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Preface

The theory of integral equations is an important part in applied mathematics. The first books with
theme of study, the integral equations appeared in the 19th century and early 20th century, and they have
been authored by some of the famous mathematicians: N. Abel (1802-1829), A. Cauchy (1789-1857), E.
Goursat (1858-1936), M. Bocher (1867-1918), David Hilbert (1862-1943), Vito Volterra (1860-1940), Ivar
Fredholm (1866-1927), E. Picard (1856-1941), T. Lalescu (1882-1929). The first treatise in this field
appeared in 1910 (T. Lalescu 1911, M. Bocher 1912, D. Hilbert 1912, V. Volterra 1913) (see I.A. Rus
[100]). In the 20th century, the theory of integral equations had a spectacular development, both in terms of
mathematical theories that may apply, and in terms of effective approximation of solutions.

The main methods that apply to the study of integral equations are: fixed point methods, variational
methods, iterative methods and numerical methods. In this book was applied a fixed point method by
applying the contraction principle. By this approach, the study of an integral equation represents the
development of a fixed point theory, which contains the results on existence and uniqueness of the solution,
the integral inequalities (lower-solutions and upper-solutions), the theorems of comparison, the theorems of
data dependence of the solution (continuous data dependence and the differentiability of the solution with
respect to a parameter) and an algorithm for approximating its solution.

The integral equations, in general, and the integral equations with modified argument, in particular,
have been the basis of many mathematical models from various fields of science, with high applicability in
practice, e.g., the integral equation from theory of epidemics and the Chandrasekhar's integral equation.

In this book, the Picard operators technique has been used for all the stages of this type of study.

This book is a monograph of integral equations with modified argument and contains the results
obtained by the author in a period that began in the years of study in college and ended up with years of
doctoral studies, both steps being carried out under the scientific coordination of Prof. Dr. Ioan A. Rus from
Babes-Bolyai University of Cluj-Napoca. It is addressed to all who are concerned with the study of integral
equations with modified argument and of knowledge of results and/or of obtaining new results in this area.
The book is useful, also, to those concerned with the study of mathematical models governed by integral
equations, generally, and by integral equations with modified argument, in particular.

Finally, we mention several authors of the used basic treatises having the theme of integral
equations: T. Lalescu, 1. G. Petrovskii, K. Yosida, Gh. Marinescu, A. Haimovici, C. Corduneanu, Gh.
Coman, 1. Rus, G. Pavel, I. A. Rus, W. Walter, D. Guo, V. Lakshmikantham, X. Liu, W. Hackbusch, D. V.
Ionescu, St. Mirica, V. Muresan, A. D. Polyanin, A. V. Manzhirov, R. Precup, I. A. Rus, M. A. Serban, Sz.
Andras.

I dedicate this book to my parents Ana and Alexandru.

Dr. Maria Dobritoiu
University of Petrosani, Romania
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Overview of the book

The integral equations, in general, and those with modified argument, in particular, form an
important part of applied mathematics, with links with many theoretical fields, specially with practical fields.
The first papers that treated the integral equations had as authors renowned mathematicians, such as: N. H.
Abel, J. Liouville, J. Hadamard, V. Volterra, 1. Fredholm, E. Goursat, D. Hilbert, E. Picard, T. Lalescu, E.
Levi, A. Myller, F. Riez, H. Lebesgue, G. Bratu, H. Poincar¢, P. Levy, E. Picone. T. Lalescu was the author
of the first book about integral equations (Bucharest 1911, Paris 1912).

This book is a study of some of the integral equations with modified argument and it focuses mostly
on the study of the following integral equation with modified argument

b
RE] Ktsxs ®g9, X3, Xb)ds+f(), tO[ab], (M

where K : [ab]x[ab]xB* = B, f:[ab] - B, g:[ab] - [ab], and (B,+,R||) is a Banach space.
Starting with the Fredholm integral equation with modified argument

b
=] Kitsky xa, Xbyds+ f(1), tO[ab], 2

which is a mathematical model from the turbo-reactors industry, we have also considered a modification of
the argument through a continuous function g : [a,b] — [ab], thus obtaining the integral equation with
modified argument (1). It is an example of a nonlinear Fredholm integral equation with modified argument.

The integral equations (1) and (2) have been studied by the author, laying down the conditions of
existence and uniqueness of the solution, the conditions of the continuous data dependence of the solution,
and also, of differentiability of the solution with respect to a parameter and the conditions of approximating
the solution, and the obtained results were published in papers [2], [22], [23], [24], [26], [29], [31], [33].
[34], [35], [371, [38].

The book contains results of existence and uniqueness, of comparison, of data dependence, of
differentiability with respect to a parameter and of approximation for the solution of the integral equation
with modified argument (1) and a few results related to the solution of a well known equation from the
epidemics theory.

Chapter 1, entitled “Preliminaries’, that has eight paragraphs, is an introductory chapter which
presents the notations and a few classes of operators that are used in this book, the basic notions and the
abstract results of the fixed point theory and also, the notions from the Picard operators theory on L-spaces
and the fiber contractions principle.

There are also presented the quadrature formulas (the trapezoids formula, the rectangles formula and
Simpson’s quadrature formula) that were used for the calculus of the integrals that appear in the terms of the
successive approximations sequence from the obtained method of approximating the solution of the integral
equation (1).



The seventh paragraph contains a very brief overview of Fredholm and Volterra nonlinear integral
equations and the basic results regarding the existence and uniqueness of the solutions of these equations
(see [10]).

In the eighth paragraph there are presented two mathematical models governed by functional-integral
equations: an integral equation from physics and a mathematical model of the spreading of an infectious
disease.

The first model refers to equation (2), and the results of existence and uniqueness, data dependence
and approximation of the solution (theorems 1.8.1, 1.8.2 and 1.8.3), presented in this paragraph, were
obtained by the author and published in the papers [2], [22], [23], [24], [26] and [29].

The presentation of the mathematical model of the spreading of an infectious disease, which refers to
the following equation from the epidemics theory

k1= [ {sx9)ds, (3)

t-1r

contains results obtained by K.L.. Cooke and J.L. Kaplan [18], D. Guo, V. Lakshmikantham [42], I. A. Rus
[88], [93], Precup [73], [75], R. Precup and E. Kirr [78], C. lancu [47], [48], . A. Rus, M. A. Serban and D.
Trif [114].
The fiber generalized contractions theorem 1.5.2, theorem which is a result obtained by [.A. Rus in
paper [100], was used to lay down theorem 1.5.3 in this chapter, theorem that was published in paper [27].
Chapter 2, entitled “Existence and uniqueness of the solutibas five paragraphs. Three of them
contain the conditions of existence and uniqueness of the integral equation with modified argument (1), in

the space C([a,b],B) and in the sphere g(f ;r)0 C([a,b],B), in a general case and in two particular cases for

B:B=R" and B = I%R). In order to prove these results, the following theorems have been used: the
Contraction Pinciple 1.3.1 and Perov's theoreni.3 4.

The fourth paragraph of this chapter contains three examples: two integral equations with modified
argument and a system of integral equations with modified argument and for each of these examples the
conditions of existence and uniqueness, which were obtained by using some of the results presented in the
previous paragraphs, are given.

In the fifth paragraph was studied the existence and uniqueness of the solution of the integral
equation with modified argument

WE[ Ktsks xd9), X,q)ds+f(t), t0Q, “)
Q

where Q 0 R™ is a bounded domain, K : QxQx R'x F'x QQ,R") - R™, f:Q -~ R"and g:Q - Q.
This equation is a generalization of the integral equation (1).

Some of the author’s results that are presented in this chapter, were published in papers [31] and
[37].

Chapter 3, entitled “Gronwall lemmas and comparison theorénhas three paragraphs. Several
Gronwall lemmas, comparison theorems and a few examples for the integral equation with modified
argument (1) are presented. These results represent the properties of the solution of this integral equation. In
order to prove the results presented in this chapter, the following theorems were used: the abstract Gronwall
lemmal.4.1 and the abstract comparison lemmast.4 and 1.4.5. The third paragraph of this chapter
contains examples which are applications of the results given in the first two paragraphs. These results were
obtained by the author and published in the papers [35] and [38].

In chapter 4, entitled “Data dependen¢ewhich has four paragraphs, the author present the theorems
of data dependence, the differentiability theorems with respect to a and b (limits of integration), and

2



theorems of differentiability with respect to a parameter, of the solution of the integral equation with
modified argument (1) and also, a few examples.

In order to prove the results presented in this chapter, the following theorems were used: the abstract
data dependence theorehs.5 and the fiber generalized contractions theordm.2. These results were
published in the papers [31], [33], [34] and [37].

In chapter 5, entitled “Numerical analysis of the Fredholm integral equation with modified argument
(2.1)”, following the conditions of one of the existence and uniqueness theorems given in the second chapter,
a method of approximating the solution of the integral equation (1) is given, using the successive
approximations method. For the calculus of the integrals that appear in the successive approximations
sequence, the following quadrature formulas were used: the trapezoids formulé&Simpson’s formula andhe
rectangles formula.

This chapter has five paragraphs. The first paragraph presents the statement of the problem and the
conditions under which it is studied. In paragraphs 2, 3 and 4 there are presented the results obtained related
to the method of approximating the solution of the integral equation (1). The results obtained in paragraphs
2, 3 and 4 are used in the fifth paragraph to approximate the solution of an integral equation with modified
argument, given as example.

The MatLab software was used to calculate the approximate value of the integral which appears in
the general term of the successive approximations sequence, with trapezoids formula, rectangles formula and
Simpson’s formula; for each of these cases was obtained the approximation of the solution of the integral
equation given as example. In appendices 1, 2 and 3 one can find the results obtained by these programs
written in MatLab.

Some of the results obtained by the author for equation (1), that were presented in this chapter, were
published in paper [31]. The results obtained for the numerical analysis of equation (2) were published in the
papers [22], [23], [24] and [26].

Chapter 6, entitled “An equation from the theory of epideniidss four paragraphs and contains the
results obtained through a study of the solution of the integral equation (3), using the Picard operators. This
study was carried out by the author in collaboration with I.A. Rus and M.A. Serban, and the results obtained,
refering to the existence and uniqueness of the solution in a subset of the space C(R,l), lower and upper
solutions, data dependence and differentiability of the solution of the integral equation (3), with respect to a
parameter, are published in paper [36].

The bibliography used to write this book contains several important basic treatises from the theory of
integral equations, scientific papers on this topic, of some known authors and scientific articles which
contains the author's own results.

Each of the six chapters has its own bibliography and all these references are listed in a bibliography
at the end of the book.

The basic treatises used for the study in this book are the following: T. Lalescu [56], I. G. Petrovskii
[69], K. Yosida [129], Gh. Marinescu [59] and [60], A. Haimovici [45], C. Corduneanu [20], Gh. Coman, 1.
Rus, G. Pavel and I. A. Rus [15], D. Guo, V. Lakshmikantham and X. Liu [43], W. Hackbusch [44], C. Iancu
[48], D. V. lonescu [49] and [50], V. Lakshmikantham and S. Leela [55], St. Mirica [61], D. S. Mitrinovi¢, J.
E. Pecari¢ and A. M. Fink [62], V. Muresan [65], B. G. Pachpatte [66], A. D. Polyanin and A. V. Manzhirov
[72], R. Precup [74] and [81], I. A. Rus [88], [89], [95], [106], I. A. Rus, A. Petrusel and G. Petrusel [109],
D. D. Stancu, Gh. Coman, O. Agratini and R. Trimbitas [119], D. D. Stancu, Gh. Coman and P. Blaga [120],
M. A. Serban [124], Sz. Andrés [6].

This book is a monograph of some of the integral equations with modified argument and it contains
the results on which the author had been working, starting with the university years and ending with the
years of Ph.D. studies, under the the scientific coordination of professor loan A. Rus from the "Babes-
Bolyai" University of Cluj-Napoca, Romania.



The purpose of this book is to help those who wish to study the integral equations with modified
argument, to learn about these results and to obtain new results in this field.

This book is also useful for those who would like to study the mathematical models governed by
integral equations, in general, and integral equations with modified argument, in particular.



Preliminaries

1 Preliminaries

In this chapter we present the principal notions and results which were used in this book. It is an
introductive chapter composed of seven paragraphs, which contains the notations that were used, several
classes of the used operators, the basic notions and the abstract results from the fixed point theory, some
notions from the theory of Picard operators on L-spaces and the fiber contractions principlghat represent
the basis of the obtained results which were presented in this book.

There are also presented the quadrature formulas: the trapezoids formula, the rectangle formula and
Simpson’s quadrature formula which were used for the calculus of the integrals that appear in the terms of
the successive approximations sequence from the method of approximation of the solution of integral
equation (1).

In the last paragraph of this chapter there are presented two mathematical models governed by
functional-integral equations: an integral equation from physics and a mathematical model of the spreading
of an infectious disease.

The theorems 1.5.3, 1.8.1, 1.8.2, 1.8.3 and the algorithm for approximating the solution of the
integral equation (1.31) presented in this chapter, are the results obtained by the author. These results were
published in the papers [1], [19] and [20].

1.1 Notations and notions

Let X be a nonempty set and A: X — X an operator. Then, we denote:

P(X): ={ YU X/Y#0 } —the set of all nonempty subsets of X

A% =1y, A=A ..., A" =AA" nON - the iterates operators of the operator A

[(A): ={YOP(X) / A(Y) O Y } — the family of the nonempty subsets of X, invariants for the operator A
Fa: ={xOOX/ A(X) = x} — the fixed points set of the operator A .

Let X be an ordered set and A : X — X an operator. Then, we denote:

(UB,: ={xX0 X/ AX) < x} — the upper fixed points set of the operator A

(LB, :={xd X/ AX) =X} —the lower fixed points set of the operator A .

Let (X,d) be a metric space, X% X, r DR, and A: X - X an operator. Then

B(Xo;r): ={x O X/ d(X,X) < r} — the opened sphere with center Xy and radius r

E(XO ;1) ={x0 X/d(x,X) <r} —the closed sphere with center X, and radius r.

Also, we denote:

Pu(X): ={YUOP(X) / Y is bounded set} — the set of all nonempty and bounded subsets of X

Pa(X): ={YOP(X) /Y= Y } —the set of all nonempty and closed subsets of X
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Py.(X): ={YOP(X) / Y is bounded and Y = Y } — the set of all nonempty, bounded and closed subsets
of X

Pep(X): ={YUP(X) / Y is compact set} — the set of all nonempty and compact subsets of X

I,(A): ={YOI(A) / Y is bounded set} — the family of all bounded subsets of X, invariants for the
operator A

la(A): ={YOI(A) /Y= Y } — the family of all closed subsets of X, invariants for the operator A

loa(A): ={YUI,(A) /Y = Y } — the family of all bounded and closed subsets of X, invariants for the
operator A

CT(X,X): ={f: X - X/fis contraction}

Lip[a,b]: ={ f: [a,b] - R/ f satisfies the Lipschitz condition}.

In what follows, we present a few basic notions which were used in this book.

Definition 1.1.1. ([53]) LetX be a nonempty set. A functional d : X x X — R that has the following
properties:

(M dx,y)=20, forall x,yX; dx y)=0 ifand only if X=y;

(iHdx,y)=d(y,x), forall x,ydX;

(li)ydx,y)<d(x,2 +d(z y), forall x,y,zOX,
is called metric onX.

The conditions (i), (ii) and (iii ) are called the axioms of the mettic
Definition 1.1.2. ([53]) A pair &, d) consisting of a set X and a metric d on X, is called metric space

Definition 1.1.3. ([53]) A sequence K,)non  of elements in a metric space (X, d) convergeso an
element X,[IX, if for each & >0 there exists ny(€) O N such that
d(xy, Xo) < €, for each n> ny(¢).

Definition 1.1.4. ([53]) A sequence ,)nonv of elements in a metric space (X, d) is called fundamental
sequencer Cauchy sequencé for each £ >0 there exists Ny(&)0N such that

NCN, m> ny(&) imply d(Xn,Xm) < €.
The following theorem is true.

Theorem 1.1.1. ([41]JAny convergent sequence is a Cauchy sequence.

