let       1–1–, 1– 1– –1 ;0 1, 1 1f x y x y x y x y          

Differentiating the above equation partially w.r.t. x , we get  
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    –1 1––1 1– – 1– 1–f x y x y
x

  



;       

2
–2 1–2 –2 1–

2 – 1– 1–f x y x y
x

   


 


 

(i) When 
2

21, 0 0 1,0 1f x y
x




      


  ,f x y  is a convex function of x. Since, 0iw  , we 

claim that     
1

1 ,
–1

n

i A i B i
i

w f x x 
 

  is also a convex function of  A ix  for all  0 1A ix  . 

(ii) When 0 1  , then 
2

2 0 0 1, 0 1f x y
x


     


  ,f x y  is a concave function of x  

     
1

1 ,
–1

n

i A i B i
i

w f x x 
 

  is a convex function of  A ix  for each  0 1A ix  . 

Thus,  : ;D A B W is a convex function of  A ix  for each . Similarly, it can be proved that 

 : ;D A B W  is a convex function of  B ix  for each .  

II. Non-negativity: To prove the non-negativity property, we first find the minimum value 

of  : ;D A B W . For minimum value, we put 

 
 
: ;

0
A i

D A B W
x









 which gives ( ) 1 ( )
( ) 1 ( )

A i A i

B i B i

x x
x x

 
 

   
      

 

that is, only if    A i B ix x i    

Now, when    A i B ix x i   , we have  : ; 0D A B W  . Since, the minimum value of the function 

 : ;D A B W is 0 and the function itself is convex, we must have  : ; 0D A B W  .  

Thus,  : ;D A B W satisfies the following properties: 

(i)  : ; 0D A B W   

(ii)  : ; 0D A B W  iff    A i B ix x i    

(iii)  : ;D A B W is a convex function of both  A ix and  B ix  for each  .  

Hence, the proposed measure  : ;D A B W  is a valid measure of weighted fuzzy cross entropy.  

Next, we obtain the optimum values of the measure (4.3.1). 

(a) Minimum value of  : ;D A B W  

Since  : ;D A B W  is a convex function of both  A ix  and  B ix , its minimum value exists. For 

minimum value, we put 
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 
 
: ;

0
A i

D A B W
x









 which gives          –1 1––1 1– – 1– 1– 0
–1 i A i B i A i B iw x x x x

      


  
 

 

This gives that          –1 1––1 1– – 1– 1– 0A i B i A i B ix x x x
        

Now, since  B ix is a fuzzy value, it is fixed and known. Let it be C.  

Thus, we have      –1–1 – 1– 0A i A iC x x
   

 
 since    1B i B ix x    

The above equation holds if    1–A i A ix x      1
2A ix   

Also  
1

n

A i
i

x k


  gives 
2
n k   1

2
n
k
  A ix  

Thus, the minimum value of  : ;D A B W  exists at 
2
nk   and is given by 

 . : ;Min D A B W     1–1–

1

1 1– 1– –1
–1

n

i B i B i
i

k kw x x
n n

 
 

 

         
     

            

Further, when 

(i) 0,k      1–

1

1. : ; 1– –1
–1

n

i B i
i

Min D A B W w x
 

 

     

(ii) ,
2
nk         1–1–

1

1 1 1. : ; 1– –1
–1 2 2

n

i B i B i
i

Min D A B W w x x
 

  
 

         
     

  

(iii) ,k n      1–

1

1. : ; –1
–1

n

i B i
i

Min D A B W w x 
 

     

Illustration: Suppose  B ix  is monotonically decreasing function of its fuzzy values, that is, 

  1 1 1 1, , ,...,
2 3 4 1B ix

n
     

. Also without any loss of generality, we can assume the weighted 

distribution to be  1, 2,3,...,W n .  

Thus, we have the following cases: 

(i) When  0, . : ;k Min D A B W    1–

1

1 1– –1
–1

n

i B i
i

w x



 

     

–1 –1 –1
–11 3 4 1 ( 1)2 2 3 .... –

–1 2 3 2
n n nn

n

  




                 
       

 

= 1( )n    (say)  
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(ii) When 
2
nk  ,        1–1–

1

1 1 1. : ; 1– –1
–1 2 2

n

i B i B i
i

Min D A B W w x x
 

  
 

         
     

  

 

                          
 

1 1
–1 –1

1
–1

3 41 2 .2 3 2 .3 4 ...
2 3

1
–1

1 ( 1)2 . ( 1) –
2

n n nn n
n

 
   


 



 
 




                             
   
             

 = 2 ( )n    (say) 

  

(iii) When    1–

1

1, . : ; –1
–1

n

i B i
i

k n Min D A B W w x 
 

      

                                          –1–1 –1 –11 ( 1)2 2.3 3.4 .... . 1 –
–1 2

n nn n   


 

      
 

 = 3( )n   (say)  

From the above discussion, we observe the behavior of the  . : ;Min D A B W  and conclude that 

the  . : ;Min D A B W first increases at 0k  and then decreases at / 2k n and again increases at k n . 

Numerical Verification   

Case-I: For 2n   and for different values of the parameter 1  , we have computed different values 

of  . : ;Min D A B W as shown in Table-4.3.1. 

Table-4.3.1 

     1( )n  2 ( )n  3( )n  

2 2.00 0.25 5.00 

 

3 2.75 0.41 9.50 

 

4 3.92 0.60 19.67 

 

5 5.78 0.84 43.75 

 

6 8.84 1.17 103.00 
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Case-II: For 3n   and for different values of 1  , we have computed different values of 

 . : ;Min D A B W as shown in Table-4.3.2. 

Table-4.3.2 

  1( )n  2 ( )n  3( )n  

 

0.2 2.00 0.10 4.51 

 

0.3 2.04 0.15 4.74 

 

0.4 2.08 0.21 5.00 

 

0.5 2.12 0.26 5.28 

 

0.6 2.17 0.32 5.58 

 

 

From the above tables, we present the  . : ;Min D A B W graphically against the values 0 k n   as 

shown in the following Fig.-4.3.1. 

                                    

Fig.-4.3.1  . : ;Min D A B W  

The above Fig.-4.3.1 clearly indicates that  . : ;Min D A B W is a continuous and piecewise convex 

function of k. 

    0                       n/2               n      
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(b) Maximum Value of  : ;D A B W  

To obtain the maximum value of  : ;D A B W , we consider the following cases: 

Case I : When k is any positive integer, say k m , then, we can choose m values of  A ix  as unity 

and remaining –n m  values as zero, that is,    1,1,1,...,1,0,0,...,0A ix   

 In this case, from equation (4.3.1), we have  

 
         

         

1–1–

1

1–1–

1

1– 1– –1
1: ;
–1

1– 1– –1

m

i A i B i A i B i
i

n

i A i B i A i B i
i m

w x x x x
D A B W

w x x x x

  



  

   


   



 

    
 
      




  

Thus, 

 . : ;Max D A B W       1–1–

1 1

1 –1 1– –1
–1

m n

i B i i B i
i i m

w x w x
 

   

 
   

             (4.3.2) 

Illustration: Suppose  B ix  is monotonically decreasing function of its fuzzy values, that is, 

  1 1 1 1, , ,...,
2 3 4 1B ix

n
     

and without any loss of generality, we can assume that  1, 2,3,...,W n . 

Now, we discuss the following cases: 

 (i) When 1m  ,  equation (4.3.2) gives 

 . : ;Max D A B W      1–1–
1

2

1 –1 1– –1
–1

n

B i i B i
i

w x w x
 

 

      
  

     
–1 –1 –1

–11 3 4 1 ( 1)2 2 3 .... –
–1 2 3 2

n n nn
n

  




                 
       

 

                                      1( )n , say 

(ii) When 2m  , equation (4.3.2) gives  

          1–1– 1–
1 1 2 2

3

1. : ; –1 –1 1– –1
–1

n

B B i B i
i

Max D A B W w x w x w x
    

 

       
  

          
–1 –1 –1

–1 –11 4 5 1 ( 1)2 2.3 3. 4. .... . –
–1 3 4 2

n n nn
n

  
 



                  
       

 

                              2 ( )n , say 

(iii) When 3m  , equation (4.3.2) gives 
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 . : ;Max D A B W
–1 –1 –1

–1 –1 –11 5 6 1 ( 1)2 2.3 3.4 4. 5. ....
–1 4 5 2

n n nn
n

  
  



                    
       

 

                                3( )n , say 

(iv) When m n , equation (4.3.2) gives 

    –1–1 –1 –11 ( 1). : ; 2 2.3 3.4 ... 1 –
–1 2

n nMax D A B W n n    


 

      
 

 

                              ( )n n , say 

From the above discussion, we observe that for every positive value of  and for different values of 

m , the  . : ;Max D A B W goes on increasing. 

The graph of  . : ;Max D A B W  against the values 0 k n   is shown in the following Fig.-4.3.2. 

                       
Fig.-4.3.2  . : ;Max D A B W  

From Fig.-4.3.2, we conclude that  . : ;Max D A B W  is monotonically increasing function and is 

continuous and piecewise convex function of k when  B ix  is monotonically decreasing function of 

its fuzzy values. 

Case II. When k m   , where m is any non-negative integer and   is a positive fraction. We put m  

values of  A ix  as unity,  1 thm  value as   and the remaining  – –1n m  values as zero, that is, 

   1,1,...,1, ,0,0,...,0A ix  .  

Now, using equation (4.3.1), we have 
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 

         

          
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n

i A i B i A i B i
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w x x x x
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  

   
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

    

 

    
 
 
 

   
 
 
 
   

   





 

Thus, we have 

 
          

  
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

    
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

  


 

 
  

 
     




    

                                                                                                                                                          (4.3.3) 

Illustration: Suppose  B ix  is monotonically decreasing function of its fuzzy values, that is, 

  1 1 1 1 1 1 1, , ,..., , , ,...,
2 3 4 1 2 3 1B ix

m m m n
        

, and without any loss of generality, we assume that 

 1, 2,3,..., , 1, 2,...,W m m m n   , then from equation (4.3.3), we have                 

    

 

     
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          

 

Convexity of    : We first prove that the function     is a convex function of   for each value of  

 . For this, we have 
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This shows that     is a convex function of  . Hence, its minimum value exits. For minimum value, 

we have  ' 0   which gives 1
2m

 


.  

Further, we have  
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                      (4.3.4) 

(i) When 0m  , equation (4.3.4) gives 
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                                      0g  , say 

(ii) When 1m  , equation (4.3.4) gives 
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                                       1g  , say  

(iii) When 2m  , equation (4.3.4) gives 
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(iv) When 3m  , equation (4.3.4) gives 
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                                     3g  , say 

(v) When m n , equation (4.3.4) gives 
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                                     ng  , say 

From the above discussion, we observe that for every term of the  . . : ;Min Max D A B W goes on 

increasing. The graph of  . . : ;Min Max D A B W  against the values of 0 k n   is shown in the 

following Fig.-4.3.3. 

 

                     

Fig.-4.3.3  . . : ;Min Max D A B W  

From Fig.-4.3.3, we conclude that  . . : ;Min Max D A B W  is monotonically increasing function when 

 B ix  is monotonically decreasing function and also this function is a continuous and piecewise 

convex function of k. 

Concluding Remarks: In the present chapter, it has been proved that the maximum value of the 

generalized weighted fuzzy entropy subject to the constraint of total fuzziness, that is,  
1

n

A i
i

x k


 , is 

a continuous and concave function of k  while the minimum value of the generalized weighted fuzzy 

entropy is continuous and concave function which vanishes for every non-negative value of k and has a 

maximum value for any non-negative fractional value of k. Further for the case of cross entropy, it has 

been proved that the maximum value of the generalized weighted fuzzy cross entropy is a continuous 

and piecewise convex function of k and is monotonically increasing function when it is given that 
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 B ix  is monotonically decreasing function of its fuzzy values. With similar discussions, the 

optimum values of the other measures of entropy and cross entropy can be obtained. 
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CHAPTER-V 

APPLICATIONS OF INFORMATION MEASURES TO PORTFOLIO 
ANALYSIS AND QUEUEING THEORY 

 
ABSTRACT 

In the present chapter, we have developed optimizational principles using new divergence 

measures and consequently, provided the applications of these measures for the development of 

measures of risk in portfolio analysis for minimizing risk. We have observed that minimizing these 

measures implies the minimization of the expected utility of a risk-prone person and maximization of 

the expected utility of a risk-averse person. Moreover, we have provided the applications of 

information measures to the field of queueing theory and proved that in case of steady state queueing 

process, as the arrival rate increases relatively to service rate, the uncertainty increases whereas in the 

case of non-steady birth-death process, the uncertainty measure first increases and attains its maximum 

value and then with the passage of time, it decreases and attains its minimum value.  

 
Keywords: Portfolio analysis, Divergence measure, Covariance matrix, Mean–Variance efficient 
frontier, Birth-death process, Steady state, Non-steady state. 
 
5.1 INTRODUCTION   

The portfolio theory deals with the investments which attempt to maximize portfolio expected 

return for a given amount of portfolio risk, or equivalently minimize risk for a given level of expected 

return, by carefully choosing the proportions of various assets. In portfolio analysis, which is usually 

divided into two stages, an investor has a great deal of choice in selecting his strategy for investment 

and wishes to maximize profits. The first stage starts with observation and experience and ends with 

the beliefs about the future performances of available securities. The second stage starts with the 

relevant beliefs about future performances and ends with the choice of portfolio.  

The modern portfolio selection theory founded by Markowitz [13], deals with the second stage 

in which we first feel that the investor should maximize discounted expected returns. We next consider 

the rule that the investor should consider expected return a desirable thing and variance of return an 

undesirable one. Markowitz [13] illustrated geometrically relations between beliefs and choice of 

portfolio according to the "expected returns-variance of returns" rule. Classical formulations of the 
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portfolio optimization problem, such as mean-variance can result in a portfolio extremely sensitive to 

errors in the data, such as mean and covariance matrix of the returns.  