Proof Let £ >0 and (X,)non be a sequence which converges to X,. Therefore, for this €> 0 there
exists Ny(&)IN such that d(X,, Xo) <§ , for each n>ny(&) and d(Xm, Xo) <§ , for each m> ny(&). Now, we
have

d(Xn, Xm) < d(Xn, Xo) + d(Xo, Xm) < €

and the proof is complete.
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The reciprocal theorem of the theorem 1.1.1, generally is not true.

Definition 1.1.5. ([53]) The metric space in which every fundamental sequence is convergent is
called a complete metric space

Example 1.1.1. ([53]) LetR™ be the set X , i.e. X = R™. The functionals d, J, p : R™<R™ - R,
defined by the following relations:

N | =

d % y) =(i(>§ —yi)zj , % YOR™,

i=1

, % yOR™,

a( X y)=2|>§ -y,

p(%y) =max|x =y, |, xyOR"

I<ism

are metrics on X, and the metric spaces (X, d), (X, J) and (X, p) are complete metric spaces.
Let (X,+,R,|-|) be a normed linear space, i.e. a real linear space (X,+,R) endowed with a norm || .

Definition 1.1.6. ([53]) A functional |-| :X - R that satisfies the following conditions:
(Y|x =0, forall xOX; [x|=0 ifand onlyif X=0;
(i) AXN=|A]0K, forall AOR and xOX;
(i) x+y] < x|+ 1y, forall x yOX
is called norm onX.
The functional d : XxX - R, defined by d(X, y) = [x- V|, represent a metric on the set X. This metric is

called metric induced by the norpi.

Definition 1.1.7. ([53]) A normed linear space is called Banach pace(or complete normed linear
spacg if this space is complete with respect to the metric induced by the norm.

Let (B,+,R,|-|) be a Banach space. In this book were considered the following cases: B=R™ and B
=4R).

In the particular case B =R", || is one of the following norms (see [53]):

- Euclidean norm || [HE: R™ - R, defined by the relation:

1
X|_:= i x | 2, xOR™, (1.1)
E i=1 l

- Minkowski's norm || [ﬂM :R™ - R, defined by the relation:

Ms

| %

Ix],, := , XOR™, (1.2)

i=1

- norm of Chebyshev || [nc :R™ 5 R, defined by the relation:

7
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|| :=max|x |, xOR™, (1.3)
I<ism

and the spaces (R™, +, R,

0.), R™+,R,

In the particular case B =1%R),

0,,) and (R™,+,R,

[n ) are Banach spaces.

IZ(R): :{(Xn) N /Xn 0 R, Zxﬁ < +o°} >
nJN

the norm || is the functional || [nlz R IAR) ~ R, , defined by the relation:

N | =

”X"IZ(R) : :(gxizj , xd IZ(R) (1.4)

and the space (IAR), +, R,

[nlz(R)) is a Banach space (see [53]).

In this book we will consider the metric ofChebyshed : C[a,b]xC[a,b] - R, on the set C[a,b]= {f:
[ab] - R/f is a continuous function }, defined by the relation:

d(f,g): = gﬁ)ﬁ f(X—g(x)| , forall f,g0OCl[ab], (1.5)

and the norm induced by this metric, i.e. the norm of Chebyshev

| f]c:= max|f(x)|, forall fOC[ab]. (1.6)
xab]

Also, we will consider the norm of Chebyshew the space C([a,b],R™), defined by the relation:

% X
x|.:=| .. |, forall x=| ... |OC(abl,R™, (1.7)
I

%l X

where ||Xk ||C = max| X M|, k=1,m .

t[a,b]

1.2 Classes of operators

The successive approximations method is a basic tool in the theory of operatorial equations,
generally, and in the fixed point theory, in particular, and the evolution of this method occurred in three
periods.

In the first period, represented by L. A. Cauchy, J. Liouville, R. Lipschitz, G. Peano, E. 1. Fredholm
and E. Picard, for each fixed point equation are studied:

(i) the uniqueness of the solution,
(ii) the convergence of the successive approximations sequence,
(iii ) the limit is a solution of a given equation.

In the second period that begins with the papers of S. Banach and R. Caccioppoli, are given, in an
abstract case, conditions that include (i), (i) and (iii ). Thus, with S. R. Banach and R. Caccioppoli begins the
metric theory of the fixed point, for which we mention also the papers of W. A. Kirk and B. Sims [35], I. A.
Rus [54], [55], [64] and V. Berinde [8].
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During the third period, the conclusion of a fixed point metric theorem is used as a means of
definition. This way introduce new classes of operators: Picard operators and weakly Picard operators (1. A.
Rus [55]).

In what follows we give the problem underlying the successive approximations metfsed [53]).

Let (X, d) be a metric space, f: X — X an operator and XX . Relative to the operator f the
following problem is formulated:

Under what conditions on f and X, the sequence of the successive approxir{n‘al’t'(oxgl)grDN , XoOX,
convergs and its limit is a fixed point of operatbr?

Next, we present several classes of operators from the metric theory of fixed point ([10], [54], [64]).
Let (X, d) and (Y, p) be two metric spaces.

Definition 1.2.1. An operator f : X =Y is continuous in point §dX , if for each sequence (Xp)non »
X,X, which converges to X, , the sequence (f(X,))hon is convergent and its limit is f(Xo), i.e.:

On)non > X OX, r}m}o d(x,,%)=0 = Ain}op( f(x,), (%)) =0 .
The operator f is continuous onX iff is continuous at any point X,[1X .

Definition 1.2.2. An operator f : X — Y is a boundedperabr if
A0 PyX) = f(A) O Py(Y) .

Definition 1.2.3. An operator f : X — Y is a compact operatorif

A0 Py(X) = (A OPY).

Definition 1.2.4.An operator f: X — Y is a complete continuougperabr if f is compact and
continuous operator.

Example 1.2.1([41]) A linear operator f : R - R™ is a complete continuous operator.

Example 1.2.2([41]) Let K : [a,b]x [a,b] — R be a continuous operator. The integral operator A :
Clab] —» C[a,b], A(X) — X, where

b
AX 1=] K 1$x9ds,

a
is a complete continuous operator.

Definition 1.2.5. An operator f: X — Y is uniformly continuousoperaor on X if for any £>0,
there exists a number 0= J &) > 0 such that from

d(x,x") <, forall X', X" O X,

it results that p( f(X), f(X'"))<e€.

Definition 1.2.6.An operator f: X — Y isa closed operatorif the graph of f,
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G(H={(xf)OX x Y/xOX} OXx Y

is a closed set.

Definition 1.2.7. An operator f: X — X is called:

(i) Lipschitzoperator (@Lipschitz operatorif there exists all R, such that
df(x), f(y)) < a-d, y), forall x,yOX.

(i) contraction(a—contraction) i.e. fOCT(X,X), if there exists alJ(0,1) such that f is a-Lipschitz

(iii ) contractive operator if d(x), f(y)) <d(x,y), forall X, yOX,X#Yy.

(iv) non-expansive operator if is a 1-Lipschitz operatari.e.
d(f(x), f(y)) <d(x, y), forall x,yOX.

(v) non-contractive operator if 8§), f(y))=d(x,y), forall x,ydX.

(vi) expansive operator i€(f(x), f(y)) >dx, y), forall X, y[I X, x#y.

(vii) expansion operatof a—expansion operatgiif there exists @ >1 such that
d(f(x), f(y)) = a-dx, y), forall x,y O X.

(viii) isometryif d(f(x), f(y)) =d(x, y), forall x,y O X.

Example 1.2.3. ([64])
a) The operator f: R— R, f(X)= %X is a contraction.

b) The operator f: R— R, f(X) =2X is an expansion operator.
¢) The operator f: R— R, f(X) =X is an isometry.

d) The operator f: [1,+00) — [1,+00), f(X)=X -i-l is a contractive operator.
X
According to the above definitions we have:

Theorem 1.2.1(Gh. Coman, |. Rus, G. Pavel and I. A.RU¥) The following implications are true
(i) = (i)

(i) = (i) = (iv) .

In this book we use the continuous, bounded, Lipschitz and contractions operators.

1.3 Fixed point theorems

In order to establish some of the results presented in this book, were used several basic theorems of
fixed point theory, which we present below.

Thus, in order to obtain the existence and uniqueness results of the chapter 2, was used following
fixed point theorem.

10
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Theorem 1.3.1(Contracton Principle) Let (X, d) be a complete metric space aid X - X an a -
contraction(a < 1). Under these conditions we have

(i) A has a unique fixed point,x.e. Fa= {X'};
(i) the sucessive approximations sequence considered fog@X x

Xor Xi=A(Xo), X=AM)=AAX)=A(X0), - - . XA )=AX), . ..
convergesdx, i.e.

X" =lim A'(x,), forall xOX;
n-oo

a

(i) d0d, A (%) < -

p (%, AX)) -

The proof of this theorem, which became classic, can be found in [53] and for this reason is omitted.
Also, we mention the following fixed point theorem in a set with two metrics:

Theorem 1.3.2(M. G. Maig Let X be a nhonempty set, d apdtwo metrics defined on X and A:
X - X an operator. Suppose that

(i) dxy) £ paxy), forall x,yOX;

(i) (X, d) is a complete metric space

(iii)y A:(X,d - (X, d is a continuous operator

(iv) the operatorA : (X, p) - (X, 0) is ana—contraction
Then

@ Fa ={x};

(b)y A(x) 095 x° as n - o, forall xOX.

In the paper [53] I. A. Rus makes the following remark:
Remark 1.3.1(I. A. Rus [53]) The Maia's theorem remains true if the condition (i) is replaced by the
following condition:

(i*) there existsc> 0 such that (x),f(y)) < caxy), forall x,yX.
Another variant of the Maia's theorem, presented by 1. A. Rus in the paper [70], is as follows:

Theorem 1.3.2'(1. A. Rus [70]) Let X bea nonempty set, d amal two metrics defined on X and A
: X - X an operator. Suppose that

(i) (X, d is a complete metric spage
(i) there exists kI N, sucht that the operatorAX, p) — (X, d) is uniformly continuous
(i) A:(X,d - (X, d is aclosed operatar
(iv) the operatoiA : (X, p) - (X, p) is ana—contraction
Then
11
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(@) Fa={Xa};
(b) A"(x) [f ~ X, asn - oo, forall xOX;
(© A(x)If- x, asn - o, forall xOX, and

AN, x,)<ad“ax x,), forall nON" and xOX ;

(d) px Xa) < ﬁp(x, AX), forall xOX.

Also, in the paper [70], I. A. Rus makes a few remarks:

Remark 1.3.2(I1. A. Rus [70]) The implication (i) —(iv) = (@) + (b) is the fixed point theorem of
Maia, 1.3.2. (see M. G. Maia [38], I. A. Rus [52], R. Precup [51]).

Remark 1.3.3Using the Picard operators (see [66] and [67]) we have the following conclusions of
theorem 1.3.2”:

(a) + (b) — The operator A : (X, d) - (X, d is a Picard operator.

(c) + (d) — The operator A : (X, 0) - (X, p) isan

—Picard operator.

Remark 1.3.4.([66]) The condition d(A%(x), A%(y)) < Ca(x, y) implies the condition (ii) of the
theorem 1.3.2°.

In R™ we consider the natural ordering, i.e. if X, yOR™, X=(X;, ..., Xn), Y=, ..., Ym), then X

<y ifandonlyif X <y, i=1m.

Definition 1.3.1. ([53]) Let X be a nonempty set. An operator d: X x X - R™ that satisfies the
conditions:

(i) d(x,y)=0, forall x,ydX and d(x,y)=0 ifand onlyif x=y,(0=(0,0,...,0));

@iy dx,y)=dy,x), forall x,ydX;

(i) dx,y)<dx,2+d(z y), forall x,y,z0X,
is called generalized metric oK.

Definition 1.3.2. ([53]) A pair X, d) which consists of a set X and a generalized metric d, defined on
Xis called generalized metric space

Example 1.3.1([53]) Let R™ be the set X i.e. X=R™. The operator d : R"xR™ - R™, defined by
the relation:

dx»=ﬂx—x,

is a generalized metric defined on X.

> Xm_ym|)

12
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Example 1.3.2. ([53]) LeC([a,b], R™) be the set X i.e. X = C([a,b],R™). The operator d : X x X -
R™, defined by the relation:

d(f,g)=(max| ﬁ(x)—gl(x)|,...,max| fm(x)—gm(x)j, f,gOX,
X ab] Xab]

is a generalized metric defined on X, and (X, d) is a generalized metric space.

Remark 1.3.5.([53]) The notions of convergent sequence, fundamental sequence, complete
generalized metric space, generalized metric induced by a generalized norm are defined similarly as for
ordinary metric spaces.

Definition 1.3.3.([53]) Let (X, d) be a generalized metric space. An operator A: X — X satisfies a
Lipschitz condition, if there exists a matrix QUM p«m(Ry), such that

d(AX), A(Y)) <Qd(x, y), foral x,yOX.

Definition 1.3.4. ([53]) A matrix QOMu(R) is called matrix mnvergent tozeroif the matrix Q

converges to the null matrix as K — oo,

The next theorem gives three equivalent conditions of convergence to zero of a matrix QUMyxn(R+)
and was used in example 2.4.2 of chapter 2, in example 3.3.2 of chapter 3, and in examples 4.4.2 and 4.4.3 of
chapter 4.

Theorem 1.3.3(see [53]) LetQ O Mnxm(R+) be amatrix The fdlowing statements are equivalent:

) Qk—>0 as k— oo

(ii) The d@genvaluesi, k=1,_m, of the matrixQ, satisfies the conditiom| < 1, k=1,_m;

(iii) The matrix|,— Q is non-singular and

(In—-Q '=1+Q+Q +...

Theorem 1.3.4.(A. |. Perovy Let (X, d) be a complete generalized metric space, with the metric
dix,y) OR™ and A: X -X an opeator. Suppose that there exists a matriXND,«(R:), such that

() d(AX), AlY)) < Qd(x,y), forall x,yOdX;

(i) Q=0 as n—ow.
Then

(@) Ahas a unique fixed point pi.e. Fa={X};

(b) the swcessive approximations sequenge A'(X,), converges ta for all x,0X, i.e.

X = lim A"(x,), forall x0X.
n-oo

In addtion, the following estimation
dA"(X), X) < (Im—Q)"'Q" d(X, AX)), NON’

is accomplished

13
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Some consequences of this theorem can be found in [53].
In the chapter 4 we study the data dependence of the solution of integral equation (2.1) and the
following theorem was used.

Theorem 1.3.5(Abstract data dependence theojebet (X, d be a complete metric space and A,
B : X - X two operators. Suppose that

(i) Ais a contraction. Letr < 1 a Lipschitz constant of A andy £ { X} ;
(i) xg OFs;
(iii) there exists 7> 0 such that
d Ax%,B(x))<n, forall xOOX.
Under these conditions we have

dXxg) s -

l-a

The proof of this theorem can be found in [53] and for this reason is omitted.
Also, we mention the following theorem of data dependence of fixed points in a set with two metrics
(I. A. Rus [70]).

Theorem 1.3.6(I. A. Rus [70]) Let X bea nonempty set, d amgltwo metrics on XA : X - X an
operator and suppose that the conditions of theorem 1.3.2" are satisfied.

Let B: X- X be an operator ang >0 such that
AAX), Bx)) < n, forall xOX.
Then

X, OFs = p(x*A,x*B)S% .

1.4 Picard operators on L-spaces

In order to establish some of the results presented in the chapter 2 and in the chapter 3, were used a
few results from the Picard operators theory on L-spaces, the abstract Gronwall's lemmad.4.1 and the
abstract comparison lemmast.4 and 1.4.5.

In the third period of development of the successive approximations method, as mentioned in
paragraph 1.2, were introduced the Picard and weakly Picard operators (I. A. Rus [55]). The weakly Picard
operators theory is useful in studying some properties of the solutions of those equations for which can be
used the method of successive approximations.

In what follows, we present the general area where is acting the method of successive
approximations (problem formulated in 1975 by K. Iseki) and some results of Picard and weakly Picard
operators theory.

Let X be a nonempty set and the following set:

SO¥):= {(non [ XaOX, NONY

14
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Let ¢(X) O S(X) be a subset of S(X) and Lim : ¢(X) — X, an operator.

Definition 1.4.1. ([55]) The triplet (X, c(X), Lim) is called L-spaceif the following conditions are
satisfied:

() If x, =%, forall nON, then (X))nony O ©(X) and Lim(Xy)non = X ;

(i) If (Xaon U &(X) and  Lim(Xp)aon = X, then for all subsequences (X, )igy of the sequence
(Xp)on We have (X, )iy D o(X) and  Lim(x, )ioy = X.

Definition 1.4.2. ([55]) An element ,),on [ €(X) is convergent sequendais limit is X:= Lim(X,)non
and we will write

Xp > X, N - 0,

In what follows we denote by (X, —) an L—space.
In general, all set endowed with a structure involving a notion of convergence for sequences, from an

L-space. Such structures are metric spaces, generalized metric spaces (d(x,y) OR"; d(xy) O R. U {+o0}),

endowed with two metrics.
Let X and Y be two metric spaces and M(X,Y) the set of operators defined from X, to Y. We denote by

OF - the punctual convergence in M(X)Y), by 0O fif . the uniform convergence in M(X)Y) and by
O the convergence with continuity in M(X,Y). The spaces (M(X,Y), OF = ), (M(X,Y), O i ) and
(M(XY), 0% ) are L—spaces (see I. A. Rus [67]).

1.4.1 Picard operators
Let (X, - ) be an L-space.

Definition 1.4.3.([55]) An operator A: X — X is Picard operatorif
(i) Fa={Xa};

(i) A(X) - X, , as n— oo, forall xOX.

Remark 1.4.1(see [53]) If Ais a Picard operatorthen A is a Bessaga operatoi.e.
Fo =Fa={x}, forall nON".
The metric fixed point theory gives us examples of Picard operators.

In the paper [53] are given examples of Picard operators defined on different L-spaces, of those
present the following two examples:

a) (Banach-CacciopoliLet (X, d) be a complete metric space and A : X — X an a—contraction.
Then Ais a Picard operator.

b) (Peroy Let (X, d) be a complete generalized metric space with the metric d(x,y)OR" and let

QUMxn(R+) be a matrix such that Q" — 0 as n— oo. If an operator A: X — X is Q-contraction, i.e.
d(AX), AlY)) < Qd(x,y), forall x,yOX,

15
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then A is a Picard operator.

1.4.2 Weakly Picard operators
Let (X, - ) be an L—space.

Definition 1.4.4. ([55]) An operator A : X — X is weakly Picardoperator if the sequence
(A”(X))nDN converges for all X J X and his limit (which may depend on X) is a fixed point of A.

A weakly Picard operator A for which Fa= {X} is Picard operator.
If Ais a weakly Picard operator, then FA” =Fa#0, forall nON".

Examples of weakly Picard operators and their properties are presented and studied by many
mathematicians, among which: I. A. Rus [55], [57], [58], [62], [65], I. A. Rus, S. Muresan and V. Muresan
[69], A. Petrusel and 1. A. Rus [46], M. A. Serban [76], [77], M. A. Serban, I. A. Rus and A. Petrusel [78§]
and many others.

If A is a weakly Picard operator, then defines the operator A”: X — X by the relation:

A (%)= lim A'(x)

and observe that A”(X) = F,.
We present below a generic example of weakly Picard operator.
Let (X, d), i 1, be a family of metric spaces, A : Xi — X a family of Picard operators and )g* the

unique fixed point of the operator A; .
Let X:=[JX; be the disjoint union of the sets of family (X)i; and d: Xx X — R, , a metric on X,

igl
defined by the relation:
d(xy) if xyOX;, iOl

d = " .
(%) {d(xx)+dj(y,xj)+l if iz} xOX, yOX;.

Then the operator A is a weakly Picard operator (see I. A. Rus [57]).
A basic result in the weakly Picard operators theory is the following theorem.

Theorem 1.4.1(Theorem of characterization of weakly Picard operatdet (X, - ) be an L-space
andA : X — X an operator. The operator A is weakly Picanderaor if and only if there exists a partition
of X,

X=UX,,
AOA
such that
@ X;01(A), AD0A;

(b) the restriction ofA to X,, A|XA : X, — X, is a Picard operatofor all ALA.

This theorem is useful to prove that certain operators are weakly Picard operators.

16
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To study the data dependence of the fixed points of an operator, is considered another class of
weakly Picard operators defined on a metric space (X, d).

Definition 1.4.5. ([55]) By definition, a weakly Picard operator Ais c-weakly Picard operatqrc > 0,
if and only if

d(x, A°(x)) < cd(x, AKX)), forall xOX.

For example, the operator A : X — X of a—contraction type, defined on the metric space (X, d) is c-
weakly Picard operator with ¢=(1- a)™" .

Also, if (X, d) is a complete metric space, A : X —X is an operator and if we suppose that:

(i) there exists a [0 (0,1) such that

d( A (X), AX) < ad(x, AX)), forall xOX;
(ii) the operator A is a closed operator,

then A is c-weakly Picard operator wittrc = (1-a) " .

The next result is a theorem of data dependence of the fixed points set of an operator and it is useful
in the study of data dependence of the solutions of integral equations (I. A. Rus [67]).

Theorem 1.4.2(1. A. Rus [67]) Let (X, d) be a metric space ané, B : X — X two operators.
Supposéehat

(i) Ais c-Picard operator;
(i) xg is a fixed point of the operator Be. xg 0 Fy ;
(i) there exists; > 0 such that

d(AX), B(x))<#, forallxOX.

If we denote by, , the unique fixed point of the operator A, then

d( X, Xg) <7C.

1.4.3 Picard operators on ordered L—spaces

Let (X,-) be an L—space and < an order relation on X. If the following implication is true
anyn’ Xn_'X*a yn_’y*a as N - oo = XSy,

then, by definition, (X, -, <) is an ordered L—space. The following lemma is true.

Lemma 1.4.1(AbstractGronwal's lemma[64]) Let (X, -, <) be an ordered L-space and A —X
X an opeator. Suppose that

(i) A is Picard operatot

(i) the operator A is increasing

If we denote by, the unique fixed point of the operator A, then

17
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@x<AX) = x<

A
X
>

b)x>AX) = X > Xu.

Gronwall's Lemmad .4.1 for an ordered metric space (X, d, <) is useful to determine the results of the
chapter 3.
From Lemma 1.4.1 we have (see [67]):

Lemma 1.4.2(1. A. Rus [67]) Let (X, -, <) be an ordered L-space and A =X X anincreasing
operator. Then

(@ (URA T I(A), (LF)a O 1(A);
(b) if the restriction of Ato (UF)aU (LF)a, Alyr),uwr, IS Picard operator, then
x < x, <y, forall xOLF), and yO (UF),.

In lemmas 1.4.1 and 1.4.2 may be replaced ”(X, —, <) an ordered L-spacewith ”(X, d, <) an
ordered metric spafend the condition A is Picard operator” it may be replaced by a requirement to ensure

that A is Picard operator in the ordered metric space (X, d, <). One thus obtains the following results (see 1.
A. Rus [65], [67]):

Theorem 1.4.3(I. A. Rus [65], [67]) Let (X, d, <) be an ordered and complete metric space and A :
X — X an operator such hat A‘is contraction for k1 N". If we denote by, the unique fixed point of the
operata A, then

@X<AX) = X< Xy

*

b)x>AX) = X= X,.

Theorem 1.4.4.(1. A. Rus [65], [67]) Let(X, d, <) bean ordered and complete metric space. Let A:
X — X bean operatorsuchthat for all 0 <a<b <+, there exists (a,b)d (0,1) such that

x,yOX, agdxy)<sb = dAX), Al)) <L@b)dxy).
Then

@XxX<AX) = X< X,

IA

byx>AX) = x

v

Xy,
where X, isthe unique fixed point of the operator A.

Theorem 1.4.5(1. A. Rus [65], [67]) Let X bea nonempty setl and ptwo metrics defined oK, <
an orderrelation onX and A :X — X an operator We sppose that

(i) (X, d, ) is an ordered and complete metric space

(ii) there existsc > 0 such thatd(A(X), A(y)) < cla(x, y), forall x, yOX;
(i) A: (X, HB; _>) R (X, HB; _>) is continuous operatar
(iv) the operator A : X, p) — (X, p) is an kcontraction

18
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Then A is a Picard operator on(X, Dlj’_.) and if denote byx, the unique fixed point of the
operata A,we have

@x<AX) = X< X, ;

IA

*

b)x > AX) = X> X,.

Theoran 1.4.6. (I. A. Rus [65], [67]) Let (X, d, <) be an ordered metric space with two metrics
definedonX and A X— X an operator Supse that

(i) Ais a-contraction;
(ii) the operator A is increasing

If denote byx, theunique fixed point of operator A, then

@X<AX) = X< Xy

*

b)x>AX) = X= X,.

The above abstract results have applications in the theory of differential and integral inequalities.

For Gronwall inequalities proved by classical methods, we mention: D. Bainov and P. Simeonov [5],
P. R. Beesak [6], A. Constantin [12], S. S. Dragomir [29], V. Laksmikantham and S. Leela [36], D. S.
Mitrinovié, J. E. Pecari¢ and J. E. Fink [40], B. G. Pachpatte [43], W. Walter [79], M. Zima [80], and for
concrete Gronwall inequalities, proved using above abstract results we mention: Sz. Andras [2], A. Buica
[9], C. Craciun [14], M. Dobritoiu [27], N. Lungu and I. A. Rus [37], V. Muresan [42], R. Precup and E. Kirr
[50], I. A. Rus [58], [59], [60], [64], [65], [67], [68], M. A. Serban [77], M. A. Serban, I. A. Rus and A.
Petrusel [78].

1.4.4 Weakly Picard operators on ordered L—spaces

We begin our considerations of these operators with the following lemma given by I. A. Rus in his
paper [67].

Lemma 1.4.3(1. A. Rus [67]) Let (X, -, <) be an ordered L-spaces and A XX an @erator,
such tha

(i) A is weakly Picard operator

(ii) A is increasing operator

Then the operatoA” is increasing
The following lemma is a comparison abstract result for an ordered L-spaces.

Lemma 1.4.4(1. A. Rus [67]) Let (X, -, <) be an ordered L-space aride opeatorsA,B,C: X —
X, such hat

iHH)A <B<C;

(i) A, B, C are weakly Picard operators
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(i) the operator B is increasing.

Then
Xx<y<z = AX)<B(y <C(2.

The next result is given by I. A. Rus [65], in the case of an ordered metric space.

Lemma 1.4.5. Abstract comparison lemma, [63]et (X, d, <) be an ordered metric space and the
operators A, B, C: X — X, such that

(A< B<C;
(i) A, B, C are weakly Picard operators
(i) the operator B is increasing .

Then
x<y<z = AKX <B(y <C2.

In the same paper we find makes the following useful remark.

Remark 1.4.2. LetA, B, C be the operators defined in lemma 1.4.5. Moreover, suppose that

Fg = {X*B} , i.e. B is Picard operator. Then
A*(X) < X5 < C°(x), forall xOX.
But A”(X)=Fa, C”(X)=F¢. Thus, we have
Fa< X3 < Fc.

Now, the following theorem is also an interesting and useful result.

Theorem 1.4.7(Sz. Andras [4]) If (X[, ) is an ordered normed space, aAd —X is an
increasng and weakly Picard operatpthen the following implications are true

-1 .
(@ If xOX and x< pZai A (x), then x < A*(X) ;
i=0

p-1 .
() If xOX and x= Y a, A™(x), then x > A"(X),
i=0

where he numbersy, 0(0,1), i =0, p—1 satisfies the relation:

The above lemmas are useful to study the properties of the solutions of differential and integral
equations.
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1.5 Fiber contractions principle

The theorem of fiber Picard operators is a fixed point theorem for operators defined on cartesian
product and is useful to prove the differentiability of the solution of a functional-integral equation with
respect to a parameter. This theorem, given by I. A. Rus in [63], is a generalization of the result given by
M.W. Hirsch and C.C. Pugh in [31].

In the paper [63] I. A. Rus studied the problem of the fiber Picard operators

Let(X, —) be an Lspace andY, p) a metric spaceB: X — X, C: XxY — Y, two operators and
A: XxY— XxY atriangular operatorsuch that

AX ) = (B(X), C(x, y)), xOX yOY. (1.8)
Suppose that

(i) Bis Picard operatofweakly Picard operator,

(i) C(x, Dlis Picard operatoyfor all x O X.

Under what conditions A is Picard operataveakly Picard operatQr?

and establishes the following theorem:

Theorem 1.5.1.Fiber Picard operators theoreni. A. Rus [63]) Let (X, —) be anL-space(Y, p) a
metric spaceB: X — X and C: XxY — Y two operators and\: X x Y — X x Y, A= (B, C), a triangular
operator. Suppose that

(i) (Y, p) is a complete metric space

(i) B: X— X is weakly Picard operatar

(iii) there existsald [0,1) such thatC(x, )] is an a-contraction, for all xOX ;

(iv) if (X,y)OFa, then Gx,y) is cortinuous in X .

Then A isa weakly Picard operator. Moreover, if B is Picard operator, then A is Picard operator

too.

Another generalization of the result given by M.W. Hirsch and C.C. Pugh in [31], is the fiber
generalized contractions theorem , given by I. A. Rus in [61].

Theorem 1.5.2(Fiber generalized contractions theorem A. Rus [61]) Let(X,d) be a metric space
(generalized or notand(Y p) a complete generalized metric spgeg,y)IR™).

Let B: X—> X and C: XxY — Y be twooperators andA: XxY - XX Y a continuous
operator. Suppose that

(1) Ax y)=(B(x), Cx,y)), forall x0X, yaY ;

(i) B: X — X is a weakly Picard operator ;
(iii ) there exists a matrix @Mmx(R:), Q"— 0 as n —o, such that

p(CX,Y1),C(X ¥2) < Qpyi, o), forall xOX, w,y, 0Y.
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Under these conditions A is a weakly Picard operator. In addition, if B is a Picard operator, then A
is a Picard opgator too.

Theorems 1.5.1 and 1.5.2 are useful to study the differentiability with respect to a parameter, of the
solutions of integral equations and of systems of integral equations, respectively. Some results in this regard
were given by J. Sotomayor [72], V. Berinde [8], I. A. Rus [61], [62], [63], [64], [65], [67], M. A. Serban, I.
A. Rus and A. Petrusel [78], M. A. Serban [75], [76], [77], Sz. Andras [3], [4], M. Dobritoiu, I. A. Rus and
M. A. Serban [25], M. Dobritoiu [19], [21], [22], [23], [26] and others.

Next, we present an application of the fiber contractions principlet the following integral equation

b
W= Ktsks xd9)ds+ (), tO[ap], (1.9)

where a, BOR, a<p, a, b0[a,f], KOC([a,8]X[0,81*R™*R™,R™),
f OC([e,51.R™), g0OC([a, B].[a,B]), xOC([a.p1.R™) .

The obtained result is the following theorem published in [19].

Theorem 1.5.3(M. Dobritoiu [19]) Suppose that there exists a matriX@«n(R:) such that
() [2(8-a)Q]"—0 as n—o;

| K(Isy, u)= K(tsw,v)| Uy = V| +]uyy = vy
(i) o < Q
| Kn(tSU,Uy) = K (ESV,V)

for all t, <[a,b], u, VOR™,i=1,2.

1Y = Mol + Uy = Vi

Then
(a) the integral equationl.9) has a unique solution; (x/7a, b)OC([a.8],R™) ;
(b) for all XOC([a,f],R™), the sequenceéx”),on, defined by the relation

b
"R(;tab=] KtsXsah X g3 abyds+ ),

converges uniformly to” x for all t, a, i[«,f] and

[ (tab-X(tab) | f(tab-X(tab)
<[, -2(8-a)Q]"[2(8-a)Ql" :

\»’;(tab)?xfn(t;a,b)\ \%(tab)?%(t;a,b)\ |

(c) the functionx’ : [a.f]X[a.f]X[0,8] — R™, (t, a,b) > X (t; &, b) is continuous

(d) if K(t,s JOOCYR™R™ R™ for all t, S1[a.,f], then x(t; [JDOCY[a.f]X[a,f8], R™) for all
tO[a,p]-

Proof. We denote X := C([a,8]’,R™) and we consider the generalized norm on X, defined by the
relation (1.7) in the paragraph 1.
We consider the operator B : X — X defined by the relation:
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(B La)b=lj) Ktsxsah kd$; abyds, forall t,a,blfap].