It is worth mentioning here that some of the investments made by the investor may yield low 

returns, but these returns may be compensated by considerations of relative safety because of a proven 

record of non-volatility in price fluctuations. On the other hand, there might be some better 

investments which would be promising ones and achieve high expected returns, but these may be 

prone to a great deal of risk. The process may not be much difficult in maximizing the expected return 

since the various outcomes and the probabilities of their outcomes and the return on a unit amount 

invested in each security are known. However, investor’s major problem is to find a measure of risk 

which can be most satisfactory according to his investments. The earliest measure proposed for the 

return on all investments was variance and its proposal was based upon the fundamental argument that 

the risk increases with variance. Accordingly, in his seminal work, Markowitz [13] presented the 

concept of mean-variance efficient frontier, which enabled him to find all the possible efficient 

portfolios that simultaneously maximize the expected returns and minimize the variance. 

Jianshe [9] developed a new theory of portfolio and risk based on incremental entropy and 

Markowitz's [13] theory by replacing arithmetic mean return adopted by Markowitz [13], with 

geometric mean return as a criterion for assessing a portfolio. The new theory emphasizes that there is 

an objectively optimal portfolio for given probability of returns. Some portfolio optimization 

methodology has been discussed by Bugár and Uzsoki [4] whereas other work related with 

diversification of investments has been provided by Markowitz [14]. More regarding with the study of 

portfolio analysis, Nocetti [16] has explored the possibility that how investors allocate mental effort to 

learn about the mean return of a number of assets and analyzed how this allocation changes the 

portfolio selection problem. Bera and Park [1] remarked that Markowitz's [13] mean-variance efficient 

portfolio selection is one of the most widely used approaches in solving portfolio diversification 

problem. However, contrary to the notion of diversification, mean-variance approach often leads to 

portfolios highly concentrated on a few assets. In their communication, Bera and Park [1] proposed to 

use cross entropy measure as the objective function with side conditions coming from the mean and 

variance-covariance matrix of the resampled asset returns and illustrated their procedure with an 

application to the international equity indexes. Now, since risk is associated with the concept of 

uncertainty, we should be able to develop measures of risk based on the concepts of divergence or 

cross-entropy. We can develop such measures of divergence and then show how we can develop 

efficient frontiers for maximizing expected returns and simultaneously minimize measures of risk.  
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In the literature, there exist many well known measures of divergence which find their 

tremendous applications to various disciplines of mathematical sciences and the most appropriate 

found to be useful in many real life situations is due to Kullback-Leibler’s [12], usually known as 

measure of distance or cross entropy. This measure is given by 

1
( ; ) log

n
i

i
i i

pD P Q p
q

 .                                                                                                                   (5.1.1) 

In Chapter-I, we have introduced a new non-parametric measure of divergence, given by 
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               Shore and Gray [21] provided the applications of cross entropy measure to engineering 

problems related with pattern classification and cluster analysis. The authors have delivered an 

approach which is based on the minimization of cross-entropy and can be viewed as a refinement of a 

general classification method due to Kullback [11]. The refinement exploits special properties of cross-

entropy that hold when the probability densities involved happen to be minimum cross-entropy 

densities. The authors have commented that “The special properties of cross-entropy that hold for 

minimum cross-entropy densities result in a pattern classification method with several advantages. It is 

optimal in a well defined, information-theoretic sense; it is computationally attractive and it includes a 

self-consistent, simple method of computing the set of cluster centroids in terms of which the 

classification is made. Further, this method can be used successfully in a variety of other disciplines”.  

               Some applications of minimum cross entropy principle have been provided by Shore and 

Johnson [22] where the authors have remarked that the principle of minimum cross-entropy is a 

general method of inference about an unknown probability density when there exists a prior estimate 

of the density and new information in the form of constraints on expected values. The authors have 

extended cross-entropy’s well-known properties as an information measure and strengthened when one 

of the densities involved is the result of cross-entropy minimization. Moreover, the authors have 

pointed out the interplay between properties of cross-entropy minimization as an inference procedure 

and properties of cross-entropy as an information measure by providing examples and general analytic 

and computational methods of finding minimum cross-entropy probability densities. Carlson and 

Clements [5] provided the applications of cross entropy in another field of engineering known as signal 

processing. The authors have remarked that “an important component in the application and design of 

speech processing systems is the comparision of two signals in the form of a similarity measure and a 
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suitable measure for such comparision comes from information and detection theory in the form of the 

directed divergence which measures the discriminating information between two signal classes”. 

It has been observed that generalized measures of cross entropy should be introduced because 

upon optimization, these measures lead to useful probability distributions and mathematical models in 

various disciplines and also introduce flexibility in the system. Moreover, there exist a variety of 

mathematical models in science and engineering and a large number of models applicable in 

economics, social sciences, biology and even in physical sciences, for each of which, a single measure 

of cross-entropy cannot be adequate. Thus, we need a variety of generalized parametric measures of 

cross-entropy to extend the scope of their applications. For example, in ecology, we have to measure 

the difference in the relative frequencies of different spices. In signal processing, one has to find the 

difference between the spectral density functions. Bhattacharya’s [3] measure of divergence and 

Kullback-Liebler’s [12] measure of cross-entropy have extensively been used in the field of pattern 

recognition. Similarly, each parametric and non-parametric measure of cross-entropy having its own 

merits, demerits and limitations can successfully be employed to various disciplines of mathematical 

sciences. Theil [26] developed a measure of cross entropy also known as information improvement, 

after revising the original probability distribution and applied this measure in economics for measuring 

the equality of income. Thus, keeping in view the need of generalized divergence measures, Parkash 

and Mukesh [17,18] have introduced some new parametric and non-parametric measures of 

divergence.  In Chapter-I, we have introduced a new measure of divergence given by 

  1,
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where   is a real parameter.  

Zheng and Chen [27] proposed a new coherent risk measure called iso-entropic risk measure, 

which is based on relative entropy and pointed out that this measure is just the negative expectation of 

the risk portfolio position under the probability measure. Hanna, Gutter and Fan [7] remarked that 

prior subjective risk tolerance measures have lacked a rigorous connection to economic theory. In their 

study, the authors presented an improved measurement of subjective risk tolerance based on economic 

theory. Bertsimas, Lauprete and Samarov [2] introduced a risk measure, called it shortfall and 

examined its properties and discussed its relation to such commonly used risk measures as standard 

deviation. Moreover, the authors have shown that the mean-shortfall optimization problem can be 
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solved efficiently as a convex optimization problem. Some other contributors who extended the theory 

for the applications towards equity and stock market are Siegel [23, 24], Siegel and Thaler [25] etc.  

In the present chapter, we make use of parametric and non-parametric divergence measures 

(5.1.2) and (5.1.3) for the measurement of risk in portfolio analysis. Before developing these measures, 

we give a brief introduction to the concept of mean-variance efficient frontier due to Markowitz [13].  

Markowitz [13] Mean-Variance Efficient Frontier: Let j  be the probability of the jth  outcome 

for 1, 2, ,j m   and the ijr be the return on the ith  security for 1,2, ,i n   when the jth  outcome 

occurs. Then the expected return on the ith  security is given by 

1

m

i j ij
j

r r
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 ,  1,2, ,i n                                                                                                                   (5.1.4) 

Also, variances and covariances of returns are given by 
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      Let a person decide to invest proportions 1 2, , , nx x x  of his capital in n  securities. Assume that 

0ix   for all i , and that 
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Then, the expected return and variance of the return are given by 
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Markowitz [13] suggested that 1 2, , , nx x x  be chosen so as to maximize E  and to minimizeV or 

alternatively, to minimize V  when E  is kept at a fixed value. Now 
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where
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that is, jR  is the return on investment when the jth  outcome arises and R  is the mean return on 

investment. 

In the next section, we develop an optimizational principle using our divergence measure (5.1.2). 

5.2 DEVELOPMENT OF NEW OPTIMIZATION PRINCIPLE 

  Markowitz’s [13] criterion for a choice from 1 2, , , nx x x  was to minimize the variance, that is, 

to make 1 2, , , mR R R  as equal as possible among themselves. Any departure of 1 2, , , mR R R  from 

equality was considered a measure of risk. The same purpose can be accomplished if we choose 

1 2, , , nx x x  so as to minimize the directed divergence measure given by (5.1.2) of the distribution  
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Thus, we can formulate our optimization principle as follows: 

Choose 1 2, , , nx x x  so as to minimize 
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subject to the following constraints: 

 1 1 2 2
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1 2 1nx x x                                                                                                                                  (5.2.5) 

and 1 20, 0, , 0nx x x   . 

Implementation of the principle 

We may use the Lagrange’s method for implementing the above extremum problem. But, in 

this process, the jx ’s will not be guaranteed to be positive, although there is a guarantee that the jR ’s 

will turn out to be positive. If we find that some of the jx ’s are negative, we set these jx ’s equal to 

zero and solve the new optimization problem and proceed as before, repeating the process if necessary. 

Alternatively, one can use a nonlinear optimization program that considers the inequality constraints 

on the probabilities jx ’s. 

The above principle has been explained with the help of a numerical example as follows: 

Numerical: Consider the two securities, each with eight possible outcomes and with probabilities and 

returns as shown in the following Table-5.2.1: 

 

Table-5.2.1 

Probability 

 

Return-I Return-II 

0.05 

0.10 

0.15 

0.20 

0.10 

0.15 

0.10 

0.15 

0.10 

0.05 

0.15 

0.20 

0.10 

0.05 

0.20 

0.20 

0.20 

0.15 

0.10 

0.05 

0.15 

0.10 

0.15 

0.20 
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We have to find the optimum values of investment proportions 1x  and 2x , when the mean return on the 

investment is 0.13.  

Thus, our problem can be reformulated as follows: 

Minimize    
 


8

1 2211

8
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subject to the set of constraints 

   13.0
8
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2211 

j
jjj rxrx                                                                                                                (5.2.6) 

1 2 1x x                                                                                                                                            (5.2.7) 

and 

1 20, 0x x    

where 

1 0.05  , 2 0.10  , 3 0.15  , 4 0.20  ,  

5 0.10  , 15.06  , 10.07  , 15.08   

and  

11 0.10r  , 12 0.05r  , 13 0.15r  , 14 0.20r  ,  

15 0.10r  , 05.016 r , 20.017 r , 20.018 r ,  

21 0.20r  , 22 0.15r  , 23 0.10r  , 24 0.05r  ,  

25 0.15r  , 10.026 r , 15.027 r , 20.028 r  

Consider the Lagrange function 
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Differentiating the above equation with respect to 1x  and 2x , and equating to zero, we get 
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Using the values of j ’s and ijr ’s in (5.2.6), (5.2.7), (5.2.8), (5.2.9) and solving, we get 

3333.01 x , 6667.02 x . 
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5.3 MEASURING RISK IN PORTFOLIO ANALYSIS USING PARAMETRIC 

MEASURES OF DIVERGENCE  

In this section, we consider the following cases for measuring risk in portfolio analysis by using 

parametric measures of divergence. 

I. If we use one parametric measure of divergence (5.1.3), we get a measure of risk in accordance with 

the optimization principle developed in the above section. This measure is developed as follows: 
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If 1 1
2

  , minimizing the measure (5.3.1), we mean the maximization of expected utility of a 

person whose utility function is given by   R
x

xxu
log

 . In this case the person is risk-averse. If 1 , 

minimizing the measure (5.3.1), we mean minimization of the expected utility of a person whose utility 

function is given by   R
x

xxu
log

 . In this case the person is risk-prone. 

Thus, minimizing this measure implies the minimization of the expected utility of a risk-prone person 

and maximization of the expected utility of a risk-averse person. 

II. Now, we know that Renyi’s [20] measure of directed divergence is given by  
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If we use Renyi’s [20] measure, we get a measure of risk in accordance with the above mentioned 

optimization principle. This measure is developed as follows: 
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If 1  , minimizing the measure (5.3.3), we mean the maximization of expected utility of a person 

whose utility function is given by   xxu  . In this case the person is risk-averse. If 1  , minimizing 

the measure (5.3.3), we mean minimization of the expected utility of a person whose utility function is 

given by   xxu  . In this case the person is risk-prone. 

III. Now, we use Havrada-Charvat’s [8] extended measure of directed divergence given by  
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Thus, again we get a measure of risk in accordance with the above mentioned optimization principle. 

This measure is developed as follows: 
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If 0 1  , minimizing the measure (5.3.5), implies the maximization of expected utility 

function   xxu  . In this case the person is risk-averse. If 1 , minimizing the measure (5.3.5), we 

mean minimization of the expected utility   xxu  and in this case the person is risk-prone. 
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Thus, we conclude that minimizing this measure implies the minimization of the expected utility of the 

risk-prone person and maximization of the expected utility of a risk-averse person. 

Proceeding on similar lines, many new optimization principles can be developed by using different 

measures of directed divergence. 

5.4 APPLICATIONS OF INFORMATION MEASURES TO THE FIELD OF 
QUEUEING THEORY 

In dealing with the queueing theory, we suppose that the queueing system is in a steady-state 

condition and this steady-state is reached if the state of the system becomes essentially independent of 

the initial state and the elapsed time. In fact, the usual analysis of the main queueing system is based 

on the birth-death process, according to which, for any state n  of the queueing system, the mean rate 

at which the entering incidents occur must equal the mean rate at which leaving incidents occur. 

Queueing theory must assume some kind of stability for obtaining a probabilistic model of the 

system’s evaluation and the basic formulae obtained are reliable to the extent to which the conditions 

of the alleged birth-death process are satisfied. The principle of maximum entropy is another method, 

to construct the most uncertain probability distribution subject to some constraints expressed by mean 

values. By using this principle, we cannot only reobtain some known formulas from queueing theory, 

but also give an analytical expression to the solution of some more queueing systems. 

           If the real probability distribution of the possible states of the queueing system is known, the 

corresponding entropy is a number, which may be effectively computed for measuring the amount of 

uncertainty about the real state of the system. But generally, we do not know this real probability 

distribution. The available information is summarized in mean values, mean arrival rates, mean service 

rates of the mean number of customers in the system. Suppose that we know the mean number of 

customers in the system, and then we can have several probability distributions on the possible states 

of the system subject to the given number of the customers. From this set of feasible probability 

distributions, let us take the unique probability distribution for which the corresponding entropy is 

maximum and such a probability distribution gives the largest probabilistic model, treating the possible 

states of the system as uniform as possible. 

            It was Guiasu [6], who obtained a probabilistic model when the queueing system is in the 

maximum entropy condition. For applying the entropic approach, the only information required is 

represented by mean values. For some one-server queueing systems, when the expected number of 

customers is given, the maximum entropy condition gives the same probability distribution of the 
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possible states of the system as the birth-death process applied to / /1M M  system in a steady state 

condition. For other queueing systems, as for / /1M G instance, the entropic approach gives a simple 

probability distribution of possible states, while no close expression for such a probability distribution 

is known in the general framework of a birth-death process.  

           In simple birth-death process of queueing theory, let pn(t) denotes the probability of there being 

n persons in the population at time t and let n0 denote the number of persons at time t = 0, then Medhi 

[15] has obtained an expression for pn(t) . In fact, if we define the probability generating function by 

   
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n
n stpts, ,                                                                (5.4.1) 

we get the following result 
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                                                              (5.4.3) 

where exp( )x t                                                                              (5.4.4) 

By expanding  ts, in power series of s, we can find pn(t). In a queuing system, let  and  denote 

arrival and service rates in the steady state case, then we have 

(1 ) n
np    , 0,1,2.3,....;n 


                                                                                               (5.4.5) 

            At any time t, the number of persons in the system can be 0, 1, 2,…, so that there is uncertainty 

about the number of persons in the system. We want to develop a measure of this uncertainty, which 

shows how this uncertainty varies with ,  and t. Kapur [10] has studied such types of variations by 

considering well known measures of uncertainty. Prabhakar and Gallager [19] have undertaken the 

study of queues which deal with two single server discrete-time queues. These are  

(i) first come first served queue with independent and identically distributed service times and  

(ii) a preemptive resume last come first served queue with non-negative valued independent 

and identically distributed service times. For these systems, the authors have shown that 

when units arrive according to an arbitrary ergodic stationary arrival process, the 

corresponding departure process has an entropy rate no less than the entropy rate of the 

arrival process. Using this approach from the entropy standpoint, the authors have 

established connections with the time capacity of queues.  
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    In the sequel, we have obtained the measures of uncertainty for a probability of the population 

size at any time in a birth-death process as functions of birth rate and death rate. It has been shown that 

in case of steady state queuing process, as the arrival rate increases relatively to service rate, the 

uncertainty increases whereas in the case of non-steady birth-death process, the uncertainty measure 

first increases and attains its maximum value and then with the passage of time, it decreases and attains 

its minimum value. These results have been presented in the following cases:  

Case-I: Applications of information measures for the study of variations of entropy in the 
steady state queueing process.  

        In this case, we have studied the variations of our own measure of entropy in the steady state 

queueing processes. For this purpose, we have considered the following measure of entropy introduced 

in Chapter-I. This measure is given by 
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Letting 1  in (5.4.7), we get 0
0

form. So applying L-Hospital’s rule, we get 
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a result studied by Kapur [10]. 

 

Now, differentiating (5.4.7) w.r.t  , we get 
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Thus, we see that in this case, the uncertainty increases monotonically from 0 to  as  increases from 

0 to unity. 

Case-II: Applications of information measures for the variations of entropy in the non-steady 
state queueing process. 

        In this case, we have studied the variations of our own measure of entropy in the non-steady state 

queueing processes. For this purpose, we have again considered the measure of entropy (5.4.6) and for 

this study, we first of all develop the following results: 

Equation (5.4.3) gives 
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Now, we study the different variations of the entropy (5.4.6) as follows: 
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Letting 1   in (5.4.10), we get 0
0

form and applying L Hospital’s rule, we get  
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Differentiating (5.4.10) w.r.t t , we get 
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Letting 1 , we get  
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This shows that uncertainty increases so long as t < 1 and decreases after this and maximum entropy 

occurs when t = 1, and  

   Max  ,H    = 2 log2 

When t = 0, the uncertainty is zero and when t   

       2 1 log 1 log 2 1 log 1 log
lim

1 1xt

t t t t x x x x
lim

t x
   

 

           
 

 

               2 log 1 /
lim 0

1x

x x



   

Thus, in this case, we observe that the uncertainty starts with zero value at time t = 0 and ends with 

zero value as t   and in between it attains its maximum value 2 log2 when t = 1/. 

Concluding Remarks: The findings of our study reveal that by using parametric measure of cross-

entropy, we can talk of maximizing the expected utility of risk-averse persons and of minimizing the 

expected utility of risk-prone persons. Such a study can be made available by the use of a variety of 

other generalized parametric and non-parametric measures of cross entropy. Moreover, we have 

provided the applications of our own entropy measure developed in Chapter-I to the field of queueing 

theory for the study of different variations in different states of the queueing processes. By making use 

of other well known existing entropy measures, such variations can be studied and some interesting 

conclusions can be made. 
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CHAPTER-VI 

NEW MEAN CODEWORD LENGTHS AND THEIR CORRESPONDENCE 
WITH INFORMATION MEASURES 

   
ABSTRACT  

            The objective of the present chapter is to provide a deep study of the problem of 

correspondence between well known measures of entropy and the mean codeword lengths. With the 

help of some standard measures of entropy, we have illustrated such a correspondence. In the 

literature, we usually come across many inequalities which are frequently used in information theory. 

Keeping this idea in mind, we have developed such inequalities by the use of coding theory and 

divergence measures. Moreover, we have made use of the concept of weighted entropy and generated 

some new possible generalized measures of weighted entropy through coding theorems. Such theorems 

also provide a correspondence between standard measures of entropy and their upper bounds which are 

neither mean codeword lengths themselves nor some monotonic increasing functions of mean 

codeword lengths. These findings have been discussed in the last section of the chapter. 

Keywords: Codeword, Code alphabet, Best 1-1 code, Uniquely decipherable code, Mean codeword 
length, Entropy, Directed divergence. 
 
6.1 INTRODUCTION  

In early days, computers were less reliable as compared to the computers of today, the 

consequences of which could result in the failure of entire calculation work. The engineers of the day 

devised ways to detect faulty relays so that these could be replaced. It was R.W. Hamming working for 

Bell Labs who thought that if the machine was capable of knowing it was in error, wasn't it also 

possible for the machine to correct that error. Setting to work on this problem, Hamming devised a 

way of encoding information so that if an error was detected, it could also be corrected. Based in part 

on this work, Claude Shannon developed the theoretical framework and set the origin of coding theory. 

The basic problem of coding theory is that of communication over an unreliable channel that results in 

errors in the transmitted message. It is worthwhile noting that all communication channels have errors, 

and thus codes are widely used. In fact, these codes are not just used for network communication, USB 

channels, satellite communication and so on, but also in disks and other physical media which are also 

prone to errors. In addition to their practical application, coding theory has many applications in 

computer science and as such it is a topic that is of interest to both practitioners and theoreticians.  
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The last few years have witnessed an impressive convergence of interests between disciplines 

which are a priori well separated: coding and information theory. The underlying reason for this 

convergence is the importance of probabilistic models in each of these domains. This has long been 

obvious in information theory and now it has become apparent in coding theory. More accurately, the 

two basic concepts viz, entropy and coding are strongly related to each other and a very important and 

basic relation between the two concepts was first obtained by Shannon [22], where he first introduced 

the concept of entropy, to measure uncertainty of the probability distribution  1 2 3, , ,..., nP p p p p . In 

the field of coding theory, we usually come across the problem of efficient coding of messages to be 

sent over a noiseless channel, that is, our only concern is to maximize the number of messages that can 

be sent over the channel in a given time.  

Let us assume that the messages to be transmitted are generated by a random variable X and 

each value ix , ( 1,2,..., )i n of X  must be represented by a finite sequence of symbols chosen from the 

set { 1 2, , ....., Da a a }. This set is called code alphabet or set of code characters and sequence assigned to 

each ix , ( 1,2,..., )i n  is called code word. Let il ( 1,2,..., )i n  be the length of code word associated 

with ix  satisfying Kraft’s [13] inequality given by the following expression: 

1 2 ... 1nll lD D D                                                                                        (6.1.1) 

where D  is the size of alphabet.  

In calculating the long run efficiency of communications, we choose codes to minimize average code 

word length, given by 

1

n

i i
i

L p l


                                                                                     (6.1.2) 

where ip  is the probability for the occurrence of ix . For uniquely decipherable codes, Shannon’s [22] 

noiseless coding theorem which states that 

( ) ( ) 1
log log
H P H PL

D D
                                                                                      (6.1.3) 

determines the lower and upper bounds on L in terms of Shannon’s [22] entropy ( )H P .  

It is to be observed that the arithmetic mean is not the only mean codeword length for lengths 

1 2, ,..., nl l l . In fact, we can consider infinity of means of the form  1

1

n

i i
i

f p f l



 
 
 
  where f is a one-
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one function with inverse 1f  . As a special case, we can have power means by taking   rf x x  to get 

infinity of power means 
1

1

n r
r

i i
i

p l


 
 
 
  for all real values of r . This mean includes the popular arithmetic, 

geometric and harmonic means.  

We can also have infinity of exponentiated means by taking   k xf x D  where D  the size of 

the alphabet used. We can also consider a large number of functions depending upon the probability 

distribution, which satisfy the essential properties of a measure of entropy. Though, usually we apply 

Kraft’s [13] inequality as unique decipherability constraint for providing relation between entropy and 

codeword length, we may consider other relevant and useful constraints as well. Thus, while Shannon 

[22] considered only one mean, one constraint, that is, Kraft’s inequality and his own measure of 

entropy, we can considerably enlarge the scope of the subject under consideration with the help of a 

variety of generalized parametric and non-parametric measures of entropy. We, thus have three entities 

viz, means, constraints and measures of entropy and we get the following problems to consider: 

(i) Given a specific mean and a specific constraint, one has to find the minimum value of the mean 

subject to the given constraint. 

(ii) Given an entropy measure and a constraint, one has to find the suitable mean codeword length for 

which the given entropy measure will give the minimum value for the given constraint.  

(iii) Given the mean codeword length and the well known measure of entropy, one has to find a 

suitable constraint for which the measure of entropy will be the minimum value for the given mean 

codeword length. 

          A suitable code is defined as a code in which lengths 1 2 3, , ,..., nl l l l  of the codewords satisfy a 

suitable relation in such a way that the minimum value of a specified mean codeword length for all 

codes satisfying the given relation lies between two specified values. Kapur [10] has well explained the 

following criteria while providing correspondence with measures of information, suitable codeword 

lengths and the construction of suitable constraints: 

1. If we want the lower bound of arithmetic mean of codeword length to lie between ( )H P  and 

( ) 1H P   where ( )H P  is Shannon’s [22] entropy, then we must choose codeword lengths 

1 2 3, , ,..., nl l l l  to satisfy Kraft’s [13] inequality. 
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2. Similarly, if we want the lower bound of exponentiated mean codeword length of order   to 

lie between ( )R P  and ( ) 1R P  , where ( )R P  is Renyi’s [21] entropy of order  , then 

again we should choose 1 2 3, , ,..., nl l l l  to satisfy Kraft’s inequality. The exponentiated mean 

here may be Campbell’s [4] mean L . 

3. If we want the lower bound for 
1

n

i i
i

p l

  to lie between ( : )K P Q  and ( : ) 1K P Q  , where 

( : )K P Q  is Kerridge’s [11] measure of inaccuracy, then we have to choose 1 2 3, , ,..., nl l l l  to 

satisfy the modified Kraft’s inequality, given by 

                                      1

1
1i

n
l

i i
i

p q D



                                                                                    

4. If we want the lower bound to lie between ( : )D P Q  and ( : ) 1D P Q  , where ( : )D P Q  is 

Kullback- Leibler [14] measure, then the constraint should be 

                             
1

1i

n
l

i i
i

p q D



                                                                                               

5. If we want the lower bound of exponentiated mean codeword length to lie between 
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, then the appropriate constraints should   

             be the following one:                                                                                            
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n
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p q D

p











                                                                                                                 

While dealing with coding theory, we usually come across the problem of unique decipherability. To 

tackle this problem, we would like to have the following definition. 

 “A code is uniquely decipherable if every finite sequence of code characters corresponds to at most 

one message”. 

 One way to insure unique decipherability is to require that no code word should be a “prefix” 

of another code word. A code having the property that no code word is a prefix of another code word is 

said to be instantaneous. Before turning to the problem of characterizing uniquely decipherable codes, 

we note that every instantaneous code is uniquely decipherable, but not conversely.  
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The implicit assumption that works behind the restriction of encoding of X to uniquely 

decodable codes is that a sequence of random variables 1 2, ,..., nx x x  is being encoded and that the 

individual codeword will be concatenated together. So, the code must be uniquely decodable in order 

to recover 1 2, ,..., nx x x . Since, there are communication situations where a single random variable is 

being transmitted instead of sequence of random variables, Leung-Yan-Cheong and Cover [16] 

considered 1:1 codes, that is, codes which assign a distinct binary codeword to each outcome of the 

random variable, without regard to the constraint that concatenation of these descriptions must be 

uniquely decodable. Moreover, if 1:1L  is the mean length for the best 1-1 binary code, then Leung-Yan-

Cheong and Cover [16] proved the following inequalities in terms of Shannon’s [22] entropy 

( )H P and the 1-1 codes: 

1:1

1:1

1:1

( ) (1 log(1 ( )) log(2 1) /(2 1), 1

( ) 2log(1 ( ))

( ) log(1 ( )) log(log ( ) 1) ...

a aL H P a H P a

L H P H P

L H P H P H P

       

  

     

                                                (6.1.4)             

It is to be noted that uniquely decipherable codes (U.D.) are constrained codes because their 

lengths have to satisfy Kraft’s inequality whereas 1-1 codes are less constrained. The mean length of 

the best U.D. code is greater than Shannon’s [22] entropy ( )H P . The mean length of the best 1-1 code 

1:1L  is also a measure of entropy and the two measures of entropy need not be related by equality or 

inequality relations. It was Campbell [4], who for the first time introduced the idea of exponentiated 

mean code word length for uniquely decipherable codes and proved a noiseless coding theorem. The 

author considered a special exponentiated mean of order  given by 

(1 ) /

1
log

1
i

n
n

D i
i

L p D  









 
    

                                                                                    (6.1.5) 

and showed that its lower bound lies between )(PR  and 1)( PR  where  

1

1
( ) (1 ) log ; 0 , 1

n

D i
i

R P p 
   



 
    

 
                                                                                (6.1.6) 

is Renyi’s [21] measure of entropy of order  .  