From the conditions (i), (ii) and applying the Perov's theoren.3.4, it results that the conlusions (a),
(b) and (c) are fulfilled.
(d) We prove that there exists o , o O X
da db

If suppose that there exists (Zi , then from (1.9) it results that
a

X (tab) _

- Ktax aab, X(ga;ab))+
da

+? 0 K(tsx(sab, xX(ysxab) | (ax(sab)),
2 0X(sab) 92

L[ K,tsX sab, X(gd9:ab))| (axX(g9;ab) ds
dX(g9:ab) oa '

This relation leads us to consider the operator C : X X X — X defined by the relation:

Cxy:tap=- Ktakaah, xgas;ab)+ (1.10)

bl (0 K(tsXsab), Xg9;ab)
b
+IH 0x(sab) ])(sa’ :

0 K(,tsksab, Xd9;abh)) .
+[ dx(g9s;ab) ] 9@3,3@}8.

From the condition (ii), we obtain that
0K u,w "
ij=1

ou;
for all t, sO[a,], u, WOR™.
From (1.10) and (1.11) it results that

” (1.11)

aK;(tsu,w)Um <o
i,j=1

laxy)-Ccxy,)| <28-)qy, - v,

, forall X, yy, y,[IX.

Now, if we consider the operator A : X X X — XxX, A=(B, C), then the conditions of the fiber
generalized contractions theorein5.2 are satisfied. From this theorem it results that A is a Picard operator,
and the sequences
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b
"R tab=[ KtsXsah X g% abyds+ (1),

V'(;tah=- KtaX sab, X(gs;ab)+

of(0 K(15X(sab), K(gs:ab)
+IK oX(sab) J Flsab)s

0 K ,tsX sab, X(g9;ab)
;abl|d
{ IR(g9:ab) J Ha%s )] :

converge uniformly (with respect to t, &, bd[a,f]) to (X,y)OF,, for all X, y’OX .
1 n

If we take X' =y’ =0, then y' = (Zl and it proves by induction that y" = . Thus we obtain
a

X" O x* as n— oo, and

aLD'fﬂifm—» y as n—oow,
oa

: _ox ox _ .
and hence it results that there exists — and —=Yy
da da

*

.. L . X
By a similar reasoning it proves that there exists b

1.6 Quadrature formulas

The chapter 5 gives a method for approximating the solution of the integral equation with modified
argument (2.1)

b
BWE] Ktsxes & g9, xa, Xb)ds+ f(t), tO[ab],

by using the successive approximations method and a quadrature formula. To obtain the terms of the
successive approximations sequence, must calculate the integrals that appear in the terms of this sequence.
The calculus of these integrals is most often a very difficult problem and this is the reason of establishing an
approximate calculation methods of these integrals. This problem is studied in the literature, being the
subject of chapter "Numerical quadratures” in the Numerical Analysis.

For the calculus of the integrals that appear in the terms of the successive approximations sequence
from the approximating algorithm for the solution of integral equation with modified argument (2.1) the
following quadrature formulas were used: trapezoids formula, rectangles formula and Simpson's formula (see
[10] [11], [34], [39], [53], [74D).

Next, we present these methods for calculating the approximate value of the integral of a function f.
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1.6.1 Trapezoids formula
The trapezoids method for approximate integration of a function f consists of approximating the

function f with a polygonal function, i.e. to approximate the given function f with a polygonal line with
vertices on the graph.

b
Let fO C*[a,b] be a function. A formula of approximate calculus of the integral [ f(tdt is:
a

b b-a
jf(t)dtzT[ f(a)+ f(b]+R(f) , (1.12)

where R(f) represent the rest of the formula. Due to the geometrical interpretation of the formula (1.12), this
formula is called thetrapezoids formulaFollowing the delimitation of R(f), the trapezoids formula becomes:

Tf(t)dt =%[f(a)+ f(b)]—?%(b_s) f'(9ds . (1.13)

To get a better result, it is considered a division A of the interval [a,b] into n equal parts by the points
a=t, <t <...<t, =b and we apply the trapezoids formula (1.13), to each subinterval [lg s ti] .

Under these conditions we obtain the following trapezoids formulgsee [10], [11], [34], [39], [53],
[74]):

b — n-1
J fod="2 1@+23 fn+ 1] +R(), (1.14)
a i=1

where R f)= S R(f),and
i=1

R = [¢(9 F'(9ds ¢i<s>:—(s‘*-1—2)(“‘°‘), i=1n .

For the rest of the formula (1.14) we have the estimate given by the relation:

T(b_a)3
IR(f)| s M o (1.15)

where by M T we denote

MT = max| f"(t)| . (1.16)
tab]

b
Because the calculation error of the integral f f(t)dt is less than € > 0, it is sufficient that the
a

number N of subintervals of the equidistant division A of interval [a,b] to verify the relation:

n > 1/MTM. (1.17)
12¢

Also, in the case of an equidistant division A of interval [a,b], for the rest R(f) of the formula (1.14),
we have the following estimates (see [7]):
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(b-a)*

™ L if fOLipab]
R(f)| < 1.18
IR (b-a’, ., . | (19

n | £ if fOCTabl,

and
(b-a)’

R(f)| < L' 1.19
LOIEE e (1.19)

if fOC'[a,b] and f'satisfy a Lipschitz condition on [a,b], with the constant L> >0 .

1.6.2 Rectangles formula

The rectangles method for approximate integration of a function f consists of approximating the
function f with a constant function on intervals, i.e. to approximate the graph of function f with a polygonal
line with sides parallel to the coordinate axes.

Let f0O C[ab] be a function, A a division of interval [a,b] by points a=1, <t <...<t, =b and

o,(f) an integral sum corresponding to this division:
n-1
op () =2 (). 1), b <G <ty .
i=0

If A is a sufficiently fine division, i.e. the norm of division is sufficiently small, then you can
approximate the integral with the integral sum, i.e.

b n-1

[fodt=3 f(&)t, 1) - (1.20)

a i=0

To simplify the calculations, it is considered that the division A of interval [a,b] is equidistant, i.e.
b-a

ot ==

Under these conditions the following two formulas of approximation are obtained (see [11], [34],

[39], [74]):
(a) If we consider the intermediary points of the division of interval [a,b] on the left end of partial

intervals [t,t;,,], &§ =1, then we obtain the formula:
B b-a ol
jf(t)dt:—[ f(a)+2f(1;)}+R(f); (1.21)
a n i=1

(b) If we consider the intermediary points of the division of interval [a,b] on the right end of partial
intervals [t,t,,], & = ti,;, then we obtain the formula:

B b-al !
[ f(tdt= [z f(x) + f(b)}R(f), (1.21°)

n

and each of these two formulas is called the rectangles fomula
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For the rest of the formula (1.21) or (1.21"), R f)= Zn: R(f), we have the estimate given by the
i=1

relation:

|R(f)|s|v|°@, (1.22)

where, by M ° we denote
MP = max| f'(t)| . 1.23
E[a,b]I M| (1.23)

b
Because the calculation error of the integral _[ f(t)dt is less than € > 0, it is sufficient that the
a

number n of subintervals of the equidistant division A of interval [a,b] to verify the relation:

n > MD@. (1.24)

It is noted that to obtain a better approximations, the rectangles method requires a large number of
points of division of the interval [a,b] (see [11], [34], [39], [74]).

1.6.3 Simpson's formula

The approximation method that results using the Simpson's formula, consists in approximation of the
given function on certain intervals with a second degree polynomial, i.e. to approximate the graph of the
function on certain intervals with a parable.

b
Let fOC'[ab] be a function. A formula of approximate calculation of the integral j f(t)dt is:
a

Tf(t)dt:?[f(a)+4f(a;bj+ { b}-?ﬂf) fV)(gds (1.25)

where

4 _ _ 3 T
(9 _b aE(S 3) , daca sD[a,ib
4! 6 3! 2

p(9)= _ (1.26)

_ a4 _ a3 n
(b-9" _b aE(b S) , daca sﬂ[ib,b
4! 6 3! 2 ]

To get a better result, it is considered a division A of interval [a,b] into n equal parts by the points
a=t, <t <...<t, =b and we apply the Simpson's formula (1.25) to each subinterval [ti s ti] .

Under these conditions we obtain the following Simpson's quadrature formulaee [11], [34], [39],
[73], [74]):

ti +ti+1
2

Tf(t)dt=%[f(a)+2§f(ti)+4r§f( j+ f(b)}R(f), (1.27)
2 i=l i=0
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with the estimate of the rest R(f) = Zn: R (f) given by the relation:
i=1

b-a)’
R(F) < M5t , 1.28
RCH) 2880n* (1.28)
where by M °we denote
Msznmﬂf“mﬂ. (1.29)

Tl a,b]

b
Because the calculation error of the integral _[ f(t)dt is less than &€ > 0, it is sufficient that the
a

number n of subintervals of the equidistant division A of interval [a,b] to verify the relation:

RS
n > ﬂhﬂsﬁg—fQ— . (1.30)
2880

It is noted that to obtain the desired approximation, the Simpson's formula requires generally fewer
calculations than the previous formulas (see [11], [34], [39], [73], [74]).

1.7 Integral equations, basic results

An equation in which the unknown function appears under the integral sign is an integral equation
In what follows we present several basic results regarding the existence and uniqueness for the
solution of a Fredholm integral equation and of a Volterra integral equation, respectively.

1.7.1 Fredholm integral equation

The Fredholm integral equation is one of the most well known integral equations. This integral
equation was studied by Ivar Fredholm.

Let QOR" be a bounded domain. Also, let K : QxQxJ R, JO R a closed interval and f : Q -R
be two continuous functions.

An integral equation of the form

(()=j Kisx9)ds+ f(t), tOQ, (1.31)

Q

where the unknown function is XDC(E) and the functions K and f are given, is called Fredholm integral
equation
If Q = (a,b), then the Fredholm integral equation (1.31) is written as:

b
€r=[ Kisx9)ds+ f(t), th@b), (1.31)

where the unknown function is X(J C[a,b] and the functions K and f are given.
The function K is called the kernel functioand the function f is called the free ternof the integral
equation.
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The above two equations are nonlinearFredholm ntegral equations
In what follows, we present two theorems of existence and uniqueness of the solution of integral

equation (1.31"), in the space C[a,b] and in the sphere E( f;r) O C[a,b], respectively. These theorems can be
found in the book [10].

Theorem 1.7.1([10]) Suppose that
(i) KOC([a,b]¥[a,b]xR), fOC[a,b];
(ii) there existsL > 0, such that
K(t,s,0) — K(t,s,)| < L|u-v|, forallt, sd[a,b], u, VOR;
(i) L(b—a) < 1. (contraction conditiop

Under these conditions the Fredholm integral equatibfl') has a unique solution‘XC[a,b],
which @n be obtained by the successive approximations method, starting at any elesnijg,b].
Moreovae, if x, is the n-th successive approximatitiren tte following estimation is proved:

N a0
1 =X gy < %Eﬂxo =X g - (1.32)
Theorem 1.7.2([10]) Suppose that
(i) KOC([a,b]x[a,b]xd), JOR is a compact intervalfIC[a,b];

(ii) there existsL > 0, such that
[K(t,s,u) — K(t,s,y| < L|uv]|, forallt, d[a,b], u, V1J;
(i) L(b—a) < 1. (contraction conditioh
If r>0 is a positive real number such that
xOB(f;r) = xbHOJOR,
and hefollowing condition is fulfilled:
(iv) M(b-a) <r, (condition of invariance of the spheE{f ;1))

where denote by M a positive constant, such that
K(t,su) < M, forall t, 9[a,b], udJ O R, Jis acompact interval (1.33)

then the Fredholm integral equatioh31') has a unique solution*MTB( f; 0 (aDb], that can be obtained

by thesuccessive approximations method, starting at any elemélﬁ(f;r). Moreover, if x is the n-th
successie approximationthen the estimatio(l.32) is satisfied

The proofs of the two theorems above were obtained by applying the Contraction Principlgthey can
be found in [10] and for this reason are omitted.

Remark 1.7.1In the study of the solution of Fredholm integral equation were used the metic of
Chebyshedefined by the relation (1.5) and also the norm of Chebyshel¢fined by the relation (1.6).
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1.7.2 Volterra integral equation

The Volterra integral equations were introduced by Vito Volterra and then studied by Traian Lalescu
in 1908, in his doctoral thesis in 1908, Sur les équations de Volterra, written under the direction of Emile
Picard. In 1911, Lalescu wrote the first book ever written about integral equations, entitled Introduction to
the theory of integral equatioris Romanian).

The Volterra integral equations have application in demography, in epidemics, in the study of
viscoelastic materials and in insurance mathematics.

The integral equation of the form

kK3=] Kisx9ds+f(@), th@b), (1.34)

where the unknown function is X{0 C[a,b] and the functions K and f are given, is called Volterra integral
equation

The functions K and f are called the kernel functiorand the free term of integral equatipn
respectively.

The equation (1.34) is a nonlinearVolterra integral equation

Now, we present two theorems of existence and uniqueness of the solution of integral equation

(1.34), in the space C[a,b] and in the sphere E(f ;1) O C[a,b], respectively. These theorems can be found in
the book [10].

Theorem 1.7.3([10]) Suppose that
(i) KOC([a,b]x[a,b]xR), fLC[a,b];
(ii) there existsL > 0, such that
[K(t,s,u) — K(t,s,y| < L|u~v|, forallt, dJ[a,b], u, VJIR.

Under these conditions the Volterra integral equatidm4) has a unique solution XC[a,b], which
can ke obtained by the successive approximations method, starting at any ebe€pa,b]. Moreover, if
Xy is the n-th successive approximatidhen tte following estimation is proved:

%
| x -x,

Ln
Ca,b] < Tn—l (T _ L) [n XO - Xl "C[a,b] ’ (135)
where 7 is an arbitrary positive number chosen such that 7> L.

Theorem 1.7.4([10]) Suppose that
(i) KOC([a,b]x[a,b]xd), JOR is a compact intervalfIC[a,b];
(ii) there existsL > 0, such that

[K(t,s,u) — K(t,s,¥| < L|uv|, forallt, dJ[a,b], u, V1J.
If r>0 is a positive real number such that

xOB(f;r) = x®)OJOR,
and tre following condition is fulfilled:

(i) M(b—a) < r, (condition of invariance of the spheEE(f ;1))
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where denote by M a positive constant, such that
K(t,su)] £ M, forall t, d1[a,b], uld OR, Jis a compact interval (1.36)

then the Volterra integral equation (1.34ps a unique solution*TB( f; n 0 da,b], that can be obtained

by the successive approximations method, starting at any elexgﬁdgl(f;r). Moreover, if ¥ is the n-th
successie approximationthen the estimation (1.333 satisfied

The proofs of the two theorems above were obtained also, by applying the Contraction Principlg
they can be found in [10] and for this reason are omitted.

Remark 1.7.2.The existence and uniqueness of the solution of Volterra integral equation was
studied in the space B[a,b] using the norm of Bieleckiefined by:

| f ||B[&b] =m?>é| f(| e, forevery 7>0, fOC[ab], (1.37)
ast<

where by B[a,b] was denoted the space C[a,b] endowed with the metric of Bieleckiefined by:

d(f, 9:= max | f(t— g(tje™ ™, forevery 7>0, f, g0OC[ab]. (1.38)

Remark 1.7.3.In a Fredholm integral equation the limits of integration are constant unlike the
Volterra integral equation

1.8 Mathematical models governed by functional-integral equations

In this paragraph we present two mathematical models governed by functional-integral equations: an
integral equation in physics and a mathematical model for studying the spread of an infectious disease.