As 1  , it can  easily be shown that L L   and ( )R P  approaches ( )H P .  
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After the introduction of Campbell’s [4] exponentiated mean of order , many researchers proved 

different coding theorems and consequently, developed their exponentiated means. Some of the 

pioneer towards such contributions are Kumar and Kumar [15], Ramamoorthy [20], Parkash and 

Kakkar [18], Parkash and Priyanka [19] etc.  

Of course, Kapur [10] defined the following mean: 

(1 )

1 1

1 log /
1

i

n n
l

D i i
i i

L p D p  


 

 

 
    

                                                                                        (6.1.7) 

and gave its proper definition as follows: 

L is said to be exponentiated mean if it satisfies the following properties: 

(i) If 1 2 3 ... nl l l l l     , then L l   

(ii) L must lie between minimum and maximum values of 1 2 3, , ,..., nl l l l  

(iii) 
1

lt L L


  where 

1

n

i i
i

L p l


  

           In the literature of coding theory, for the given inequality, say, Kraft’s [13] inequality, we have 

a pair of problems. For a given mean codeword length, we can find its lower bounds for all uniquely 

decipherable codes. In the inverse problem, we can find the mean value for the given pair of lower 

bounds. The direct problem has a unique answer, though it may not always be easy to find an 

analytical expression for it. However, the inverse problem has no unique answer in the sense that the 

same lower bounds may arise for a number of means. The challenge is to find as many of the means as 

possible, which have the given pair of values as lower bounds.  

    The object of the present chapter is to go deeper into the problem of correspondence between 

well known measures of entropy and mean codeword lengths. We state the following fundamental 

results in a broader framework: 

(a) To every mean codeword length, there corresponds a measure of entropy or a monotonic 

increasing function of a measure of entropy. 

(b) To every measure of entropy, there corresponds a mean codeword length or a monotonic 

increasing function of the mean codeword length. 
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          For many purposes, especially for maximization of entropy, every monotonic increasing 

function of a measure of entropy is as good as a measure of entropy and for such purposes; all such 

functions should be regarded as equivalent. A monotonic increasing function of mean codeword 

lengths is not the same as a mean codeword length, but minimizing a monotonic increasing function of 

a mean codeword length gives the same results as minimizing the mean codeword length itself. Thus, 

there is no harm to use monotonic increasing functions of entropy and mean codeword lengths. Below, 

we illustrate the correspondence between standard measures of entropy and the codeword lengths. 

 
6.2 DEVELOPMENT OF EXPONENTIATED CODEWORD LENGTHS 
THROUGH MEASURES OF DIVERGENCE 

In this section, we prove certain coding theorems, the special cases of which provide 

exponentiated mean codeword lengths already existing in the literature of coding theory. 

Theorem-I: If 1 2 3, , ,..., nl l l l are the lengths of a uniquely decipherable code, then  

 
, ,

1

(1 ) 1
( ) log

n
li

k Dk i

k
L H P D
  

 
 





                                                                                (6.2.1) 

where , ,
1 ( 1) ( 1) ,kL L k L 

   
 

     
 k  is some real constant, ,  are real parameters, 

( )
k

H P
   is well known measure of entropy due to Kapur [7] and  

(1 ) (1 )

1 1

1 1

1 1log , log
1 1

n n
l li i

i i
i i
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are Kapur’s [10] exponentiated mean codeword lengths. 

Proof. We know that Kapur’s [9] measure of directed divergence is given by 

   
1

1

1

1

1: log ; 1, 1, , 0, 0, ( 1) 1

n

i i
i

D kn

i i
i

p q
K P Q k and

p q

 

 

     
 









      
  

 
 




 

have opposite signs. 

Since  : 0K P Q  , letting 
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, the above expression gives 
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       (6.2.2) 

The equation (6.2.2) further gives 
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where               
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


 is Kapur’s [8] additive 

measure of entropy. This proves the theorem. 

Special cases 

1. For 1k  , (6.2.2) becomes 
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that is, 
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where  

,
1 ( 1) ( 1)L L L 

   
 

     
  

is the exponentiated mean of order  and type   and ( )H P
  is  Kapur’s [8] entropy of order  and 

type  . 

Now, since 
1

n
li

i
D


 always lies between 1D and 1, equation (6.2.3), the lower bound for ,L   lies 

between ( )H P
 and ( ) 1H P

  . 

2. For 1, 1k    (6.2.2) becomes 
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that is, 

1
( ) log

n
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D
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L R P D





    

where L is the exponentiated mean of order  , ( )R P is Renyi’s [21] entropy of order  . 

So, the lower bound for L lies between ( )R P and ( ) 1R P  .  

3. For 1, 1k   and 1  , equation (6.2.2) becomes 

Information Theoretic Models and Their Applications

122



Coding Theory and Information Measures                                                                                                                             123  

1 1 1
log log

n n n
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i i i D i D
i i i

p l p p D

  
      

that is, 
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i
L H P D


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where
1

n

i i
i

L p l


  is the mean codeword length and ( )H P  is Shannon’s [22] measure of entropy.  

Thus, the lower bound for L lies between ( )H P and ( ) 1H P  . 

Theorem-II: If 1 2 3, , ,..., nl l l l are the lengths of a uniquely decipherable code, then 

1
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where ( )R P is well known Renyi’s [21] measure of entropy and 
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is Kapur’s [10] exponentiated mean codeword length of order  . 

Proof. We know that Kapur’s [9] measure of directed divergence is given by  
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Letting 
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Taking logarithms both sides, the above equation gives 
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that is, 
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D
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L R P D
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where L  is Kapur’s [10] exponentiated mean codeword length of order  and ( )R P  is Renyi’s [21] 

measure of entropy. 

This proves the theorem. 

Note: Since 
1

n
li

i
D


 lies between 1D and 1, the lower bound for L  lies between ( )R P and 

( ) 1R P  . 

In the next section, we have provided the derivations of the mean codeword lengths already existing in 

the literature of coding theory.  
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6.3 DERIVATIONS OF WELL KNOWN EXISTING CODEWORD LENGTHS  
 

In this section, we provide the applications of Holder’s inequality to prove a new coding 

theorem, the special cases of which provide the existing mean codeword lengths due to Campbell [4] 

and Shannon [22]. 

Theorem-I: If 1 2 3, , ,..., nl l l l are the lengths of a uniquely decipherable code, then we have 
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where 0, 1   .    

Proof. Applying Holder’s inequality, we have 
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Taking logarithms both sides, the above equation gives 
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which proves the theorem. 

This is to be noted that the R.H.S of (6.3.1) is a measure of entropy but the L.H.S is not a mean 

codeword length. Next, we discuss the particular cases: 

Case-I: Taking D  , (6.3.1) becomes 
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where L.H.S of (6.3.3) is Campbell’s [4] exponentiated mean codeword length given by  
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and the R.H.S of (6.3.3) is Renyi’s [21] entropy of order 2. 

Case-II: If we take 1  in (6.3.1), we get 0
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 form. Applying L Hospital’s rule, we get  
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Upon simplification, the above equation gives 

1 1
log

n n

i i i D i
i i

p l p p
 

                                                                                                                       (6.3.4) 

The R.H.S of equation (6.3.4) is Shannon’s [22] measure of entropy and the L.H.S is arithmetic mean 

codeword length. 

In the sequel, we shall provide the derivations of the existing mean codeword lengths by the 

use of weighted information, a concept introduced by Belis and Guiasu [3]. The authors enriched the 

usual description of the information source by endowing each source letter with an additional 

parameter, for example, the profit or advantage the user gets when the event corresponding to that 

letter occurs. They remarked that the additional parameter should be subjective in nature and not an 

objective character. The authors called the additional parameter as utility or weight and considered the 

following model for a finite random experiment: 
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                                                                                                  (6.3.5) 

where A  is the alphabet, P  is the probability distribution and W  is the utility or weighted distribution. 

 Taking in view the weighted scheme (6.3.5), Guiasu and Picard [5] considered the problem of 

encoding the letter output by means of a single-letter prefix code, whose code words have lengths 

nlll ,,, 21   satisfying the constraint 

1
1
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
n

i

liD                                                                                                                                         (6.3.6) 

where D  is the size of the code alphabet. The authors defined the quantity 
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i
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pwl
WL

1

1                                                                                                                              (6.3.7) 

and called it the weighted mean codeword length of the code and derived a lower bound for it. Longo 

[17] provided the interpretation for the weighted mean codeword length by considering the following 

transmission problem: 
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 Suppose an information source generates the letters  naaa ,,, 21   with probabilities 

 nppp ,,, 21  and these letters are to be encoded by means of prefix code with code words of 

length nlll ,,, 21  . Since the different letters are of the different importance to the receiver, their code 

words should be handled differently, for example, these code words should be transmitted through the 

channel with different conditions or these should go through different channels or these should be 

recorded using different storage devices. Under the present situation, this will yield a different per 

letter cost for each codeword, iw (say). Thus, the cost of transmitting the letter ia  is proportional to 

ii wl , that is, 

iii wlC                                                                                                                                             (6.3.8) 

Thus, if one has to minimize the average cost 
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then one can try to minimize the quantity 


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
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i
iii pwlC

1
                                                                                                                                 (6.3.10) 

This is equivalent to minimizing the codeword length given in (6.3.7). 

             In the next theorem, we make use of well known source coding theorem due to Gurdial and 

Pessoa [6] proved under the weighted distribution to derive the existing codeword length, that is, we 

shall prove that Kapur’s [8] measure of entropy is the lower bound of the well known mean codeword 

length already existing in the literature of coding theory. The purpose of proving this theorem is to 

make use of the weighted code word length explained above.  

Theorem-II: If 1 2 3, , ,..., nl l l l are the lengths of a uniquely decipherable code, then we have 
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Proof. To prove this theorem, we consider source coding theorem proved by Gurdial and Pessoa’s [6]. 

According to this theorem, if 1 2 3, , ,..., nl l l l are the lengths of a uniquely decipherable code, then the 

following inequality hold: 
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where 
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is well known Gurdial and Pessoa’s [6] weighted entropy and 
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is the parametric weighted mean codeword length introduced by Gurdial and Pessoa [6]. 

Now, we apply the above inequality (6.3.12) to derive the existing codeword length as follows: 

When 1  , from inequality (6.3.12), we have 
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Similarly, when 1  , we have 
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Adding equations (6.3.15) and (6.3.16), we get the following equation: 
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Upon ignoring weights, equation (6.3.17) gives 
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Thus, for 1, 1   , we have 

1

11

1

1
1

1 1log log

i

i

n ln
ii ii

D Dn
n l

i
ii

i

p Dp

p p D








   

   
 




 
  

 




 
         

    
     
 



 
                                                                    (6.3.18) 

Proceeding on similar lines, the result (6.3.18) can be proved for 1  and 1  .  

The L.H.S. of equation (6.3.18) is Kapur’s [8] measure of entropy of order   and type   and R.H.S. is 

Kapur’s [10] mean codeword length. Hence the theorem. 

Proceeding as above, many existing codeword lengths can be derived via weighted code word lengths 

or by the use of Holder’s inequality. 

6.4 DEVELOPMENT OF INFORMATION THEORETIC INEQUALITIES VIA 
CODING THEORY AND MEASURES OF DIVERGENCE 
 
            In this section, we introduce some new inequalities usually applicable in the field of 

information theory. These inequalities have been developed by the use of coding theory and 

divergence measures. Below, we discuss the method for obtaining these inequalities:   
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I. Firstly, we consider the expression of divergence measure taken by Kapur [9]. This measure is also 

known as Jensen-Burg measure of directed divergence and is given by  
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Using the inequality log 1x x  , the above equation becomes 
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Letting 2 ...i nl l l l    , equation (6.4.3) gives 
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For 1  , equation (6.4.4) becomes 
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which is a new information theoretic inequality involving probabilities. 

II. Again, we consider a generalized divergence measure due to Kapur [9], given by 
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Using the condition of non-negativity of divergence measure and taking 
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If we take 1 2 ... nl l l l     in (6.4.6), we get 
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 is well known Kapur’s [8] measure of entropy. 

Thus, (6.4.7) is another information inequality. 

Proceeding as above, many new information theoretic inequalities can be developed either via coding 

theory approach or with the help of divergence measures. 

6.5 GENERATING POSSIBLE GENERALIZED MEASURES OF WEIGHTED 

ENTROPY VIA CODING THEORY  

It is to be observed that in coding theory, while proving coding theorems, one should know 

(i) the well defined mean codeword lengths 

(ii) the existing measures of entropy 

With the help of first approach, we can generate new measures of entropy whereas the second 

approach gives us a method of developing new mean codeword lengths. In this section, we have made 

use of the concept of weighted entropy introduced by Belis and Guiasu [3] and generated some new 

possible generalized measures of weighted entropy by using the first approach. These measures have 

been developed with the help of following theorems: 

Theorem-I: If 1 2 3, , ,..., nl l l l are the lengths of a uniquely decipherable code, then we have 
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       (6.5.1)                                            

                                                                                                                                     ; 0, 1, 1      

Proof. By Holder’s inequality, we have 
1 1

1 1 1

n n np qp q
i i i i

i i i
x y x y

  

   
    
   

   where 1 1 1
p q
  , 1p or q                                                (6.5.2)                  

Substituting 
 

1 1

1 1

1 1

1 1, , ,
1 1

li ii
i i i in n

i i i i
i i

w wx p D y p p q
w p w p

 
 

 
   

  

 

 

 

   
           
     
   
   
 
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in equation (6.5.2), we get 

 

 

 1 1
1 11 1

1 1
1 1

1 1

1 1 1

1 1

n n n
l li ii i

i in n
i i i

i i i i
i i

w wD p D p
w p w p

 
  

   
 

 
 

 
  

 
 

  

  

 

   
                                                                

   

  
 

 

that is, 

 

 

 1 1
1 11

1 1
1

1 1

1 1 1

1 1

n n nlil i ii
i in n

i i i
i i i i

i i

w wD p D p
w p w p

 
 

  

 

 


 
 

      

  

 

    
      
      
       
      
                

  
 

 

Taking logarithms both sides, the above equation gives 

   

 

1

1

1

1

1 1

1 1

1

1

0 log
1

1 1
log

1

n lii
D i n

i
i i

i

n
i

D i n
i

i i
i

wp D
w p

wp
w p






 


 




 


 
  

 





 

 





 
  
  
   
   
     

  
   
        
    
        







 

that is,    

 
1

1 1
1

1 1

1 1

1 1

1 1
log log

1 1

a a

n nlii i
D i D in n

i i
i i i i

i i

w wp D p
w p w p





   

 

 
 

     

 

 

   
      
             
       
            

   

 
 

                      

which proves the theorem. 