1.8.1 An integral equation in physics

In the study of some problems from turbo-reactors industry, in the ’70, a Fredholm integral equation
with modified argument appears, having the following form:

b
=] K.tsgs xa, xbyds+ (), tO[ab], (1.39)

where K : [ab]x[a,b]xR’ - R, f:[a,b] - R.

This integral equation is a mathematical model with reference to the turbo-reactors working.

We have obtained the conditions of existence and uniqueness and of data dependence of the solution,
and, also, the conditions for approximating the solution of integral equation (1.39) and these results were
published in papers [1], [15], [16], [17], [18] and [20].

A problem which leads to the equation (1.39) is as follows.

We consider the functional-integral equation
b
X1 =] K1sX9), min x(¢).max x(¢))ds+ f(t) , t0[ab] (1.40)
2 as¢<s s<¢<h

and note that if we are seeking for increasing solutions, then we obtain the equation (1.39).
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Starting from the integral equation (1.39) we consider, in addition, a change in argument through a
continuous function g: [a,b] — [a,b], thus obtaining the following integral equation with modified argument:

b
WE] Ktsxs kg9, X3, Xb)ds+ f(t), tOabl, (1.41)

where K : [ab]x[a,b]xR* =~ R, f:[ab] - R g:[ab] - [ab].

The integral equation (1.41) was studied by author, establishing conditions of existence and
uniqueness, of data dependence and of approximating the solution, and these results were published in papers
[21], [22], [23], [24], [26] and [27] and will be presented in the following chapters.

Next, we present the results obtained by author in the study of integral equation (1.39).
|. Existence and uniqueness of the solution

Theorem 1.8.1(M. Ambro [1]) If
(i) KOC([a,b]x[a,b]xR’), fOC[a,b];
(ii) there existsL > 0, such that
IK(t,s,u,v1,Wi) — K(,S, b, Vo, Wo)| < L (| U=l |+ [ Vi—V2 [+ | Wi—W |),
for all t, d[a,b], ug, Up, Vi, Vo, Wi, WoOR ;
(i) 3L(b-a) < 1, (contraction conditioh

then the integral equatiofi.39) has a unique solution' XC[a,b], which can be obtained by the successive

approXmations method, starting at any elemegflC[a,b].
Moreove, if X, is the n-th successive approximatitren tke following estimation is proved:

3L(b-a)"
X% =% S %%—&"qm. (142)

Proof. We consider the operator A G ab] -~ (Jab], defined by the relation:

b
AX)t=] Kitsk$ xa, xbyds+f(t), tO[ab]. (1.43)

The set of the solutions of integral equation (1.39) coincides with the fixed points set of the operator

A
To apply the Contraction Principlel.3.1 and to obtain a theorem of existence and uniqueness of the

solution of integral equation (1.39), the operator A must be contraction.
We have

b
| (A0t (A E|[[ (K158, Kh- Ktsx$ 5<a,>s<b)>]d{s

b

</ (K1s)s,&)a kH- Ktsx 3 X3, x(b)ds| .

a

From the condition (i) it results that

b

b
LA+ AXOE (L] 605 X B+ X 2= x d+| xb- x(b]]ds
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and using the Chebyshev norrin the right hand, we obtain
| A1) = AX)()| <
< Lb armax [| 303- x(5)+[x@ - x(a+|x(b-x0)]=

=3 b= % 6 gy

Now using the Chebyshev norrim the left hand too, it results that
” A(Xl) - A(XZ)”C[a,b] =3 L( b- a) [n X1 % "c[a,b] ?

and from the condition (iii ) it results that the operator A is an a—contraction with the coefficient a = 3L(b-a).
Now, the conclusion of this theorem is obtained by applying the Contraction Principld.3.1 and the
proof is complete.

The following theorem contains the conditions of existence and uniqueness of the solution of the
integral equation (1.39) in the sphere E(f ;1) O Clab].

Theorem 1.8. (M. Ambro [1]) Suppos¢hat
(i) KOC([a,b]x[ab]x J), JOR is a compact interval f{OC[a,b];
(ii) there existsL >0, such that

IK(t,s, W, va,W) — K(t,S, b, Vo, Wo)| < L (| Ui—Up |+ | Vi—Va |+ | Wi—W5 | )

for all t, <1[a,b], ui, W, w1, Vo, Wy, Wo[1J;

(i) 3L(b—-a) < 1. (contraction conditioh
If r>0 is a positive real number such that

xOB(f;r) = xbHOJOR,
and
(iv) M(b-a) <r, (condition of invariance of the sphef_e(f ;1))

where denote by M a positive constant, such that
IK(t,s,u,v,w| <M, forall t, 91[a,b],u, v, wlJO R, J compct interval (1.44)

then the integral equatio(l.39) has a unique solution*MTB( f; 0 daDb], that can be obtained by the

succesise approximations method, starting at any elenwﬁtg(f;r). Moreover, if ¥ is the nth
successie approximationthen the estimatio(l.42) is satisfied

Proof. We consider the operator A'_B( f; ) - (aDb], defined by the relation (1.43).

The set of the solutions of integral equation (1.39) coincides with the fixed points set of the operator
A
In order to apply the Contraction Principlel.3.1, we establish under what conditions the sphere

E(f ;1) 1is an invariant subset for the operator A. We have:
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b

[ K(tsx( & x 8, xb)|ds

a

b
L ®or Oi=|] Ktsas ka w)d%s

and using (1.44) we obtain
b
| A3(d- f(9)< M ds= M(b-a) ,

where according to condition (iv) it results that the sphere TB( f; 0 da,b] is an invariant subset for the
operator A, i.e. g(f ;1)U 1(A). We can consider now the operator, noted also by A, A: g(f ;0 —>§(f 0,

defined by the same relation (1.43), and g(f ;1) is a closed subset of the complete metric space C[a,b].

By an analogous reasoning to that of the proof of theorem 1.8.1 and using the condition (ii) it follows
that the operator A satisfies the Lipschitz condition

” A(Xl) - A(Xz)”C[a,b] <3 L(b_ a)[n X1 - % ”C[a,b] ?

and according to condition (iii), it results that the operator A is an a—contraction with the coefficient a =
3L(b-a).

The conditions of the Contraction Principld.3.1 are fulfilled and therefore it results that the integral
equation (1.39) has a unique solution X' Dg(f ;1) 0 Cl[ab], and if X, is the nth successive approximation,

then the estimation (1.42) is satisfied.
The proof is complete.

II. Data dependence

Using the abstract data dependence theordrd.5 we obtain a result of data dependence of the
solution of integral equation (1.39) with respect to the functions K and f.
Now we consider a perturbed integral equation

b

W[ Kitsys ya ybydstht) , toab], (1.45)

where H : [a,b]x[ab]xR’ -~ R, h:[ab] - R.

We have the following data dependence theorem.

Theorem 1.8.3(M. Dobritoiu [20]) Suppose that

(i) the canditions of theoreni.8.1 of existence and uniqueness of the solution of integral equation
(1.39) in the spaceC[a,b] are satisfiecanddenote byx}, , the unique solution of this equation

(i) HOC([a,b]x[a,b]x R®), hOIC[a,b];
(iii) there exists#y, 7, > 0 such that

IK(t,s,u,yw) — H(t,s,u,v,\W| < #,, forall t, d[a,b], u, v, wIR
and

[f(t) - ht)| < »,, foralltd[a,b].

Underthese conditions, ifx; is a solution of the perturbed integral equatidm5), then

34



Preliminaries

* *
Xp = Xg

< n(b-ay+n,

clabl ~ 1-3L(b-a)

(1.46)

Proof Consider the operator A G abl - (Jab] from the proof of the theorem 1.8.1, defined by
the relation (1.43).
To the perturbed equation (1.45) we attach the operator B G a bl - (Ja,b], defined by the relation:

b
BY)t=] K,ts¢y ya ybyds+ht), tO[ab]. (1.47)

We have
| AX(t) = BOO(®)| =

<

b b
[ (Ktéxs(na(xb ds O] K,tsks x3 xbh)ds—h(t)

IN

b
[[ (K1g3s(¥a b= K.tsks xa, Xb)]d% +|[f()-het) <

b

J| (Ktgns(0a(xh- K,tsks xa, Xb)|d% + [f(H)-het)

a

IN

b

where according to condition (iii ) it results that
| AX(D- BOY(Y| < m(b—a)+n,, forall tO[ab],
and using the Chebyshev norrin the left side, we obtain
| A% = By S Mb=2) +17, .
Now, by applying the abstract data dependence theoredn5, the proof is complete.
[1l. Aproximation of the solution
In what follows we present an algorithm of approximating the solution of integral equation (1.39),

that was published in paper [1].
Assume that the conditions of theorem 1.8.2 are satisfied and therefore the integral equation (1.39)

has a unique solution in the sphere TB( f: r) 0 Ja,b], which we denote by X . In order to obtain the solution

X" we apply the successive approximations method and we obtain the following successive approximations
sequence:

Xo(t) =f (1)

b
K= K ts) 3 (3, % (b)ds+ f (1)

b
AOE [ KES X (B %-( 3, %o (D)ds+ f (D)
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Assume that KOC*([a,b¥[a,b]xJ’), where JOR is a closed interval and O C*[a,b]. We will

approximate the terms of the successive approximations sequence using the trapezoids formula (1.14) with
the estimation of the rest given by the relation (1.15).

We consider an equidistant division of interval [a,b] by the points a=1t, <t; <...<t,=Db.In the
general case for X(tx) we have:

m»—%&;wmam@mmm+

n-1
23 Kt G (R 5 (D KL D% (D, %0 (8, X ()] +
i=1

+ {pP+ Ry, k=0,n, mON, (1.48)

and

Ruud = 2 o [ K 55049 5@ 5 )]

12n &

Since KOCY([a,b]x[a,b]*xJ’) it results that there exists the derivative of the function K from the
expression of Ry k, and therefore it has to be calculated. So, we have:

[KCE %09, %@, >gﬂ_l(b))]S =

2 2
_0°K 0°K m_l(s)_'_aK[( oK

aSZ +2 6§X Xm—l (S))2 + D< m-1 (S) H
m-1 m-1 m-1
where
b
X ( )t:J Kts X, (3 %203, % (D)ds+ f(t),
"m 1(t) J~62K( ts% Z(sat;& Z(a) )gn Z(b))ds+ fn(t) .
Denote

ek suww |
\a\<z |a £10 29U v ows

, M,= max‘ f (a)(t)‘ )
as2
tTab]

Now, using the expressions of the derivatives of X (1), it results that

| %t (D] < (b—a)M, + M, ,
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| X (D] < (b=2)M, + M,
| X (0] < (b-a)M, + M, ,

and we obtain

[ K& s%i09. )Fn—1(a),>‘m_1(b))]JS M, +2My[(b-a)M, + M, ]+
+ M[(b— aM, + M2]2 + M1[(b_a)M1 + Mz] =
= M +3M[(b- M, + M,]+ M [(b-a)M, +M,] =M, .

It is obvious that M, doesn’t depend on mand k, so we have the estimation of the rest:

b-a)’

o M, =M,(K,DK, f,D7f), |a|<2 (1.49)

Rl <M,

and we obtain a formula for the approximate calculation of integrals of the successive approximations
sequence. Using the method of successive approximations and the formula (1.48) with the estimation of the
rest resulted from (1.49), we suggest further on an algorithm in order to solve the integral equation (1.39)
approximately. To this end, we will calculate approximately the terms of the successive approximations
sequence and we obtain the following result:

Xo(t) = (1)

b
X(1) =] Kk $%(9), ¥(3, x(byds+ f(t,) =
b -
=[ K(t.s f(9), f(a, f(b)ds+ f(t) =%[ K(t.a f(a), f(a), f(b) +

n-1
+22 Kt & f(D, f(a, f()+ K(t, b f(b), f(a), f(on]+ f(t) +R, =
i=1

=X({)+ Ry, k=0,n

xko:i Kt SX & X3 x(b)ds+ () =
=220 K aX &3 )25 Kk £ XD x(@ 50+
+ KL DXh, X(3, x(D)]+ f(t)+ Ry =

b- ~ ~ ~
=22 K ax B RA3* R (DR +
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n-1
8 K40 BH@ R R
+ (<k9t ,51{( b+ ,RI’N?( a+ R,n9~)f(b+ R,n)]+ f(tk)+R2,k —

B n-1
= 2 B0 K f a3 () + 25 Kl HD K70+

+ K B DX AN D]+ D+ Be=%(1)+Ry, k=0,

and the estimation of the rest

b-a
2n

Rl = 2200 3]Ry|+ 6| RI+3| R o] R <

_ 3 _ 3 _ 3
< 3(b-a)LM, ?2:‘2) +M05(?2n‘? = (tl)z:; IM,[3L(b-a) +1] .

The reasoning continues for m=3, ... and through induction we obtain

Kot = 22Kk %13, %, (8%, (0) +

n-1
23 K (L BT (D) F K b0, (B, %oy (8, Kooy (B)] +

+ {+ R =%(W+R,, k=0n
and
3
[ (?Zaz) M, B (b-2)™ L™ +. . .+1], k=0.n.
n

Since 3L(b-a) < 1, it results that the conditions of the existence and uniqueness theorem 1.8.2 are
satisfied and we have the estimation:

(b-ay’

12rP[1-3 L(b—a)]EMO ' (1.30)

‘ﬁmk‘ <

Thus we obtain the sequence (7(m(tk )) k= m , that estimates the successive approximations

moN 2
sequence (Xm)ij using an equidistant division of interval [a,b] by the points a=1t,<t; <...<t,=b, with

the following error in calculation:

(b-a)’
12n2[1—3L(b—a)]DM° '

| Xeft) = Rop(t)| < (1.51)

Remark 1.8.1If K, t,sp kK3 XB)= K(t s X9)), then we obtain the existence and uniqueness

theorems given in [10] and the method of approximation is the one given in [44] and [45].

38



Preliminaries

Another integral equation of a similar type as the equation (1.39) is the following integral equation:
b
WE] KHThsks xa, Xbyds+ f(t), tO[ap], (1.52)
a

where K : [ab]x[ab] - R, h:[abxR’ = R, f:[ab] - R.

In the study of this equation were established several conditions for existence and uniqueness and for
data dependence of the solution of integral equation (1.52) and these results were published in paper [28] and
we present below them.

First we present two theorems of existence and uniqueness of the solution of the nonlinear Fredholm

integral equation (1.52), in the space C[a,b] and in the sphere E(f ;1) O C[a,b], respectively.

Theorem 1.8.4(M. Dobritoiu [28]) Suppose that
(i) KOC([ab]x[a,b]), hOC([a,b]xR?), fOC[a,b];
(ii) thereexistsa, 5,y > 0, such that

Ih(S,U,,Us) — (S, M, Vo, W5)] < o (| U=V |+ B | U=V [+ 7 [ Us—Vs ),

for all sO[a,b], uy, Uy, Us, Vi, Vo, ViR ;
(i) Ml +B+yib-ay<1, (contraction condition
wherewe denote bk is a positive constant such that
IK(t,9)| < Mg, forall t, <][a,b].

Under these conditions the integral equatidrs2) has a unique solution ®C[a,b], which can be
obtained by thsuccessive approximations method, starting at any eleryei@[a,b].
Moreover, if xis the n-th successive approximatitren the following estimation is fulfilled:

. My@+p+pap-a)

”X*—Xn”c[a,b] T 1= MK(ar+ﬁ+y) qb—a)

0% = X1 gy - (1.53)

Theorem 1.8.5(M. Dobritoiu [28]) Suppose that
(i) KOC([a,b]x[a,b]), hOC([a,b]xJ*), JOR is a closed interval f{OC[a,b];
(ii) there existsa, 8, y > 0, such that

Ih(s,U,tp,Us) — h(s, M,Vo,V3)| < o ([ Ui=Vi [+ B [ Up—Va [+ )] Us=Vs ),

pr all s[a,b], u;, w, U3, vi, Vo, 313, JO R is a closed interval

(iii) Mlla+g+pib-a)<1. (contraction condition
If there existsr > 0 such that

xOB(f;r) = xbHOJOR,
and hefollowing condition id fulfilled
(iv) MMp(b—-a) < r, (condtion of invariance of the spheﬂg(f ;1))

where we denote with M positive constant such that, for the restrictiggoh,’ , J= R conpact, we have:

lh(s,u,v,w| < M, forall s[a,b], u,v, WIJOR, (1.54)
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then the integral equation (1.5h)as a uniquesolution QDE( f; 0 da,b], that can be obtained by the

successive approximations method, starting at any elemérﬁ(f;r). Moreover, if ¥ is the nth
successie approximationthen the estimation (1.533 satisfied

In order to study the data dependence of the solution of the integral equation (1.52) we consider the
following perturbed integral equation:

b
WE] KdSIksys ¥ ¥ds+gt), to[ab], (1.55)

where K : [ab]x[ab] - R, k:[ab]xR’ -~ R, g:[ab] - R.

The result presented below is a theorem of data dependence of the solution of integral equation
(1.52).

Theorem 1.8.6(M. Dobritoiu [28]) Suppose that

(i) the canditions of theoreni.8.4 of existence and uniqueness of the solution of integral equation
(1.52) in the spaceC[a,b] are satisfiecanddenote byx the unique solution of this equation

(i) kOC([ab]xRY), grC[a,by;
(iii ) there existsny, 7, >0 such that
Ih(s,u,vw) — k(s,u,v,\W| < 5, forall sl[a,b], u,v, wIR
and
[f(t)—gt)| < #,, forall tO[a,b].
Under these conditions, if is a solution of the perturbed integral equation (1.35gn

M7, (b-a)+n,
¢ I-My(a+B+yb-a)

*

(1.56)

¥ -y
The proof of these three theorems above can be found in [28] and for this reason are omitted.

1.8.2 A mathematical model for studying the spread of an infectious disease

In the various problems that arise in connection with the development of populations can occurr
some phenomena that occur periodically.

We consider an isolated population and suppose that:

- the population has a constant number of individuals, i.e. it is in the vicinity of a population of stable
balance type;

- the population consists of two disjoint classes: individuals susceptible to infection and infected
individuals;

- infection does not lead to death and does not provide immunity;

- infection period (duration of infection) is constant and denote by 7, 7> 0.

Knowing the number of individuals who become infected at the time {, is required to determine the
number of individuals infected at time t.

Denote by x(t) the number of individuals of population which are infected at time t and let f(t,X(t)) be
the number of newly infected individuals per unit of time ( f (t, 0)=0).
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Under these conditions the following non-linear integral equation is an important mathematical
model for studying the spread of an infectious disease with a periodical contact rate that varies seasonally:

k1=[ {sx9)ds, tOR (1.57)

t-r

Also, the integral equation (1.57) can be interpreted in the terms of population growth. Consider a
single species population and assume that:

- X(t) represents the number of individuals present in this single species population at time t (they
assumed that the population is uniformly distributed in a given geographical area) ;

- f(t,x(t)) is the number of the new births per unit of time ;

- T is the lifetime ; it is assumed that each individual lives to the age 7 (7> 0) exactly, and then dies.

Under these conditions the equation (1.57) is the mathematical model of the growth of a single
species population when the birth rate varies seasonally.

The mathematical model of the spread of an infectious disease, was studied by giving the conditions
of existence and uniqueness of positive, non-trivial and periodic solutions of period w> 0, and highlighting
some interesting properties of the solutions. Note the results obtained by K.L. Cooke and J.L. Kaplan [13],
D. Guo and V. Lakshmikantham [30], I. A. Rus [53], [56], R. Precup [47], [48], [49], R. Precup and E. Kirr
[50], C. Iancu [32], [33], I. A. Rus, M. A. Serban and D. Trif [71].

We present below some results on positive, non-trivial and w-periodic solution of integral equation
(1.57), given by K.L. Cooke and J.L. Kaplan [13], I. A. Rus [56] and R. Precup [47].

I. Existence and uniqueness of the solution

Theorem 1.8.7(K.L. Cooke, J.L. Kaplan [13]) Suppose that
() fOC(RxR,) and f(t,0)=0, forall tUR;
(ii) there existsw> 0, such that
f(t+taw u) =1(t, u), forall tR and ulR; ;
(i) there existsM > 0, such that
0 < f(tu < M, forall tOR and udR; ;

(iv) there existsx; > 0, such that

ﬂ there exists and is continuous, falR 0 <u<x

ou

and satisfies the condition

inf i(t,O):a>0 .
t0[0,+) AU

If ar>1,then the integral equatiofi.57) has a non-trivial anduv-periodic solution

This result was improved by I. A. Rus in [56], obtaining the following result of existence and
uniqueness of an @wperiodic solution of integral equation (1.57).

Let 0<m<M and 0<a<p.
Theorem 1.8.8(I. A. Rus [56]) Supposé¢hat
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(i) fOCR x[a.B]);
(i) there existgv> 0, such that

f(ttawu) = f(t,u), forall tOR and u(a,B];
(iii) m<ft,uy <M, forall tUOR and ulJa,g];
(ivy asmr, f=Mr;
(v) there exists such that

| f(t,u) —f(t,v) | < L()Pu-v|, forall tOR and u, \J[a,p];

t
(vi) [I(9ds<qg<1, forall tOR.

t-r

Under these conditions the integral equatiéh57) has a uniquew-periodic solution in (R,[a,8])
space.

II. Data dependence

In paper [56] I. A. Rus gives a result, presented below, of continuous dependence with respect to the
function f, of an w- periodic solution of integral equation (1.57).
Consider the perturbed integral equation

gX=[ gsy9ds, tOR, (1.58)

where g: R x[a,] — R . Denote by X, the set
% ={ 0 @Rla.B])/ Xt+w) = xb, tOR}
and let d be a metric on X, , defined by the relation:

, forall X, yOX,,

d(x y) = max | x(t) = y(t)
tO[0,w)
The following theorem is true.

Theorem 1.8.9(1. A. Rus [56]) Supposé¢hat

(i) the conditions of theorein8.8 of existence and uniqueness ofcar periodic solution of integral
equation(1.57) are satisfied and denote bytke uniquew— periodic solution of this equatipn

(ii) the functiongdC(Rx[a,f)) is periodic,of periodw, i.e.
g(t+au) = g(t,u), forall tUR and ul[a,f]

and
m< g(t,u) <M, forall tOR and ull[a,5];

(iif) there existsy >0 such that
| f(t, u)—g(t, u)| < n, forall tOR and ud[a,B];

Under these conditions, if" yis a solution of equatiofl.58), then
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dx,y) < 15 (1.59)
q

When the number of infected individuals, ¢(t) for tL[—7,0], is known, i.e.
X(t) = ¢h(t) for tO[-7,0], (1.60)

then can be studied the existence of the positive and continuous solutions of the integral equation (1.57)

([47D.

Suppose that ¢h(t) is a positive continuous function on interval [—7,0] and satisfies
0

P0)= b= [ {s@(9)ds. (1.61)
-T

Then the problem (1.57)+(1.60) is equivalent with the following initial value problem:

X(H= f(txt) - f(t—-7,x(t-1)), tO[O,T]
(1.62)
X(t)=¢((t), tO[-71,0].

An important result is the following theorem.

Theorem 1.8.10(R. Precup [47]) If :
(i) f(t,x) is non-negative and continuous fofl [-7,T] and Xx=0 ;
(i) ¢p(t) is continuousgh(t) =a>0 for t O [-7,0] and satisfies the conditiqn.61);
(ii) there exists an integrable functigrsuch that
ftx)=gt) for tO[-7,T] andx 2a

and

jgs)dsza for tJ [0, T];

t-1
(iv) there exists a positive functioxp such that% is locally integrable ond,+o)
X

f(t,x) < h(x) for t0[0,T] and x=a

and
71
T < [—dx,
b N(X)
thenthe integral equatior{1.57) has at least one continuous solution ard x(t) = a, for tO[-7,T], that
satisfies the conditioi .60).
If the condition (iv) of theorem 1.8.10 is replaced by the following more restrictive condition ([47]):
(iv’) there existsL >0 such that
| f(t,x) —f(ty)| < Lix-y, forall tO-7,T] and x,y>a,
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then the following theorem is true.

Theorem 1.8.11(R. Precup [47]) If the conditiongi), (ii), (iii) of theoreml.8.10 and the condition
(iv’) are satisfiedthen the integral equatiofi.57) has a unique continuous solution xt) =2 a, for t [ [
r,T], that satisfies the conditian.60).

[ll. Aproximation of the solution

Knowing that the integral equation (1.57) admits a unique solution one can study its approximate
solution by numerical methods.

Assume that the conditions of theorems 1.8.10 and.1.8.11 are satisfied and therefore the integral
equation (1.57) has a unique continuous solution on interval [-7,T], denoted by ¢, solution that can be
obtained by the successive approximations method. We have the sequence of successive approximations:

o) =(t) for tU[-7,0)

0
po) = @(0)= b= [ 1 s@(9)ds

$(3=[ (sp,(9)ds (1.63)

t-r

On(1= | (5P (9)ds

t-r

..... , for t[0,T].

The study of this algorithm of approximating the solution by using the trapezoids method for
calculating the integrals from the terms of successive approximations sequence was made by C. Iancu in
[32], [33]. Also, in [33], C. Iancu gives another method for approximating the solution of integral equation
(1.57), using the spline functions method.

I. A. Rus, M. A. Serban and D. Trif published in [71] an interesting study of the equation (1.57) from
biomathematics, proving that the sequence of successive approximations generated by the steps method
converges to the solution of integral equation (1.57).

Using the Picard operators technique, I. A. Rus, M. A. Serban and M. Dobritoiu studied the existence
and uniqueness, and upper and lower solutions, data dependence and differentiability with respect to a
parameter of the solution of integral equation (1.57). The results of this study are published in paper [25] and
are presented in chapter 6.
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Existence and uniqueness of the solution

2 Existence and uniqueness of the solution

Several of the basic treatises which have the integral equations like theme, are the following: T.
Lalescu [21], I. G. Petrovskii [26], K. Yosida [59], [60], Gh. Marinescu [22], A. Haimovici [19], C.
Corduneanu [7], [8], Gh. Coman, I. Rus, G. Pavel and 1. A. Rus [6], W. Walter [58], D. Guo, V.
Lakshmikantham and X. Liu [17], W. Hackbusch [18], D. V. Ionescu [20], St. Mirica [23], V. Muresan [24],
[25], A. D. Polyanin and A. V. Manzhirov [28], R. Precup [30], [35], I. A. Rus [39], [40], [43], [48], M. A.
Serban [55], Sz. Andras [5].

The existence and uniqueness of the solutions of some particular integral equations were studied in
many papers, of which we mention several: R. Ramalho [36], C. A. Stuart [52], B. Rzepecki [51], I. A. Rus
[38], [41], [42], [44], [45], [46], [47], [49], I. A. Rus, S. Muresan and V. Muresan [50], R. Precup [29], [31],
[32], [34], R. Precup and E. Kirr [33], D. O’Regan and A. Petrusel [37], M. Albu [1], A. Petrusel [27], Sz.
Andras [3], [4], M. A. Serban [53], [54], [56], M. A. Serban, I. A. Rus and A. Petrusel [57], M. Dobritoiu, L.
A. Rus and M. A. Serban [15], M. Dobritoiu (Ambro) [2], [9], [10], [11], [12], [13], [14], [16].

In this chapter we will present a study of existence and uniqueness of the solution of integral
equation with modified argument

b
WE] Ktsxs & g9, X9, Xbyds+ f(t), tO[ap], 2.1

in the space C([a,b],B) and in the sphere g(f ;1) 0OC([a,b],B), where (B,+,R,|-|) is a Banach space, in the
general case, and in two particular cases for B, namely: B=R™ and B=I*(R).

This chapter has five paragraphs. In the paragraphs 1, 2 and 3 one gives the conditions of existence
and uniqueness of the solution of the integral equation with modified argument (2.1) in the space C([a,b],B)

and in the sphere g(f ;1) OC([a,b],B), in the general case, and in the particular cases which were mentioned

above. To determine these results, the following basic theorems were useful: the Contraction Principld.3.1
and the Perov’s theorem.3.4.

The paragraph 4 contains three examples, namely: two integral equations with modified argument
and one system of integral equations with modified argument, and for each of these, one uses the results
obtained and presented in the previous paragraphs in order to establish the conditions of existence and
uniqueness of the solution.

In the fifth paragraph, one studies the existence and uniqueness of the solution of an integral
equation with modified argument, which is a generalization of the equation (2.1), namely:

OE [ Kts&s Xd9), Xy0)ds+ (1), t0Q,

Q

where Q0 R™ is a bounded domain, K : QxQx F'x R'x QoQ,R" - R™, f:Q - R™ and 915 Q.

The results presented in this chapter were obtained by the author and published in the papers [13]
and [16]. We present them below.
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Chapter 2

2.1 The general case
A. Existence and uniqueness of the solution in the space C([a,b],B)

Let (B,+,R,|-|) be a Banach space. Consider the integral equation (2.1) and suppose that the following
conditions are met:

(a)) KOC([a,b]x[a,b]xB*, B) ;
(aZ) fDC([azb]aB) 5
(as) gOC([a,b], [a,b]) .

The following theorem is true.

Theorem 2.1.1. Suppose that the conditiores X-(a;) are satisfiedIn addition, sppose that
(ay) there existsLx >0 sud that
OK(t, s, U, Uy, Us, Ug) — K(t, S, Vi, Vo, V3, Vg) [ <
< Ly (Oup—v; CH-Dup—vo ) CH-Dus—vs) CH-Clug—vy) 0)),
for all t, sl[a,b], u;, vi(IB, izﬁ ;
(as) 4L (b-a)<1. (contraction condition

Under these conditions, it results that the integral equation with modified arguthénthas a
unique solution XJC([a,b],B), that can be obtained by the successive approximations method, starting at
any elenent x,[1C([a,b],B).

Moreover, if x, is the nth successive approximaticthen te following estimation is true:

. 4" 1% (b-a)"

d(x,x,) <

*1-aL (b-a) d(%,%) - 2.2)

Proof. On the space C([a,b],B), we consider the metic of Chebyshewenoted by d and defined in
chapter 1, by the relation (1.5).
Also, we consider the operator A : C([a,b],B) —C([a,b],B), defined by the relation:

b
AOE[ KLsxs €G3, Xxa, Xbyds+ f(t), tO[ab]. (2.3)
a
The set of the solutions of integral equation (2.1) in the space C([a,b],B) coincides with the fixed
points set of the operator A, i.e. with Fa .
From the conditions (&;)—(a,) we have

| (D)= Ay)(D)| =

<

b b
[ CKtsxs kps(pa(pp ds] Ktsys ¢ g3, ¥a, Yb)ds

b

I (Ktexg x@s (Ra(p- Ktsys §69, Ya, b)|ds

a

<

<
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<

B Cxs (Y| (@3- yeR|+| &z val+| xb- yb|dss

V=T

b
<4 L dxyf ds=4L(b-gd(xy), tO[ab].

Therefore, with respect to the metric of Cebyshgthe operator A satisfies the Lipschitz condition
with the constant 4L, (b—a) and we have:

§ Ax AY)< 4L (b-adxy), forall xyOC([ablB), 2.4)

and from the condition (as) it results that the operator A is an a-contraction with the coefficient a =
4L (b-a).

The conditions of the Contraction Principld.3.1. being satisfied, it results that the integral equation
(2.1) has a unique solution X 0C([a,b],B), that can be obtained by the successive approximations method,
starting at any element X[ 1C([a,b],B).

If we denote by X, the n-th successive approximation, then the estimation (2.2) is true and the proof
is complete.

B. Existence and uniqueness of the solution in the sphere §(f ;1) 0 C([a,b],B)

In order to study the existence and uniqueness of the solution of integral equation (2.1) in the sphere
E(f ;1) 0 C([a,b],B), we consider that the conditions (a,) and (&) are met and we replace the condition (a;)

by the following condition:

(a’) K OC([a,b]x[a,b]xJ*, B),J OB compact .