From the above theorem, we have developed a new weighted mean codeword length as given below: 
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 

1

1

1

1

log ; 1, 1, 1
1

a

n lii
D i n

i
i i

i

wL W p D
w p







  


 
  

 





 
  
  
     
   
    

 




                                              (6.5.3) 

Ignoring weights equation (6.5.3) gives  

1

1
log

1

n li
D i

i
L p D








 
  

 



 
 
 
 

                                                                                                        (6.5.4) 

For 1  , (6.5.4) becomes 

  11

1
log

1

n
li

D i
i

L p D 





 




   

which is Campbell’s [4] exponentiated mean codeword length. 

Moreover, as 1   in equation (6.5.3), the nature of  L W
 is of the 0

0
 form and thus, applying L 

Hospital’s rule, we get 

 

1 1

1 1

2 2
1

1 1 1

11

1

1

log

a a
l li in

i i i i
i Dn n n

i
i i i i i i

i i i

a

lii
i n

i i
i

w D l w wDp
w p w p w p

lt L W

wp D
w p

 
 







  



       
   



  



   
 



 
      
      
       
      
            

  


 
 
 
 
 
 




  



 
 
 
 
 
 
 
 

 
 
 
 
 

     
                   

                         

1

1

1

1

log

a

n lii
D i n

i
i i

i

wp D
w p




 
  

 





 
  
  
   
  
     




 

that is,  
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 
1

1

1 1

1 1

log
n

i
i i D n

i
i in

ii i i
n n

i
i i i i

i i

ww p
w p

p w llt L W
w p w p










 

 

 
 
 
 
 
  





 

 

For 0  , we have  

  1

1

1

n

i i i
i

n

i i
i

p l w
lt L W

w p














  

which is Longo’s [17] weighted mean codeword length. 

Thus, we conclude that the weighted mean codeword length introduced in (6.5.3) is a valid generalized 

weighted mean codeword length. 

New possible measure of weighted entropy      

Equation (6.5.1) provides the following new possible generalized weighted measure of entropy: 

     

 1 1

1 1

1

1

1 1
, log ; 1, 1

1

a

n
i

D i n
i

i i
i

wH P W p
w p





 


 

 


 

 





 
  
        
   
    

 




                       (6.5.5)           

Note: If 1iw  , for all i , then (6.5.5) becomes     

     1 1

1

1 1
log

1

n

D i
i

H P p

 


 


 



    
 
 
                                                                            (6.5.6) 

Letting 1  in (6.5.6), we get      

 

  
 

 

  

   

1 1
2

11 1

1
1 1

1 1

1

11 1 log
1 1

1 log

n

i D i
n i

i
i

n

D i
i

p p

p
lt H P lt

p


 


 




 

 

 
 



 

 


 

 



 
  
  
 
 
          





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                    
1 1

1

1 1log 1 log
n n

i D i D in
i i

i
i

p p p
p

 
 



 
         
 
 

 


 

Thus, we have 

 
1 1

log
n

i D i
i

lt H P p p
 

  which is Shannon’s [22] measure of entropy. 

Hence, we conclude that by proving the above theorem, we have generated a new possible generalized 

measure of weighted entropy given in (6.5.5). 

Theorem-II: If 1 2 3, , ,..., nl l l l are the lengths of a uniquely decipherable code, then we have   

1

1
1

1

( ) log
1

n
i i

D
i n

i i
i

w pL W

w p








 



 
 
 

  
   

     




                                                                                             (6.5.7) 

where 

1

( 1)

1

1( ) log
1 i

n

i i
i

D n
l

i i
i

w p
L W

w p D












 
 
 

  
 
 




 

is a new weighted mean codeword length. 

Proof. Applying Holder’s inequality (6.5.2) and substituting  

1 1
1 1 1 1

1 1
1 1

1 1

1, , 1 ,
li

i i i i
i i

n n

i i i i
i i

w p D w px y p q

w p w p

 
   

  




   

 

 


    
   
   
   
 

, we have  

1 1 11 1

1 1
1 1 1 1

1 1
1 1 11 1

1 1

ln n ni
l i i i ii

i i in n

i i i i
i i

w p D w pD

w p w p


   

 
   

  

  

   


   

 

                                                      

  
 

 

that is, 
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1 1
1 1

(1 )

1
1 1 1

1
1

ln n ni
l i i i ii

n
i i i n

i i
i ii

i

w p D w pD
w p

w p






 

 




 


  




 
   
   
   
   

          

  
 

 

Taking logarithms both sides, the above equation gives 

1
(1 )

1
1 1

1
1

10 log log
1 1

ln ni
i i i i

D Dn
i i n

i i
i ii

i

w p D w p

w p
w p

 

 


 

 

 




 
   
   
    
    

          

 
 

 

that is, 

1
(1 )

1
1 1

1
1

1 log log
1 1

ln ni
i i i i

D Dn
i i n

i i
i ii

i

w p D w p

w p
w p

 

 


 

 

 




 
   
   
   
    

          

 
 

     

or 

1

1
1

( 1) 1

1
1

1 log log
1 1

n

i i n
i i i

D Dn
l i ni

i i
i ii

i

w p
w p

w p D
w p




 


 



 




 
   
   
   
    

          




 

 

which proves the theorem. 

From the above theorem, we have developed a new weighted mean codeword length as provided by 

the following expression: 

 

1

1

1

1( ) log ; 1, 1
1

n

i i
i

D n
li

i i
i

w p
L W

w p D






 
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Ignoring weights, equation (6.5.8) gives  
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which is Kapur’s [10] exponentiated mean codeword length. 

Letting 1  in (6.5.8), we get 
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which is a Longo’s [17] weighted mean codeword length. 

Thus, we conclude that the weighted mean codeword length introduced in (6.5.8) is a valid generalized 

weighted mean codeword length. 

New possible measure of weighted entropy      

Equation (6.5.7) provides the following new possible generalized weighted measure of entropy: 
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Note: If 1iw  , for all i , then (6.5.9) becomes     
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which is Renyi’s [21] measure of entropy. 

Coding Theory and Information Measures

139



140                                                                                                          Information Theoretic Models and Their Applications 
  
Thus, we conclude that the mathematical expression (6.5.9) provides a new possible generalized 

measure of weighted entropy.  

Theorem-III: If 1 2 3, , ,..., nl l l l are the lengths of a uniquely decipherable code, then we have 
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is a new weighted mean codeword length. 

Proof. Applying Holder’s inequality (6.5.2) and substituting 
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Taking logarithms both sides, the above equation gives 
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Case-I: For 1  ,  11 0D    .  

Thus, equation (6.5.12) becomes 
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that is, 
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which proves the theorem. 
 

From the above theorem, we have developed a new weighted mean codeword length as given below: 
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 which is a Longo’s [17] weighted mean codeword length. 
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Letting 0  in (6.5.13), we get      
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which is mean codeword length already defined in (6.5.8). 

New possible measure of weighted entropy      

Equation (6.5.11) provides the following new possible generalized weighted measure of entropy: 
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                                                                       (6.5.14) 

Upon ignoring weights, equation (6.5.14) gives  
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Letting 1  in (6.5.15), we get 

 
1 1

log
n

i D i
i

lt H P p p
 

  which is Shannon’s [22] measure of entropy. 

Thus, we conclude that (6.5.9) provides a new possible generalized measure of weighted entropy. 

Proceeding on similar way, we can generate many new generalized parametric measures of weighted 

entropy and consequently, conclude that one can develop new generalized measures of entropy via 

coding theory approach.  
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6.6 MEASURES OF ENTROPY AS POSSIBLE LOWER BOUNDS 

           In the existing literature of coding theory, it has been proved that many well known measures of 

entropy including those of Shannon’s [22] entropy, Renyi’s [21] entropy of order  , Kapur’s [7, 8] 

entropies of order   and type   etc., provide lower bounds for different mean codeword lengths, 

while some other measures including those of Arimoto’s [1] and Behara and Chawla’s [2] measures of 

entropy provide lower bounds for some monotonic increasing functions of the mean codeword lengths 

but not for mean codeword lengths themselves. Such a correspondence can be discussed by taking into 

consideration the measures of weighted entropy.  

Below, we have discussed such a correspondence between standard measures of entropy and their 

possible lower bounds: 

I. Sharma and Taneja’s [23] entropy as a possible lower bound 

To show that Sharma and Taneja’s [23] entropy is a possible lower bound, we make use of 

Khan and Autar’s [12] source coding theorem. According to this theorem, if 1 2 3, , ,..., nl l l l are the lengths 

of a uniquely decipherable code, then we have 
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          (6.6.1) 

where the L.H.S. of (6.6.1) is a weighted codeword length and the R.H.S. is Khan and Autar’s [12] 

weighted entropy. 

Now, when  1 /
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that is, 
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                                                                                (6.6.2) 

Similarly, for  1 /
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                                                                          (6.6.3) 

Adding equations (6.6.2) and (6.6.3) and then dividing by 0   , we get the following equation: 
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                                    (6.6.4) 

Upon ignoring weights, equation (6.6.4) gives 
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Proceeding on similar lines, the result (6.6.5) can be proved for 1  and 1  .   

This is to be noted that the L.H.S. of equation (6.6.5) is Sharma and Taneja’s [23] measure of entropy 

of order   and type   but R.H.S. is neither a mean codeword length nor a monotonic increasing 

function of mean codeword length. 
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II. Arimoto’s [1] entropy as a possible lower bound 

        To prove that Arimoto’s [1] entropy can be a possible lower bound, we use Theorem-III proved in 

above section. We have shown that if 1 2 3, , ,..., nl l l l are the lengths of a uniquely decipherable code, then  
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The equation (6.6.7) upon ignoring weights, gives 
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Thus, for 1,  we have 

Coding Theory and Information Measures

147



1

1

1

( 1)1

1

1 1
1 1 i

n

in a
i

i n
li

i
i

p
p

p D








 
 







 
                 

            
 





                                                                       (6.6.8) 

The equation (6.6.8) can similarly be proved for 1  . 

This is again to be noted that the L.H.S. of (6.6.8) is Arimoto’s [1] measure of entropy but R.H.S. is 

neither a mean codeword length nor a monotonic increasing function of mean codeword length. 

Proceeding on similar lines, many other existing measures of entropy can be shown as lower bounds 

for the functions which are neither mean codeword lengths themselves, nor the monotonic increasing 

functions of mean codeword lengths. 

Concluding Remarks: Keeping in view a huge variety of information measures in the existing 

literature of information theory, one can develop many new codeword lengths with desirable 

properties. It is to be observed that Kraft’s inequality plays an important role in proving a noiseless 

coding theorem and is uniquely determined by the condition for unique decipherability. It cannot be 

dependent on the probabilities or utilities and certainly cannot be modified in an arbitrary manner, 

motivated by the desire to prove noiseless coding theorem. If we modify this inequality, we shall get 

codes with a different structure other than satisfying the condition of unique decipherability. In this 

Chapter, we have made use of Kraft’s inequality in original to prove some noiseless coding theorems 

and consequently, developed some new mean codeword lengths. We have used the concept of 

weighted information and verified some existing mean codeword lengths with this concept. We have 

also tried to introduce some new possible weighted measures of entropy via coding theorems. Keeping 

in mind the application areas, this work can be extended to generate a variety of new information 

measures and their correspondence with coding theory can be discussed. 
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CHAPTER-VII 
 

A STUDY OF MAXIMUM ENTROPY PRINCIPLE FOR DISCRETE 
PROBABILITY DISTRIBUTIONS 

  

ABSTRACT    

         The present chapter deals with the detailed study of maximum entropy principle applied to 

discrete probability distributions and for this study, we have made use of Lagrange’s method of 

undetermined multipliers to maximize different measures of entropy under a set of one or more 

specified constraints. To obtain maximum entropy probability distribution (MEPD), the method has 

been explained with the help of numerical examples. We have also described a method for 

approximating a given probability distribution by using maximum entropy principle and deduced some 

interesting and desirable results. 

 
Keywords: Entropy, Uncertainty, Directed divergence, Probability distribution, Non-linear 
programming, Maximum entropy principle. 
 
7.1 INTRODUCTION  

When the classical entropy theory is combined with mathematical optimization, the resulting 

entropy optimization models are generated which can prove to be very useful and find successful 

applications in areas such as pattern recognition, statistical inference, queuing theory, statistical 

mechanics, transportation planning, urban and regional planning, input-output analysis, portfolio 

investment, and linear and nonlinear programming. We know out of all probability distributions, the 

uncertainty is maximum when the distribution is uniform, that is, it is supposed to be the uniform 

distribution which contains the largest amount of uncertainty, but this is just Laplace’s principle of 

insufficient reasoning, according to which if there is no reason to discriminate between two or several 

events, the best strategy is to consider them equally likely.  

Jaynes [6] provided a very natural criterion of choice by introducing the principle of maximum 

entropy and stressed that from the set of all probability distributions compatible with one or several 

mean values of one or several random variables, choose the only distribution that maximizes 

Shannon’s [13] measure of entropy. Jaynes [6] also argued that the entropy in statistical mechanics, 

and the entropy in information theory, are principally the same and consequently, statistical mechanics 

Maximum Entropy Principle 
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should be seen just as a particular application of a general tool of information theory. The principle of 

maximum entropy is a method for analyzing available qualitative information in order to determine a 

unique probability distribution and it states that the least biased distribution that encodes certain given 

information is the one which maximizes the information entropy.  

            In real life situations, we are very frequently concerned with the problems of constrained 

optimization, for example, a company may wish to maximize its production or profit under certain 

constraints because of limited resources at its disposal. A very natural question then arises that why do 

we maximize entropy? The obvious answer is that we like reduction in uncertainty by obtaining more 

and more information. We explain this concept as follows: 

Suppose that, for the probability distribution 1 2( , ,..., )nP p p p , we have no information other than  

1 2 1 2
1

, ,..., ; 0, 0,..., 0, 1
n

n n i
i

P p p p p p p p
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 

                                                                       (7.1.1) 

Then there may be infinite number of probability distributions consistent with (7.1.1). Out of 

these, one distribution, viz., the uniform distribution 1 1 1( , ,..., )
n n n

 has the maximum entropy, viz., 

log n . There may also be n  degenerate distributions, viz., (1,0,...,0) , (0,1,...,0) ,…, (0,0,...,1)  each of 

which has the minimum entropy, viz., zero. Now, suppose we are given an additional piece of 

information in the form of following constraint: 

                11 1 12 2 1 1... n ng p g p g p a                                                                                               (7.1.2)            

The probability distributions which were consistent with (7.1.1) may not be consistent with (7.1.2). 

Consequently, maximum value of entropy of all distributions consistent with both (7.1.1) and (7.1.2) 

will be log n  and the minimum value of this entropy will be 0 . 

          Similarly, each additional piece of information in the form of a relation among 1 2, ,..., np p p  will 

decrease and at least will not increase the maximum entropy maxS  and similarly, each additional piece 

of information will increase and at least will not decrease the minimum entropy minS . Here maxS  is a 

monotonic decreasing function and minS  is a monotonic increasing function of the number of 

constraints imposed in succession. After n  independent and consistent constraints are imposed, we are 

likely to have a unique probability distribution, and at this stage maxS  and minS  will coincide as shown 

in the following Fig.-7.1.1. 
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Fig.-7.1.1 Representation of maxS  and minS  

 

Thus, the relation between uncertainty as given by a specific entropy measure and information can be 

expressed as follows: 

          With any given amount of information, expressed in the form of constraints on the ip , we do not 

have a unique value of uncertainty, rather, we have a range of values of uncertainty. At any stage, one 

cannot definitely say that one’s uncertainty is precisely so much it lies between two given uncertainty 

limits represented by maxS and minS . Any additional piece of information does not reduce uncertainty; it 

only reduces this range of uncertainty. As we proceed with more and more independent pieces of 

information, the range of uncertainty goes on becoming narrower and narrower till, hopefully, it 

becomes zero. At this stage only, we can speak of a unique value of uncertainty. The final probability 

distribution may be non-degenerate or degenerate, and the final value of uncertainty may be non-zero 

or zero. If the final probability distribution is degenerate and if the final entropy is zero, the 

phenomenon concerned is deterministic, otherwise, it is stochastic. 

           For example, in the problem of identifying a number, if we have 512 integers from 1 to 512, the 

maximum entropy is log512  while the minimum entropy is zero. After we are given the information 

whether the number lies between 1 and 256 or between 257 and 512, the maximum entropy is reduced 

to log 256  and the minimum entropy remains zero. In this process the maximum entropy continues to 

decrease to the values log128, log 64, log 32, log16, log8, log 4, log 2 log1 0and   and the minimum 
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entropy continues to remain at zero and such a type of phenomenon is deterministic in nature. On the 

other hand, let us suppose that we have a die and we do not even know the number of faces the die has. 

In this case, we have a great deal of uncertainty and we may have many probability distributions of the 

form of equation (7.1.1). 

Further, we are given the information that the die has six faces, and then by this information, 

the uncertainty is reduced. We are now only limited to probability distribution 1 2 6, ,...,p p p , with the 

constraint (7.1.1) being satisfied. If, in addition, we are also given the mean number of points on the 

die, that is, we are given that 

                  1 2 3 4 5 61 2 3 4 5 6 4.5p p p p p p      ,                                                 (7.1.3) 

our choice of distribution is now restricted to those satisfying (7.1.1) and (7.1.3), and the uncertainty 

has been further reduced.  

Further, if we are given more information that 

        2 2 2 2 2 2
1 2 3 4 5 61 2 3 4 5 6 15p p p p p p      ,                                                (7.1.4) 

then the choice of distribution is further restricted and uncertainty is further reduced. We may go on 

getting more and more information and, accordingly, the amount of uncertainty goes on decreasing. If 

we get in three stages three more independent linear constraints consistent with (7.1.1), (7.1.3) and 

(7.1.4), we may get a unique set of values of 1p  through 6p and the uncertainty about these values is 

completely removed. The phenomenon concerned is stochastic in nature. At any stage, we may have 

infinity of probability distributions consistent with the given constraints, say, 

                       
1 1

1, , 1, 2,..., , 1 , 0
n n

i i ri r i
i i

p p g a r m m n p
 

                               (7.1.5) 

 Out of these distributions, one has maximum uncertainty maxS and the uncertainty S of any 

other distribution is less than maxS . Now, since the uncertainty can be reduced by the given additional 

information, the use of any distribution other than the maximum uncertainty distribution implies the 

use of some information in addition to that given by equation (7.1.5). Kapur and Kesavan [8] remarked 

that one should use the given information and should not use any information which is not given. 

According to the first part of this statement, we should use only those distributions which are 

consistent with the constraints (7.1.5), but there may be infinity of such distributions. The second part 

of the above statement now enables us to choose one out of these distributions and we choose the 
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distribution having the maximum uncertainty, maxS . Thus, the above statement of the principle of 

maximum uncertainty or maximum entropy can be stated as follows: 

 “Out of all probability distributions consistent with a given set of constraints, choose the only 

distribution that has maximum uncertainty”. 

Jaynes [6] MaxEnt aims at maximizing uncertainty subject to given constraints and it restricts 

its use only to Shannon’s [13] measure of uncertainty. But, the concept of uncertainty is too deep and 

complex and as such it may be difficult to be measured by a single measure under all conditions. Thus, 

there is a definite need for generalized measures of entropy just to extend the scope of their 

applications for the study of different optimization principles. On the other hand, Kullback’s [9] 

principle of minimum cross-entropy aims to choose that probability distribution, out of all those that 

satisfy the given constraints, which is closest to a given a priori probability distribution. However, the 

principle confines itself to only one measure of directed divergence, given by Kullback and Leibler 

[10]. Again, directed divergence is too deep a concept to be represented by one measure only and in 

the literature of information theory, a large number of measures of directed divergence are available to 

measure distances between two probability distributions, some of these find tremendous applications in 

various fields of science and engineering and hence can be applied for the study of different 

optimization principles. 

Jaynes [6] maximum entropy principle and Kullback’s [9] MinxEnt have found wide 

applications, yet their scope can be considerably enhanced by using the generalized measures of 

entropy and cross entropy. According to these principles, we choose the probability distribution P , out 

of all the distributions satisfying the given constraints, which minimizes a specified generalized 

measure of divergence. The rationale for this arises from the following entropy optimization postulate:  

“Every probability distribution, theoretical or observed, is an entropy optimization distribution, 

that is, it can be obtained by either maximizing an appropriate entropy measure or by minimizing a 

cross entropy measure with respect to an appropriate priori distribution, subject to its satisfying 

appropriate constraints”. 

From the above statement, we conclude an important inference that entropy optimization 

problems and entropy optimization principles are alike. The entropy optimization postulate establishes 

a link among the measure of entropy or cross entropy, set of moment constraints, a priori distribution 

and posterior distribution, which leads to the generalization of entropy optimization principles. It can 
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also be stated that if given any three of the above four entities, the fourth should be chosen such that 

either the entropy of the probability distribution P  is maximum or the cross-entropy of P  relative to 

Q  is minimum.  

 It is to be observed that the generalized measures of information contain one or more non-

stochastic parameters and thus, represent a family of measures which includes Shannon’s [13] and 

Kullback and Leibler’s [10] measures as particular cases. The physical meaning and interpretations for 

these parameters depend on the data generating phenomenon as well as on the knowledge and 

experience of the subject expert. Reliability theory, marketing, measurement of risk in portfolio 

analysis, quality control, log linear models etc. are the areas where generalized optimization principles 

have successfully been applied. Similarly, various other mathematical models can better be explained 

if we use generalized parametric measures of entropy and divergence.    

Herniter [4] used Shannon’s [13] measure of entropy in studying the market behavior and 

obtained interesting results whereas some work related with the study of maximum entropy verses risk 

factor has recently been presented by Topsoe [14]. A large number of applications of maximum 

entropy principle in science and engineering have been provided by Kapur and Kesavan [8], Kapur, 

Baciu and Kesavan [7], whereas some optimization principles in the field of agriculture, that is, 

towards the study of crop area have been discussed and investigated by Hooda and Kapur [5]. Guiasu 

and Shenitzer [2] have well explained the principle of maximum entropy under a set of constraints. All 

these principles deal with the discrete or continuous probability distributions only but we have tried to 

extend the applications of the maximum entropy principle for the fuzzy distributions also and for this 

purpose, we have used the concept of weighted fuzzy entropy and provided the applications of 

optimization principle for unequal constraints, the findings of which have been investigated by 

Parkash, Sharma and Mahajan [12]. 

7.2 MAXIMUM ENTROPY PRINCIPLE FOR DISCRETE PROBABILITY 
DISTRIBUTIONS  

             It is usually observed that in many practical situations, often only partial information is 

available about the probability distributions and thus, the maximum entropy principle can be applied. 

The partial information may be in the form of some moments and in such cases, we use only the 

available information and do not use any unknown information and consequently, apply MaxEnt to 

estimate the corresponding maximum entropy probability distribution (MEPD). Here we consider a 

discrete random variable taking a finite number of values 1, 2,3,..., n and use Lagrange’s method of 
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undetermined multipliers to maximize different measures of entropy under a set of one or more 

specified constraints.  

For this purpose, we consider the following measures: 

I. Burg’s [1] measure of entropy, given by 

1
( ) log    

n

i
i

B P p


                                                                                                                             (7.2.1) 

To elaborate the MaxEnt principle for this entropy measure, we consider the following cases: 

Case-I. When no constraint is given except the natural constraint 

In this case our problem becomes as follows: 

Maximize (7.2.1) subject to the natural constraint
1

1
n

i
i

p


  

The corresponding Lagrangian is given by 

1 1
log 1

n n

i i
i i

L p p
 

 
   

 
   

Now 0
i

L
p





 gives 1
ip i


  .  

Thus, 1 2 3 ... np p p p     

Since
1

1
n

i
i

p


 , we get 1
ip i

n
   which is a uniform distribution. 

Case-II. When arithmetic mean is prescribed 

Let us now suppose that we have the knowledge of the arithmetic mean (1 )m m n  of the 

distribution. In this case our problem becomes as follows: 

Maximize (7.2.1) under the following conditions: 

1
1

n

i
i

p


                                                                                                                                            (7.2.2) 

and  

1

n

i
i

ip m


                                                                                                                            (7.2.3) 

The corresponding Lagrangian is given by 
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1 1 1
log 1

n n n

i i i
i i i

L p p ip m 
  

   
       

   
    

Now 0
i

L
p





 gives 

1
ip

i 



                                                                                                                                       (7.2.4) 

Applying condition (7.2.2), we have  

1

1 1
n

i i 


                                                                                                                                      (7.2.5) 

Also by condition (7.2.3), we have 

1

n

i

i m
i 


  

or
1

1  1
n

i
m

i


  

  
     

  

or  
1

n

i
n m

i



 

 
   

Applying equation (7.2.5), we get 

n m                                                                                                                                           (7.2.6) 

Equation (7.2.6) gives   in terms of . 

Thus  

 i n m i                                                                                                                              (7.2.7) 

Consequently, 
 
1

ip
n m i


 

                                                                                                     (7.2.8) 

where    has to be determined from the following equation: 

 i=1

1 1
n

n m i


                                                                                                                           (7.2.9) 

which gives   for known values of m  and n . 

Now, the maximum value of the Burg’s [1] measure of entropy under the constraints (7.2.2) and 

(7.2.3) is given by 

    max
1

( ) log
n

i
B P n m i


                                                                                                    (7.2.10) 
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Differentiating equation (7.2.10) with respect to m , we get   

   max
1

1( ) ( )
n

i

d dB P m i
dm n m i dm




       
  

                        =  
1

n

i
i

dp m i
dm





    
  

                        
1 1

n n

i i
i i

dp p m i
dm



 

    =   

Thus, we have 

 2
max

2

( )d B P d
dmdm


                                                                                                                        (7.2.11) 

Now, from equation (7.2.8), we have  

   2
i in m i p p                                                                                                                       (7.2.12) 

Taking summation both sides of equation (7.2.12) and differentiating with respect to m , we get 

 

2

1

2

1

n

i
i

n

i
i

p
d
dm p i m


 









                                                                                                                        (7.2.13) 

Using equation (7.2.13), equation (7.2.11) gives 

 

 

2
2

max 1
2

2

1

( )

n

i
i

n

i
i

pd B P
dm p i m












 

Now since  max( )B P  has to be a concave function, we must have  

 2
max

2

( )d B P
dm

< 0 which is possible only if 0d
dm

 , that is, if either 

(i)  2

1
0, 0

n

i
i

p i m


    

or 

(ii)  2

1
0, 0

n

i
i

p i m


    

Now, from equation (7.2.4), the probabilities are decreasing if 0  and increasing if 0  . 
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If 0  , then 1 2 3 ... np p p p     and using the condition (7.2.2), we get 1
ip i

n
   

Thus, the condition (7.2.3) implies that 1
2

nm 
  

Hence, we have the following observations: 

(i) If 0,  the probabilities are decreasing and 1
2

nm 
  

(ii) If 0,  the probabilities are increasing and 1
2

nm 
  

Thus, we consider the following cases: 

Case-I:  When 1
2

nm 
 , we have 

 2 2 2

1 1 1 1

n n n n

i i i i
i i i i

p i m ip p ip
   

  
     

  
     

 

                       

2

2 1 1

21

1 1

n n

i in
i i

i n n
i

i i
i i

ip ip
p

p p

 



 

 
         
 
 

 


 
                                                                                    (7.2.14) 

Now, the R.H.S. of equation (7.2.14) gives the difference between two terms representing weighted 

averages of the numbers1, 2,3,..., n . In the first term, the weights are proportional to 2 2 2 2
1 2 3, , ,..., np p p p  

whereas in the second term, the weights are proportional to 1 2 3, , ,..., np p p p . Now, since in this case, 

the probabilities are decreasing, the weights in the first case decrease faster relative to weights in the 

second case. This shows that the first term in the square bracket of equation (7.2.14) will be less than 

that of second term. Thus, we must have 

 2

1
0

n

i
i

p i m


   

Case-II: When 1
2

nm 
  

Proceeding on similar lines as discussed in case-I, we must have 

 2

1
0

n

i
i

p i m


   
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Thus, in both the cases, we have proved that  max( )B P  is a concave function of m . Hence, in each 

case, the maximizing probabilities can be calculated and the MEPD can be obtained. 