In addition, we denote by Mg a positive constant, such that for the restriction K |[ab]x[ab]x s JOB
compact, we have:
[K(t,s,Up, U, Us,Uy) | € My, forall t, sC[a,b], u,Uy,us,us1d. 2.5)

The following theorem is true.

Theorem 2.1.2. Suppose that the conditiote’), (a;) and (a;) are met In addition, suppose that
(ay’) there existsLyx >0 sud that

CK(t,8,U,Up, Us,Uy) — K(1,5,V1,V2,V3,V,) [0 <

< L (Oup—V; CH Db V) O Dus—V3) - Oug—va) D),

for all t, sC[a,b], u;, vi1J, i=1,_4 ;
(as) 4Lc(b-a)<1. (contraction conditiol
If r>0 is a positive number such that

xOB(f;r) = x®)O0JOB,

and

(as) Mc(b—a)<r, (condtion of invariance of the sphet_ﬁ(f ;1))

51



Chapter 2

then the integral equatiof2.1) has a unjue solutionx O] E(f ;1) O (C[a,b],B), that an be obtained by the

succesise approximations method, starting at any elem@ﬁtg(f ;1) 0 (C[a,b],B), and if we denote by,x
the nth successive approximatiothen the estimatio(®.2) is satisfied

Proof. We attach to the integral equation (2.1) the operator A : g(f ;1) — (C[a,b],B), defined by the
relation (2.3).
Also, we suppose that there exists at least one positive number  with the property above:
xOB(f;r) = x®H)O0JOB,
In order to apply the Contraction Principlel.3.1 we establish the condition of invariance of the
sphere E(f ;) for the operator A. Thus, we have:

b
| A0t =] Ktss «g$>,><a,><b))d%s

<

| Ktsxs €939, X3, Xb)ds,

V=T

and using (2.5) the following inequality is obtained

| A%t - f(B] < Mc(b-a), forall tO[a,b],

and now, from the condition (&) it results that the sphere g(f ;) is an invariant subset for the operator A,
ie. g(f ;1) O 1(A). Now, we have the operator A : g(f i) — g(f ;1) , also denoted by A and defined by
the same relation (2.3); the sphere E(f ;1) is a closed subset of Banach space (C[a,b],B).

The set of the solutions of integral equation (2.1) in the sphere g(f ;1) 0 C([a,b],B) coincides with

the fixed points set of the operator A.

By an analogous reasoning to that of the proof of theorem 2.1.1 and using the condition (a,’) it
follows that, with respect to the metric of Chebyshgthe operator A satisfies the following Lipschitz
condition:

G Ax AY)< 4L (b-adxy), forall x,yOB(f;r)

and according to the condition (&s), it results that the operator A is an a—contraction with the coefficient a =
4Ly (b-a).
The conditions of the Contraction Principld.3.1. being satisfied, it results that the integral equation

(2.1) has a unique solution X*Dg(f ;1) 0 C([a,b],B), that can be obtained by the successive approximations
method, starting at any element X,[] E(f ;1) 0(C[a,b],B).

If X, is the n-th successive approximation, then the estimation (2.2) is satisfied and the theorem is
proved.

2.2 The case B=R"

In the particular case B = R™ we have the following system of Fredholm integral equations with
modified argument
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b
WE] Ktsxs €9, X3, xb)ds+ f(t), tO[abp], (2.6)

where X : [ab]—R", K : [ab]x[ab]xR"™xR"xR"xR"—-R™ g : [ab]—[ab], f: [ab]—R", which has the
form:

b
QO E] K, tss & 63, X, Xb)ds+ f(t)

b
X l=£ K(15X9,X9(9), X8, Xb)ds+ f,(1) t0[ab]. 2.6

b
HOE [ KL tsKs &GP, X3, Xb)ds+ ()

In order to give some conditions of existence and uniqueness of the solution of the system (2.6) in
the space C([a,b],R™) and in the sphere g(f ;1) 0 C([a,b],R™) respectively, we will apply the theorems 2.1.1,
2.1.2 and the Perov’s theorem.3.4.
Now, in the particular case B = R™, applying the theorem 2.1.1 we obtain the following theorem of
existence and uniqueness of the solution of the system (2.6) in the space C([a,b],R™).
Theorem 2.2.1. Suppose that
(b)) KO C([a,b]x[ab]xR™ xR"™ xR™ xR"™, R") ;
(by) fOC([abl,R™;
(bs) g0 C([ab], [a,b]) .
(by) there exists L >0, such that
| KCESY, W, ULUy) = Ki(t, SV, V3, V)
U = Vlio +1 4= Yn +1 0= o+ =40 )
for all t, sO[ab], Uy, Us, Us, Us, Vi, Vs, Vs, VOR™, i = 1,m;
(bs) 4L(b—a)<l1.

Under these conditions, it results that the system of integral equdfignshas a unique solution
X OC([a,b],R™), that can be obtained by the successive approximations method, starting at any element

XOC([a,b],R™. If Xo = (Xo1, Xoz, - - . , Xom) IS the starting function andix (X1, X2, - - . » Xkm) IS the k-th
succesise approximationthen the following estimation is satisfied
. [4 L(b-a)*
HX Xk”o([ab]R 4L(b a) [n)(o 1||d[ab],R’") : 2.7

Remark 2.2.1. If we consider one of the orms presented in chapter 1: the Euclidean norm|| [ﬂ]E , the

Minkowski's nomﬂ [I]JM , or the norm of Chebysh#l\[ﬂ]C , defined on the space R"™, then in the theorem 2.2.1
is amended accordingly the assumptions (b,) and (bs) and the estimate (2.7) as follows:

a) Euclidean norm
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(by)) there exists L >0, such that

| K(tSY, U, Us,Uy) = Ki(t, S, W, W, Y,)|

1 1 1 1

for all t, sO[ab], u, Uy, Us, U, Vi, Vo, V5, V\OR™, i =1,m;

(bs)) 4/mL(b-a)<1

and

: VmL(b
H X _Xk“ C([a,b],Rm = 1[4 4r1/1r5n|_(ba)]a) [nXO X ”C([a,b],Rm) : 2.7,)

b) Minkowski's norm

(byy) there exists L >0, such that

| Kotsp uow )= K(ESY, W, %Y,

{81 4=l $la -l 50wl o

for all t, sO[a,b], u, U, Us, Us, Vi, Vo, V5, V\OR™, 1= 1,m;

(bsy) 4mlb—a)<1
and

[4mL(b a)]
‘ Xk“c([a,b],Rm = —4ml(b- a)EIM l"c{ab R”‘)' (2.72)

c) Chebyshkv's norm

(by3) there exists L >0, such that

max| K( 1Sy, U, U,uy) = Ki(t, S\, %, %,v,)| <

1<ism

< L(max

I< jsm

U — V| + max ‘uzi —V,;| + max
I< jsm

1< J<m 1< J<m

for all ta SD[asb]a Uy, Uy, Us, Uy, Vi, Vo, V3, V4|:|Rm B = Lm’

(bss) 4L(b—a)<1

In what follows, using the Perov's theorem 1.3.4, we establish another result of existence and
uniqueness of the solution of the system (2.6) in the space C([a,b],R™).

In order to apply the Perov’s theorem 1.3.4, we consider the vectorial norm on the spac€([a,b],R™)
presented in chapter 1 and defined by the relation (1.7):

and

[4L(b-a)]*
d danem) = 1-41(b-a)

0% =% | apyam) - (273)
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%] X
||x||C =| .. |, forall x=| ... |OC([ab],R™),

ol X

. k=1m .

where |, | = max| x ()

Thus, we obtain a complete generalized metric space. In addition, suppose that the function K
satisfies the generalized Lipschitz condition with respect to the last four arguments:

(bs) there exists Q My.(R:) suchthat

| Ktsy u, u, W) — KEsy,v,v,v)|. <

< Qflu- vl +lu - vl *lu = vl +u - v )

for all t, sO[a,b], u, vOR™, i=14,

where we denote by || W|| = (|V\4 Wm|) the norm of an element WOR™ .

seeey

Now, applying the Perov’s theorem 1.3.4, we obtain the following result.

Theorem 2.2.2. Suppose that the conditiotis)—(b;) and(bs) are satisfiedin addtion, suppose that
(b)) [4(b— a)QT —0 as n— o,

Then the system of integral equation@.6) has a unique solution’ XC([a,b],R™), tha can be
obtainel by the successive approximations method, starting at any elegnen@([ a b], R™) . If x, is the n
th succssive approximation, then the following estimation is satisfied

| ¥ =x%| = 4b-aQ"d1,-4b-ad " % - x| . (238)
Proof. We consider the operator A : C([a,b],R™) — C([a,b],R™), defined by the relation:
(M) Fi K LS 69, Xa, Xb)ds+ f(1), tI[ab], (2.9)
ie.
A t{ K. LS & G 9), X3, Xb)ds+ f,(0)

b
A XOE=] K(EsX9,X9(9), X3, XD)ds+ f,(t)

AX)(L) = (2.9

b
ANOE [ KL ESKE & 69, X3, X)ds+ fu()

From the conditions (by), (b,) and (b;) we deduce that the operator A is properly defined.

One observes that the set of the solutions of the system (2.6) in the space C([a,b],R™) coincides with
the set of the fixed points of the operator A, defined above.

Next, check the conditions of the Perov’s theorer.3 4.

We have the difference:

55



Chapter 2
| ACY(H = A(Y)D)|
| A)(t) - Ay = C =
| AX(H) = AL(Y)()|

b
[[ K ts0s x@p. &a xH)- K(tsYS.y( §9. Y3, ><b)>]d{

[[ W . teXs X s (Ra(XP- K.ty ¥ G 9. ya,xt)))]d%

| (K texd X Qs (Ra(Xb- K, tsys ¢ 6%, ¥a, yb)|ds

L =T

IA

b

[] mK . tEeXL X Ps (Wa(Wp- K. tsyks § 69, ¥a, yb)|ds

of which under the conditions (bs) one obtains the estimate:

200 =B e} = (0= AAxY]

and we deduce that the operator A satisfies a generalized Lipschitz condition, with the matrix 4(b-
a)QUMmxm(R.), and from the condition (b,) it results that this operator is a contraction.

The conditions of the Perov’'s theorem.3.4 being satisfied, it results that the system of integral
equations with modified argument (2.6) has a unique solution in the space C([a,b],R™) and the theorem is

proved.

Now, in order to give conditions of existence and uniqueness of the solution of the system of integral
equations (2.6) in the sphere B(f;r) 0 C([a,b],R™,

B £ 9={>]Qrab,R"||x-f| <r roM,(R)}DCIabLRY,

we apply the theorem 2.1.2 in the particular case B = R™ and we obtain the following result.

Theorem 2.2.3. Suppose that

(b)) K OC([ab]x[a,b]xJ*, R™), J O R™ conpact;
(by) fOC(ablR™;

(bs) g0 C([abl], [a,b]);

(by’) there exists L >0, such that

| K(ESY, U, u,U) — Kt SV, %, %,v,)| <

< v Ve Y= e+ 0= + 0= Vi)

for all t, Sl:l[a,b], Uy, Uy, Uz, Uy, Vi, Vo, V3, V4|:|\] OR™ , i= l,m,
(bs) 4L(b-a)<1.
In addition, suppose that there exists at least one positive nunsush that
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Existence and uniqueness of the solution

xOB(f;r) = x®)OJOR™,

and thefollowing condition is satisfied:

(bg) M(b—a)<r (condition of invariance of the spheé(f ;1)),
where we denote by a positive constant, such that for the restrictim[ab]x[ab]xj4, JOR™ compact, we
have

IK(t,s,U;,U,Us,Ug)| < M, for all t,sO[a,b], uj,u,us,u0)0R™. (2.10)

Then tke system of the integral equatiq@s) has a unique solution*EE(f ;1) 0 C([a,b],R™), that

can beobtained by the successive approximations method, starting at any elerﬁ{mt of 0 C([a,b],R™.
If X, is the starting function and¢xs the k-th successive approximatithren tle estimatg2.7) is true

Applying the Perov’s theorem 1.3.4 we obtain another result of existence and uniqueness of the
solution of the system of integral equations (2.6) in the sphere E(f ;1) 0 C([a,b],R™) which is presented

below.

Theorem 2.2.4. Suppose that the conditiorgb;’), (b,), (bs) and (b;) are satisfied In addtion,
suppose that

(bs’) there exists QI My«(R:) stch that

” K,t,SU, U, y, lz{)_ KIS\{sVzanVz;)"c =

< Q- Ao +lu- vl +Hlu = wle +u-vil)
forall t,sO[ab], u, vOJOR™, i =14 .
If r 0 Mp«(R:) such that
xOB(f;r) = x®)OJOR™,
and the flowing condition is satisfied
(bg’) M (b—a)<r (condition of invariance of the sphet_ﬁ(f 1)),
My
where we denote by, =| ... |OMmn(R:) a matrix with positive constants as elements, such that for the
My

restriction K| J 0 R™ compact, we have

abjxJd*’

| Ktsy,w,u,u)]c <My, forall tsd[a,bl, u,t,us,u0J0 R™ (2.11)

Then tle system of integral equatio(ix6) has a unique solution*Mg(f ;1) 0C([a,b],R™), that can

be obtaned by the successive approximations method, starting at any ele(méé(f;r), and if the rth
succasive approximation is,xthen the estimat@.8) is satisfied
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Proof. We consider the operator A : E(f ;1) —C([a,b],R™), defined by the relation (2.9) and we

establish under what conditions the sphere g(f ;1) OC([a,b],R™ is an invariant subset for the operator A. We

have:

<

| ™t O =

b
[ &tsxs &g, xa, xb)ds

C

b

<[] Ktsxs «g¥. xa.xb)| ds

a

and using the relation (2.11) it results

| A= f(B]. <My (b-a), forall tO[ab],

Now, from the condition (bg’) it results that the sphere E(f ;1) is an invariant subset for the operator
A ie. E(f ;1) OI(A) and we have the operator A: E(f ) — E(f ;1) , denoted also by A and defined by the
same relation (2.9), where g(f ;1) is a closed subset of the Banach space (C[a,b],R™).

The set of the solutions of the system of inttegral equations (2.6) in the sphere g(f ;1) 0 (C[a,b],R™)

coincides with the fixed points set of the operator A, defined by the relation (2.9).

By an analogous reasoning to that of the proof of theorem 2.2.2 and using the conditions (bs’) and
(by) it results that the operator A is a contraction. Therefore, applying the Perov’s theorem 1.3.4, it results the
conclusion of this theorem and the proof is complete.

2.3 The case B=1%R)

In the particular case B = |*(R) we consider the Fredholm integral equation with modified argument
b
e[ Ktsxs &g, xa, xhyds+ f(t), tO[ab], (2.12)
a

where x: [ab] —I*(R), K : [ab]x[ab]xI*(RxI*(RxI*(R)XI*R) — I*(R), g: [ab] —[ab] and f: [ab] —
I>(R), which has the form:

b
E] K, tsxs & 63, X3, XD)ds+ f(t)

b
HOE[ K, L5k & g9, X3, XD)ds+ (1)

................................................................. ., tO[ab] (2.12)

and we apply the theorems 2.1.1 and 2.1.2 to give some conditions of existence and uniqueness of the
solution of integral equation (2.12) in the space C([a,b],1*(R)) and in the sphere E( f;r)0 C([ab], I'(R)).
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Existence and uniqueness of the solution

Applying the theorem 2.1.1 in the particular case B = I*(R), we obtain the following theorem of
existence and uniqueness of the solution of integral equation (2.12) in the space C([a,b],I*(R)).

Theorem 2.3.1. Suppose that

(c)) K O C(a,b]x[a,b]xI*(R)xI*(R)x(R)xI*(R), I*(R)) ;

(c) fOC(ab], I*(R);

(c) g UC([ab], [ab]);

(cy) there existsL, >0, such tha
| Ktsp w ww) - KISV g S
< el =l 0 = Wl gy 0 =l 0= )
for all t, sO[ab], u, vOI*(R), j=14 ;

(c5) 4L (b-a)<1.