The above method has been illustrated with the help of following numerical: 

Numerical Example 

We maximize the entropy (7.2.1) under the set of constraints (7.2.2) and (7.2.3) for 8n  and for 

different values of m . 

For 1.5m  and 8n  , equation (7.2.9) gives the following expression: 

1 1 1 1 1 1 1 1 1
8 0.5 8 0.5 8 1.5 8 2.5 8 3.5 8 4.5 8 5.5 8 6.5       

       
       

             (7.2.15) 

Case-I:  When 1
2

nm 
  

Upon simplification, equation (7.2.15) gives the best possible value 13.5554   

Thus, equation (7.2.6) gives 12.3331    

With these values of  and  , we get the following set of probabilities: 

1 0.81813p  ,  2 0.06767p  ,   

3 0.03529p  ,  4 0.02387p  ,   

5 0.01804p  ,  6 0.01449p  ,  

7 0.01211p  ,  8 0.01040p  . 

Obviously,  

8

1
1i

i
p


  

The above procedure is repeated for different values of m  when 8n  . This is to be noted that in 

certain cases, we got negative probabilities. To tackle this problem, we ignored these probabilities and 

reformulated the above problem for the remaining probabilities and again solved it by using 

Lagrange’s method. The results of the computations are shown in Table-7.2.1. 
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Table-7.2.1 
 

m  
 

1p  2p  3p  4p  5p  6p  7p  8p  

1.5 
 

0.81813 0.06767 0.03529 0.02387 0.01804 0.01449 0.01211 0.01040 

2.5 
 

0.48824 0.16622 0.10016 0.07167 0.05580 0.04569 0.03868 0.03353 

3.5 
 

0.25011 0.17861 0.13890 0.11363 0.09614 0.08332 0.07352 0.06578 

4.5 
 

0.00000  0.20933 0.17648 0.15255 0.13433 0.11999 0.10843 0.09889 

5.5 
 

0.00000 0.00000 0.00000 0.32811 0.22992 0.17697 0.14384 0.12116 

6.5 
 

0.00000 0.00000 0.00000 0.00000 0.00000 0.63715 0.22571 0.13715 

7.5 
 

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.50000 0.50000 

 

Note: The Table-7.2.1 clearly shows that when 0,  the probabilities are decreasing for the values of 

1 4.5
2

nm 
  . Thus, our theoretical results provided above coincide with the experimental results. 

Case-II: When 1
2

nm 
  

Proceeding as above, we have obtained the set of probabilities as shown in Table-7.2.2. 

Table-7.2.2 
 

m  
 

1p  2p  3p  4p  5p  6p  7p  8p  

1.5 
 

 0.50000 0.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2.5 
 

0.13715 0.22571 0.63715 0.00000 0.00000 0.00000 0.00000 0.00000 

3.5 
 

0.12116 0.14384 0.17697 0.22992 0.32811 0.00000 0.00000 0.00000 

4.5 
 

0.09889 0.10843 0.11999 0.13433 0.15255 0.17648 0.20933 0.00000 

5.5 
 

0.06578 0.07352 0.08332 0.09614 0.11363 0.13890 0.17861 0.25011 

6.5 
 

0.03353 0.03868 0.04569 0.05580 0.07167 0.10016 0.16622 0.48824 

7.5 
 

0.01040 0.01211 0.01449 0.01804 0.02387 0.03529 0.06767 0.81813 
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Note: The above Table-7.2.2 clearly shows that when 0,  the probabilities are increasing for the 

values of 1 4.5
2

nm 
  . Thus, our theoretical results provided above, find total compatibility with the 

experimental findings. 

Case-III. When geometric mean is prescribed 

Let us now suppose that we have the knowledge of the geometric mean (1 )g g n  of the distribution. 

In this case our problem becomes as follows: 

Maximize (7.2.1) under the natural constraint (7.2.2) and  

1
log log

n

i
i

p i g


                                                                                                              (7.2.16) 

The corresponding Lagrangian is given by 

1 1 1
log 1 log log

n n n

i i i
i i i

L p p p i g 
  

   
       

   
                                                                        (7.2.17) 

Now 0
i

L
p





 gives  

1
logip

i 



                                                                                                                               (7.2.18) 

Applying conditions (7.2.2) and (7.2.16) and proceeding as above, we get 

1

log
ip

in
g




 
  

 

                                                                                                                         (7.2.19) 

where    has to be determined from the following equation: 

i=1

1 1
log

n

in
g




 
  

 

                                                                                                                        (7.2.20) 

which gives   for known values of g  and n . 

Now max
1

( ) log log
n

i

iB P n
g




  
    

  
                                                                                     (7.2.21) 

Differentiating equation (7.2.21) with respect to g , we get   

 max
( )d B P

dg
  

Thus, we have 
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 2
max

2

( )d B P d
dgdg


                                                                                                                        (7.2.22) 

From equation (7.2.19), we have 

 

2

1

2

1
log log

n

i
i

n

i
i

p
d
dg g p i g


 









                                                                                                          (7.2.23) 

This further gives 

 

 

2
2

max 1
2

2

1

( )

log log

n

i
i

n

i
i

pd B P
dg g p i g












                                                                                           (7.2.24) 

Now since  max( )B P  has to be a concave function, we must have  

 2
max

2

( )d B P
dg

< 0 which is possible only if 0d
dg

 , that is, if either 

(i)  2

1
0, log log 0

n

i
i

g p i g


    

or (ii)  2

1
0, log log 0

n

i
i

g p i g


     

Proceeding as discussed in the above article, we observe the following: 

(i) If 0,  the probabilities are decreasing and loglog ng
n

  

(ii) If 0,  the probabilities are increasing and loglog ng
n

  

Case-I:  When loglog ng
n

 , we have 

 
2

2 2 1 1

21 1

1 1

log log
log log

n n

i in n
i i

i i n n
i i

i i
i i

p i p i
g p i g g p

p p

 

 

 

 
         
 
 

 
 

 
                                                       (7.2.25) 

which shows that 

 2

1
log log 0

n

i
i

g p i g


   
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Case-II: When loglog ng
n

 , we have 

 2

1
log log 0

n

i
i

g p i g


   

Thus, in both the cases, we have proved that  max( )B P  is a concave function of g . Hence, in each 

case, the maximizing probabilities can be calculated and the MEPD can be obtained. 

The above method has been illustrated with the help of following numerical: 

Numerical Example 

We maximize the entropy (7.2.1) under the set of constraints (7.2.2) and (7.2.16) for 8n  and for 

different values of g . 

For 1.5g  and 8n  , equation (7.2.20) gives the following expression: 

1 1 1 1 1
1 2 3 4 58 log 8 log 8 log 8 log 8 log

1.5 1.5 1.5 1.5 1.5

1 1 1 16 7 88 log 8 log 8 log
1.5 1.5 1.5

    

  

   
    

   
  

                 (7.2.26) 

Case-I:  When loglog ng
n

  

Upon simplification, equation (7.2.26) gives the best possible value 11.231   

The corresponding value of  is given by 1.430286   

With these values of  and  , we get the following set of probabilities: 

1 0.69916p  , 2 0.07898p  , 3 0.05200p  ,  

4 0.04185p  , 5 0.03635p  , 6 0.03283p  ,  

7 0.03034p  , 8 0.02847p   

Obviously, we have 
8

1
0.99999 1i

i
p


   

The above procedure is repeated for different values of g  when 8n   and the results of the 

computations are shown in Table-7.2.3. 
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Table-7.2.3 

 
g  
 

1p  2p  3p  4p  5p  6p  7p  8p  

1.5 
 

0.69916 
 

0.07898 
 

0.05200 
 

0.04185 
 

0.03635 
 

0.03283 
 

0.03034 
 

0.02847 
 

2.5 
 

0.34247 
 

0.14787 
 

0.11098 
 

0.09429 
 

0.08444 
 

0.07780 
 

0.07295 
 

0.06921 
 

3.5 
 

0.15510 
 

0.13686 
 

0.12806 
 

0.12247 
 

0.11846 
 

0.11537 
 

0.11288 
 

0.11081 
 

4.5 
 

0.00000 
 

0.14910 
 

0.14591 
 

0.14373 
 

0.14208 
 

0.14077 
 

0.13967 
 

0.13874 
 

5.5 
 

0.00000 
 

0.00000 
 

0.00000 
 

0.28352 
 

0.21934 
 

0.18510 
 

0.16352 
 

0.14852 
 

6.5 
 

0.00000 
 

0.00000 
 

0.00000 
 

0.00000 
 

0.00000 
 

0.61299 
 

0.23435 
 

0.15266 
 

7.5 
 

0.00000 
 

0.00000 
 

0.00000 
 

0.00000 
 

0.00000 
 

0.0000 
 

0.50000 
 

0.50000 
 

 

Case-II: When loglog ng
n

   

Proceeding as above, we have obtained the set of probabilities as shown in Table-7.2.4. 

 

Table-7.2.4 
 

g  
 

1p  2p  3p  4p  5p  6p  7p  8p  

1.5 
 

0.41504 
 

0.58496 
 

0.00000 
 

0.00000 
 

0.00000 
 

0.00000 
 

0.00000 
 

0.00000 
 

2.5 
 

0.16968 
 

0.22416 
 

0.27599 
 

0.33016 
 

0.00000 
 

0.00000 
 

0.00000 
 

0.00000 
 

3.5 
 

0.12831 
 

0.13597 
 

0.14089 
 

0.14460 
 

0.14762 
 

0.15018 
 

0.15242 
 

0.00000 
 

4.5 
 

0.06973 
 

0.08758 
 

0.10300 
 

0.11770 
 

0.13235 
 

0.14733 
 

0.16293 
 

0.17938 
 

5.5 
 

0.03338 
 

0.04755 
 

0.06326 
 

0.08263 
 

0.10837 
 

0.14537 
 

0.20435 
 

0.31510 
 

6.5 
 

0.01568 
 

0.02318 
 

0.03221 
 

0.04450 
 

0.06321 
 

0.09628 
 

0.17268 
 

0.55226 
 

7.5 
 

0.00453 
 

0.00677 
 

0.00954 
 

0.01343 
 

0.01966 
 

0.03166 
 

0.06539 
 

0.84903 
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Note: The Table-7.2.3 and Table-7.2.3clearly show that when 0,   the probabilities are decreasing 

for the values of loglog 3.76435ng
n

   and when 0,   the probabilities are increasing for the 

values of log 3.76435g  .  These results are desirable and find total compatibility with the theory. 

II. Onicescu’s [11] measure of entropy, given by 

  2

1

n

i
i

H P p


                                                                                                                                 (7.2.27) 

To elaborate this MaxEnt principle, we consider the following cases: 

Case-I. When no constraint is given except the natural constraint 

In this case our problem becomes as follows: 

Maximize (7.2.27) subject to the natural constraint
1

1
n

i
i

p


  

The corresponding Lagrangian is given by 

2

1 1
1

n n

i i
i i

L p p
 

 
   

 
   

Now 0
i

L
p





 gives
2ip i

   

Thus, 1 2 3 ... np p p p     

Since
1

1
n

i
i

p


 , we get 1
ip i

n
   which is a uniform distribution.  

Case-II. When arithmetic mean is prescribed 

Let us now suppose that we have the knowledge of the arithmetic mean (1 )m m n  of the 

distribution. In this case our problem becomes as follows: 

Maximize (7.2.27) subject to the constraints given in equations (7.2.2) and (7.2.3). 

The corresponding Lagrangian is given by 

2

1 1 1
2 1 2

n n n

i i i
i i i

L p p ip m 
  

   
       

   
    

Thus 
i

L
p



= 0 gives 

ip i                                                                                                                                         (7.2.28) 
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Next, applying condition (7.2.2), we get 

   2 ... ( ) 1n             

This gives the following expression for :   

1 ( 1)1
2

n n
n

 
    

                                                                                                                     (7.2.29) 

Applying condition (7.2.3), we have  

       2 2 3 3 ... n n m                 

or    2 2 2 21 2 3 ... 1 2 3 ...n n m            

or
    1 1 2 1

2 6
n n n n n

m 
  

                                                                                              (7.2.30) 

Using (7.2.29) in (7.2.30), we get 

  
2 16

1 7 5
m n

n n n


        
                                                                                                                (7.2.31) 

With this value of , can be calculated from equation (7.2.29) and consequently, probabilities can be 

obtained from equation (7.2.28).   

The above method has been illustrated with the help of following numerical: 

Numerical Example 

We maximize the entropy (7.2.27) under the set of constraints (7.2.2) and (7.2.3) for 8n  and for 

different values of m . 

For 1m  , we have 0.168033,-0.009563    

With these values of  and  , we get the following set of probabilities: 

1 0.158470p  , 2 0.148907p  , 3 0.139344p  ,  

4 0.129781p  , 5 0.120219p  , 6 0.110656p  ,  

7 0.101093p  , 8 0.091530p  . 

Obviously, 
8

1
1i

i
p


  

The above procedure is repeated for different values of the mean m for the given number of 

observations, that is, 8n  . The various results of the computations so obtained have been shown in 

the following Table-7.2.5: 
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Table-7.2.5 
 

m  1p  2p  3p  4p  5p  6p  7p  8p  
 

  1.0 
 

0.158470 0.148907 0.139344 0.129781 0.120219 0.110656 0.101093 0.091530 

  1.5 
 

0.153689 0.145492 0.137295 0.129098 0.120902 0.112705 0.104508 0.096311 

2.0 
 

0.148907 0.142077 0.135246 0.128415 0.121585 0.114754 0.107923 0.101093 

2.5 
 

0.144126 0.138661 0.133197 0.127732 0.122268 0.116803 0.111339 0.105874 

3.0 
 

0.139344 0.135246 0.131148 0.127049 0.122951 0.118852 0.114754 0.110656 

3.5 
 

0.134563 0.131831 0.129098 0.126366 0.123634 0.120902 0.118169 0.115437 

4.0 
 

0.129781 0.128415 0.127049 0.125683 0.124317 0.122951 0.121585 0.120219 

4.5 
 

0.125000 0.125000 0.125000 0.125000 0.125000 0.125000 0.125000 0.125000 

5.0 
 

0.120219 0.121585 0.122951 0.124317 0.125683 0.127049 0.128415 0.129781 

5.5 
 

0.115437 0.118169 0.120902 0.123634 0.126366 0.129098 0.131831 0.134563 

6.0 
 

0.110656 0.114754 0.118852 0.122951 0.127049 0.131148 0.135246 0.139344 

6.5 
 

0.105874 0.111339 0.116803 0.122268 0.127732 0.133197 0.138661 0.144126 

7.0 
 

0.101093 0.107923 0.114754 0.121585 0.128415 0.135246 0.142077 0.148907 

7.5 
 

0.096311 0.104508 0.112705 0.120902 0.129098 0.137295 0.145492 0.153689 

8.0 
 

0.091530 0.101093 0.110656 0.120219 0.129781 0.139344 0.148907 0.158470 

 

Note: In this case, we observe that as m approaches to 1
2

n   , the probability distribution approaches 

uniform distribution and at 1
2

nm 
 , we get exact uniform distribution. 

Case-III. When geometric mean is prescribed 

Let us now suppose that we have the knowledge of the geometric mean (1 )g g n  of the distribution. 

In this case our problem becomes as follows: 

Maximize (7.2.27) under the constraints (7.2.2) and (7.2.16).Upon simplification, we get 

logip i                                                                                                                                  (7.2.32) 
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where 1 log n
n

 
  and

   22 2 2 2

log log
(log1) (log 2) (log3) ...(log ) log

n g n
n n n

 


   
 

Numerical Example 

We maximize (7.2.27) under the constraints (7.2.2) and (7.2.16) for 8n  and for different values of g . 

For 1.5g  and 8n  , we get 0.24872    and 0.535097  . With these values, we get the following 

probability distribution: 

1 0.535097p  , 2 0.286374p  , 3 0.14088p  , 4 0.03765p  , 

5 0.00000p  , 6 0.00000p  , 7 0.00000p  , 8 0.00000p   and 
8

1
1i

i
p


  

The above procedure is repeated for different values of g  when 8n   and the results of the 

computations are shown in Table-7.2.6. 

Table-7.2.6 
 

g  
 

1p  2p  3p  4p  5p  6p  7p  8p  

1.5 
 

0.535097 0.286373 0.140880 0.037650 0.000000 0.000000 0.000000 0.000000 

2.0 
 

0.369970 0.240711 0.165099 0.111451 0.069839 0.035839 0.007092 0.000000 

2.5 
 

0.281651 0.199738 0.151822 0.117824 0.091454 0.069908 0.051691 0.035911 

3.0 
 

0.211869 0.166445 0.139874 0.121021 0.106398 0.09445 0.084348 0.075597 

3.5 
 

0.152868 0.138296 0.129772 0.123723 0.119032 0.115199 0.111958 0.109151 

4.0 
 

0.101760 0.113912 0.121021 0.126065 0.129977 0.133173 0.135876 0.138217 

4.5 
 

0.056679 0.092404 0.113302 0.128129 0.139630 0.149027 0.156972 0.163854 

5.0 
 

0.016353 0.073165 0.106398 0.129977 0.148266 0.163209 0.175844 0.186788 

5.5 
 

0.000000 0.035667 0.088553 0.126077 0.155182 0.178963 0.199070 0.216487 

6.0 
 

0.000000 0.000000 0.050704 0.110998 0.157765 0.195977 0.228285 0.256271 

6.5 
 

0.000000 0.000000 0.000000 0.062951 0.144226 0.210632 0.266778 0.315413 

7.0 
 

0.000000 0.000000 0.000000 0.000000 0.070479 0.202884 0.314832 0.411805 

7.5 
 

0.000000 0.000000 0.000000 0.000000 0.000000 0.063780 0.345913 0.590307 
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In the next section, we have described a method for approximating a given probability distribution by 

using maximum entropy principle. 

7.3 MAXIMUM ENTROPY PRINCIPLE FOR APPROXIMATING A GIVEN 
PROBABILITY DISTRIBUTION  

It is known fact that while dealing with various disciplines of operations research and statistics, 

we come across many practical problems when we do not get simple expressions for the probability 

distributions. In all such cases, it becomes very difficult to apply these complicated expressions for 

further mathematical treatment in the manipulation of new results. Thus, it becomes the desirability to 

approximate these probability distributions. The approximating probability distributions should have 

some common properties with the given distribution and it is observed that the simplest property is of 

having some common moments.  

There may be an infinite number of distributions with the same first moment as the given 

distribution but we are interested with only that probability distribution which is most unbiased and 

from the theory of maximum entropy principle, we accept only that distribution which has the 

maximum entropy and this fundamental principle will provide our first approximation to the given 

distribution. This result is based upon the postulate that most probability distributions are either 

maximum entropy distributions or very nearly so. To find a better approximation, we try to find that 

maximum entropy probability distribution which has two moments in common with the given 

probability distribution. As the number of moments goes on increasing, we get much better and better 

approximations and as a result of this procedure, we obtain the desired approximation of the given 

probability distribution under study. We illustrate the above mentioned principle by considering the 

following numerical example: 

Numerical Example 

Let us consider the theoretical probability distribution P , given by 

: 0 1 2 3 4
: 0.4 0.3 0.2 0.07 0.03i

i
p

 

Our problem is to find MEPD with 

(I) same mean; 

(II) same mean and op ; 

(III) same mean, op and 1p ; and 

(IV) same first two moments 
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Our purpose is also to find that maximum entropy probability distribution which is closest to the given 

probability distribution P .  

To solve the above problem, we make use of maximum entropy principle by using Havrada and 

Charvat’s [3] extended entropy of order 2 and our problem becomes: 

(I) Maximize Havrada and Charvat’s [3] entropy of order 2 given by  
4

2

0

1( ) 1
2 i

i
H P p



 
  

 
                                                                                                                       (7.3.1) 

subject to the following set of constraints 

(i) 
4

0
1i

i
p



                                                                                                                                       (7.3.2) 

(ii) 
4

0
1.03i

i
ip



                                                                                                                                (7.3.3) 

The corresponding Lagrangian is given by 
4 4 4

2

0 0 0

1 1 1 1.03
2 i i i

i i i
L p p ip 

  

     
          

     
    

Hence 0
i

L
p





gives 

( )ip i                                                                                                                                      (7.3.4) 

Applying (7.3.2), we get 

2 0.2                                                                                                                                       (7.3.5) 

Applying (7.3.3), we get 

3 0.103                                                                                                                                    (7.3.6) 

From (7.3.5) and (7.3.6), we have 

0.394    and 0.097   

With these values of  and  , equation (7.3.4) gives the following set of probability distribution: 

0 0.3940p   

1 0.2970p   

2 0.2000p   

3 0.1030p   

4 0.0006p   

Information Theoretic Models and Their Applications

172



Maximum Entropy Principle                                                                                                                                                  173 
  

Obviously, 
4

0
0.9946 1i

i
p



   

Thus, the first MEPD 1P  is given by 

 1 0.3940,0.2970,0.2000,0.1030,0.0006P   

(II) In this case, our problem is to maximize Havrada and Charvat’s [3] entropy (7.3.1) under the set of 

constraints (7.3.2), (7.3.3) and 0.4op  . 

Now 
4

0
1i

i
p



 gives that 

4

1
1o i

i
p p



   

or 
4

1
( ) 0.6

i
i 



    

or 4 10 0.6                                                                                                                               (7.3.7) 

Applying (7.3.3), we get 

10 30 1.03                                                                                                                               (7.3.8) 

Equations (7.3.7) and (7.3.8) together give 

0.385    and 0.094   

With these values of  and  , equation (7.3.4) gives the following set of probability distribution: 

0 0.4000p   

1 0.2910p   

2 0.1970p   

3 0.1030p   

4 0.0090p   

Obviously, 
4

0
1i

i
p



  

Thus, the second MEPD 2P  is given by 

 2 0.4000,0.2910,0.1970,0.1030,0.0090P   

(III) In this case, our problem is to maximize Havrada and Charvat’s [3] entropy (7.3.1) under the set 

of constraints (7.3.2), (7.3.3), 0.4op  and 1 0.3p  . 

Thus, we have 
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4

1
2

1o i
i

p p p


    

This gives
4

2
0.3i

i
p



  

Applying (7.3.4), we get 

3 0.1                                                                                                                                       (7.3.9) 

Also (7.3.3) gives 

9 29 0.73                                                                                                                               (7.3.10) 

Equations (7.3.9) and (7.3.10) together give 

0.355    and 0.085   

With these values of  and  , equation (7.3.4) gives the following set of probability distribution: 

0 0.4000p   

1 0.3000p   

2 0.1850p   

3 0.1000p   

4 0.0150p   

Obviously, 
4

0
1i

i
p



  

Thus, the third MEPD 3P  is given by 

 3 0.4000,0.3000,0.1850,0.1000,0.0150P   

(IV)  In this case, our problem is to maximize Havrada and Charvat’s [3] entropy of order 2 subject to 

the set of constraints (7.3.2) and (7.3.3) along with the additional constraint given by 

 
4

2

0
2.21i

i
i p



                                                                                                                                 (7.3.11) 

The corresponding Lagrangian is given by 
4 4 4 4

2 2

0 0 0 0

1 1 1 1.03 2.21
2 i i i i

i i i i
L p p ip w i p 

   

       
              

       
     

Hence 0
i

L
p





gives 

2( )ip i i w                                                                                                                             (7.3.12) 
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Applying (7.3.2), equation (7.3.12) gives 

5 10 30 1w                                                                                                                            (7.3.13) 

Applying (7.3.3), equation (7.3.12) gives 

10 30 100 1.03w                                                                                                                   (7.3.14) 

Applying (7.3.11), equation (7.3.12) gives 

30 100 354 2.21w                                                                                                                (7.3.15) 

After solving equations (7.3.13), (7.3.14) and (7.3.15), we get  

0.0064w   , 0.1226  and 0.4068    

With these values of w , and   equation (7.3.12) gives the following set of probability distribution: 

0 0.4068p   

1 0.2906p   

2 0.1872p   

3 0.0966p   

4 0.0188p   

Obviously, 
4

0
1i

i
p



  

Thus, the fourth MEPD 4P  is given by  4 0.4068,0.2906,0.1872,0.0966,0.0188P   

Our next aim is to find that maximum entropy probability distribution which is closest to the given 

probability distribution P . 

For this purpose, we use Havrada and Charvat’s [3] extended directed divergence of order 2 to 

determine the approximity of the distributions to P . We know that Havrada and Charvat’s [3] directed 

divergence is given by 

4
1

0

1( : ) 1 , 1, 0
( 1) i i

i
D P Q p q    

 




 
    

   
                                    

Thus for 2  , we have  
24

0
( : ) 1i

i i

p
D P Q

q

                                                                                         (7.3.16) 

Using (7.3.16), we get the following results: 

1( : ) 0.017439D P P  , 2( : ) 0.015286D P P   

3( : ) 0.010741D P P  , 4( : ) 0.007759D P P   
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Hence, we observe that MEPD 4P is closest to the given probability distribution P . 

Important observations:  We also make out the following observations: 

(a) Since, 2P  is based upon information about mean and 0p  whereas 1P  is based upon information 

about mean only, we must expect that 2 1( : ) ( : )D P P D P P  

In our case, it is found to be true. 

(b) Since, 3P  is based upon information about mean, 0p and 1p ,we must expect that  

3 2 1( : ) ( : ) ( : )D P P D P P D P P   

In our case, it is found to be true. 

(c) Since, 4P  is based upon information about the first two moments, whereas 1P  is based upon 

information about mean only, we must expect that 4 1( : ) ( : )D P P D P P  

In our case, it is found to be true. 

(d) Since, 2P  is based upon information about mean and 0p ,whereas 4P  is based upon mean and second 

moment and  4 2( : ) ( : )D P P D P P  

Thus, we conclude that 0p gives less information than the second moment.  

Concluding Remarks: The maximum entropy principle plays a very important and significant role in 

optimization problems and for its study; we usually apply Lagrange’s method of undetermined 

multipliers to maximize different measures of entropy under a set of one or more constraints. This 

method has a weakness that sometimes it gives negative probabilities upon optimization. To remove 

this problem, we ignore the negative probabilities and reformulate our optimization problem for the 

remaining probabilities and again solve it by using Lagrange’s method. The procedure is repeated until 

we get all maximizing probabilities to be non-negative. In the present chapter, we have made use of 

constraints in terms of arithmetic and geometric means only but the study can be extended by taking 

more constraints in terms of existing means and moments. Moreover, the procedure adopted in this 

chapter can be extended to the study of minimum cross entropy principle. Furthermore, such a study of 

both types of principles can be extended to discrete and continuous type of fuzzy distributions. 
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