Under these conditions, it results that the integral equation with modified argu@dnt has a
unique solution YIC([a,b],lA(R)), that can be obtained by the successive approximations method starting at
any elenent x0JC([a,b],I’(R)). Moreover, if X, is the nth successive approximation, then the following
estimatds met:

In order to give the conditions of existence and uniqueness of the solution of integral equation (2.12)
in the sphere g(f ;1) 0 C([a,b],*(R)),

*

X =X, < M"x}—xl I, - (2.13)

PR T -4 (b-a)

B0 ={x0CabLl(R)[[x 1 | o <r. r>0}0ClabllR)).

we apply the theorem 2.1.2 in the particular case B = I*(R) and we obtain:

Theorem 2.3.2. Suppose that:

(¢’) KOC([ab]x[a,b] x I, I*(R)), J O I*(R) compact,
(c2) fOC([ab], *(R);

(c;) gOC([ab], [ab]);

(cs’) there existsL, >0, suchthat
| Ktsp o ww = KISV g S
< el u = vl +10 = lm, +18 =l ey =il )
for all t, sO[a,b], u;, vOJ, j=1,_4 ;

(cs) 4L(b-ay<l.
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If r is a positive constant, such that
xOB(f;r) = x)OJIOIAR),

and thefollowing condition is fulfilled:

(C) Mx(b—a)<r (condition of invariance of the sphe®(f;r)),
where we denote byM, a positive constant, such that for the restrictiok |[ab]x[a’b]xj4, JO I*(R)
compactwe have

| KCESU b, | g S My, forall tsOfabl, uy,t,s,u0d, (2.14)

then tle integral equation with modified argumept12) has a unique solution*ME(f ;1) 0 C([a,b],I*(R)),

that canbe obtained by the successive approximations method, starting at any eleai@(f;x) N
C([a,b],IA(R)). Moreover, if ¥ is thenth successive approximation, then the estimate (2sl8atsfied.

2.4 Examples

We consider some examples of integral equations with modified argument and systems of integral
equations with modified argument and using the results that were obtained in the previous paragraphs, we
will establish some conditions for existence and uniqueness of the solution.

I. Integral equations with modified argument

Example 2.4.1. We consider the integral equation with modified argument

X(t) =.l[( X9+ Xs/2) + t)(O);-SX(l)jds+l, t O[0,1] (2.15)
0

t+s+3

+Uu tu + su
where K [J C([O’I]X[O’I]XR4)’ I‘( t Sqa W, U3,U4) = tu‘:' S+23 ¥ : 9 : 5

foco,1], fty=1, gaC(0,11,[0,1]), g(s)=s2 and xO C[0,1].

We check the conditions of the theorem 2.1.1 of existence and uniqueness of the solution of equation
(2.15) in the space C[0,1].

To study the existence and uniqueness of the solution of integral equation (2.15) in the space C[0,1],
we attach to this equation the operator A : C[0,1] — C[0,1] defined by the relation:

X9+Xs/2) , t>(0)+sx(1)jds+1 t0[0,1]
t+s+3 9 ’ o

AX® = | ( (2.16)

The set of the solutions of integral equation (2.15) in the space C[0,1] coincides with the fixed points
set of the operator A, i.e. with Fp .
We have:

| Ktspowoy y - KISy, w,v,v)|=
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Existence and uniqueness of the solution

Uty | ty+su vty | tutsy,
t+s+3 9 t+s+3 9

Dy —vi |+

1 1
P P

t+S+3 t+s+3

<3l = vl gl um s glumvl glu
3 3 9 o! ™

b

for all t,s0[0,1], u, iOR, i =1,4 ,

1
hence, the function K satisfies the Lipschitz condition with the constant 3 relative to the third and the fourth

. 1 . .
argument, and with the constant 5 relative to the fifth and the sixth argument.

From the estimation of the difference:

I( X9+ Xs/2) | XO)+SXD) _ Y9+ ¥s/2) _ tXO)JrSy(l)jd%s

| A = AY))|= {1543 9 t+s+3 9

0

t+s+3 9 t+s+3

1
<]
0

X9+ Xs/2) | O +sX(1) _ Y9+ AS/2) _ t%0) + sy() ‘dss
9

IN

1
IGI X @}s|+§| Xs2)- 5(5/2)|+é| x(O)—y(0)|++$| X1) - )(1)|jds
0

and using the Chebyshev notrone obtains
I 1
| 2089 =[5+ 5755 |1 Yo = S0

. . . . .8
hence, it results that the operator A is a contraction with the coefficient 5 <l.

The conditions of the theorem 2.1.1 being satisfied, it results that the integral equation (2.15) has a
unique solution X [JC[0,1], that can be obtained by the successive approximations method, starting at any
element X1 C[0,1] and if the n-th successive approximation is X, , then the following estimate is satisfied:

*

dx, %) < ) -

Next we determine the conditions of existence and uniqueness of the solution of integral equation
(2.15) in the sphere g(l; r)

B n = {x0C0,1]||x-1| oy <1 TORY

from the space C[0,1].
We consider the integral equation (2.15) where K O C([0,1]x[0,1]xJ*%, J O R is compact, f0C[0,1]
and g 0C([0,1],[0,1]) and we check the conditions of theorem 2.1.2 of existence and uniqueness of the

solution of equation (2.15) in the sphere E(l; ryo C[o,1].
We attach to the integral equation (2.15) the operator A : E(l;r) —CJ0,1], defined by the relation

(2.16), where r is a positive real number which meets the following condition:
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xOB(L;r) = xtHOJOR
and we show that there exists at least one number r > 0 with this property. Thus we have:
xOB(Lr) = [x®)-1|sr, tO0] = [x®|<r+1, tO[0,]]
and therefore
XOB(r) = x|y, ST +1- (2.17)

In what follows, we determine the conditions which ensure that the sphere E(l;r) is an invariant

subset for the operator A. We have:

j(xswsm N “‘O)*SX‘Djds‘ X9 xs/2) , O +sx |

t+s+3 9

| 2000 1] =

S ——

0 t+s+3 9

Also, for the function K we have

u, +u, N tu, + su,
t+s+3 9

Qu, [+

|K(tsy,u,up,u,)| =

1
t+s+3

1
t+s+3

<

1 1
du 2w+ sl |<

, forall t,s[0,1], w, vi0J, i =1,4.

<lul+Hu ]+ Hu]+ 1]
3 3 9 9!™
So, we have
1 1 1 1
|A(x)(t)—1|sj(§| Q($|+§| xg2)|+§| >(0)|+§| >(1)|st
0

and using the Chebyshev norme obtain

8 1 8
” AX) —1 " C[0,1] s 5 [n )4| C[o.1] E‘;ds: 5 [W X” cro.1 ’

where according to (2.17) we deduce that

8
” AX) _1" cro,1] s 5(!’ +1)

and the condition of invariance of the sphere g(l; ryd C[o,1] is g(r +)<r.

Therefore, it results that if r = &, then the sphere g(l; I) is an invariant subset for the operator A, i.c.
B(L;r) OI(A).

Now, we consider the operator A : E(l;r) — E(l;r) , denoted also by A and defined by the same
relation (2.16); E(l; r) is a closed subset of the Banach space C[0,1].

The set of the solutions of integral equation (2.15), in the sphere E(l;r) , coincides with the fixed

points set of the operator A such defined.
By an analogous reasoning to that of the existence and uniqueness of the solution of integral
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Existence and uniqueness of the solution

equation (2.15) in the space C[0,1], it results that the operator A is a contraction with the coefficient % <I.

The conditions of the theorem 2.1.2 being satisfied, it results that the integral equation (2.15) has a

unique solution X*Dg(l; ryd C[0,1], that can be obtained by the successive approximations method, starting

at any element X, DE(I;r) O C[0,1], and if X, is the N-th successive approximation, then the following

estimate 1s satisfied:

- 8"
d(x,x,) < Fd(xo,xl) .

Example 2.4.2. We consider the integral equation with modified argument

X(t) = j (Sin( X9) +7C°S( Xs2) | X(O);X(l)jdy cost, tO[0.1] (2.18)
0

where K 0 C([0,1%[0,1]xRY), w;sq,w,us,uofinq;cos% +u3;u“,

f0Cl0,1], f(t)=cost, gOC([0,11,[0,1]), o(S) =2, xO C[0,1]

and we check the conditions of the theorem 2.1.2 of existence and uniqueness of the solution of integral
equation (2.18) in the space C[0,1].

To study the existence and uniqueness of the solution integral equation (2.18) in the space C[0,1], we
attach to this equation the operator A : C[0,1] — C[0,1], defined by the relation:

sin( X9)+cos(X5/2)) | x0) +X(1)st+cost t0[0,1]
7 5 o

AX)(t) = J' ( (2.19)

The set of the solutions of integral equation (2.18), in the space C[0,1], coincides with the fixed
points set of the operator A, i.e. with Fa .
We have:

| KCESY, U, Us,u) —K(t SY, %, %,V,)| =

sin U, + cos U, L4ty _siny+cosV, Wty
7 5 7 5

Sl|sin Y—sin \,1+l|sin q—sin\é|+l| Lg—v3|+l|u -V, |S
7 7 5 s

<1

sinul_v1|[.]cosul+vl|+12
2 | 2 | 7

sin L&_\é|[.]cosuz+vz| +
2 2 |

el lumul s
5 5 4 4

< l2 sin sin
7

U~V
2

L1,
7

)
2

+l|u3—v|+l|u -V, | <
5 3T TV

b

<l um vl sl u - e fu -y
7 7 5 s
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for all t, sCJ[0,1], u, VOR, i = 1,_4 , and it results that the function K satisfies the condition of Lipschitz with
the constant % relative to the third and the fourth argument, and with the constant % relative to the fifth and

the sixth argument.
From the estimation of the difference:

| A= Aly)(b)| =

j (Sin( X9) *+cos(Xs/2))  XO)+x(A) _ sin( ¥9)+cos(As/2)) _ ¥O)+ y(l)j ds
7 5 7 5

<

0

Sn(X(9) +cos(X(s/2)) , XO)*+X(1) _ sin( ¥$) +cos(%(s/2) _ y<0)+y<1>‘ dex
7 5 7 5

IN IN
) —— ) S——

(§| (95 (y)$+%| x82) - y$2)|+§| X0) - ><0)|+§| xn—»(l)@ds

and using the Chebyshev notrane obtains
11 1. 1 : 24
” AX - Ay) " Clo,1] s (7 +7 +§ +§j [n x= %| clo.1] [!)- ds= g I:n X= y” clo,1] ?

. . . . .24
hence, it results that the operator A is a contraction with the coefficient 35 <l.

The conditions of the theorem 2.1.1 being satisfied, it results that the integral equation (2.18) has a
unique solution X CIC[0,1], that can be obtained by the successive approximations method, starting at any
element X,[J C[0,1], and if the n-th successive approximation is X, , then the following estimate is satisfied:

24"

T d(x.%) .
35" 1 (%,%)

d(x',x,) <
Next we determine the conditions of existence and uniqueness of the solution of integral equation
(2.18) in the sphere g(cost; r,

B(cost; 1) = {x0 C[0,1]| | x - cost] oy < TORY

from the space C[0,1].
We consider the integral equation (2.18), where KOC([0,1]x[0,1]xJ%), J O R is compact, fOC[0,1]
and g OC([0,1],]0,1]) and we check the conditions of the theorem 2.1.2 of existence and uniqueness of the

solution of integral equation (2.18) in the sphere E(cost; ry C[o,1].
We attach to the integral equation (2.18) the operator A : E(cost; ry—C[0,1], defined by the relation

(2.19), where r is a positive real number which meets the condition:
xOB(cost;r) = xtOJOR,

and show that there exists at least one number r > 0 with this property. Thus we have:
xOB(cost;r) = [x(t)—cost|<r, tO0]] = [x®)|<r+1, tO[0,1]

and therefore
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xOB(eost;r) = x|, <T+1. (2.20)

In what follows, we determine the conditions which ensure that the sphere g(cost; I) is an invariant

subset for the operator A. We have:

j(sin( X9)+cos(Xs/2)) | ><(0)+X(1)JOI
. 7 5

| A(X)(t) = cost | =

sin( X 9) + COS( Xs/'2) . X(O) +x(0) ‘

1
|
Also, for the function K we have:

sin Y +cos U, L
7 5

| Ktsu,u,u,u,)|=

<L) sinu, [+ 2| cosu, |+ | uy [+ 2| u, |
7 g st sl

b

soluleofu e 5fuf+ < v
"7 7 51 st
for all t, s[0,1], u, v0J, i =1,4. So, we have:
N@! 1 1 1
| @X)t-cos |tsj(7| Q<§§+7| gg2)|+g|>(0)|+g|>(1)|j ds
0

and using the Chebyshev norme obtain

: 24
” A(X) COSt"cml [W>4|q01 q S_ X”C[Ol ’

where according to (2.20) we deduce that

24
| A =cost ., = 50D

and the condition of invariance of the sphere g(cost; rydClo,1] is %(r +)<r.

. . 24 = . . .
Therefore, it results that if r > TR then the sphere B(cost;r) is an invariant subset for the operator

A, ie. B(cost;r) OI(A).
Now, we consider the operator A : E(cost;r) — g(cost;r), which we denote also by A and is
defined by the same relation (2.19); g(cost; r) is a closed subset of the Banach space C[0,1].

The set of the solutions of integral equation (2.18), in the sphere E(cost; r)C[0,1], coincides with

the set of the fixed points of the operator A such defined.
By an analogous reasoning to that of the existence and uniqueness of the solution of integral

equation (2.18) in the space C[0,1], it results that the operator A is a contraction with the coefficient % <l.

The conditions of the theorem 2.1.2 being satisfied, it results that the integral equation (2.18) has a

unique solution X*Dg(cost;r)D C[0,1], that can be obtained by the successive approximations method,

starting at any element X, [] E(cost; r) C[0,1], and if X, is the n-th successive approximation, then the
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following estimate is satisfied:

24"

T d(x.%) .
35" 1 (%,%)

d(x',x,) <

II. System of integral equations with modified argument

Example 2.4.3. We consider the system of integral equations with modified argument

X (1) = J(—X()’f 12(§2)+%>f(0)+%>g(l)st+2t+1

: (2.21)

X(t) = j[—xz<)+ z<(sfz)+§>s<0)+§>s<l)]ds+sint

where KOC([0,1]%[0,1]xR**R*xR*xR? R?),

®tsuuuo=( K.tsyw uy), K(tsy,u,u,u,)),

+2 2t +1 1

t 1
KISy, W, u,u,) :?ull +T“21 +gu31 +§u41 )

Ct+2 0 o4l 11
K(Isy,u,u,u,) = U, + 1 Uzz"'7usz+7u42’

21
f OC([0,11,RP), f(t)=(fy(t), fxt)), f(t)=2t+1, f,(t)=sint,

g 0C([0,11,[0,1]), o(s)=92 and xOC([0,1], R%),

and we check the conditions of the theorem 2.2.2 of existence and uniqueness of the solution of the system of
integral equations (2.21) in the space C([0,1],R?).

In order to study the existence and uniqueness of the solution of the system of integral equations
(2.21) in the space C([0,1],R?), we attach to this system the operator A:C([0,1],R*)—C([0,1],R?) defined by
the relation:

AX)(t) = j( (s)+ *l X s/2)+% X(0) +% >g(1)st+ 2t+1
AX)() = (2.22)
A = (— %( )+

5(( s(2)+% >5(0)+% )§(1)st+ sint .

The set of the solutions of the system of integral equations (2.21), in the space C([0,1],R?), coincides
with the the fixed points set of the operator A, defined by the relation (2.22). Thus, we have:

p K(Tsy,W,u;, Y) = K(IS\{,\Q,\@,V4)|\J<
| KGtsH Uy y) = K(ESYL %, W,Y)

S[1/5 0 jEE| W - Y1|+| Y, - \£1|+|L§1_\él|+|u4l_v4l| J , (2.23)
0 17 |U12 _V12| +|u22 - \§2| +|L52 _V-%2| +|u42 _V42|
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for all t,sO[0,1], w, VOR?, i=14 ,

and it results that the function K satisfies a generalized Lipschitz condition with respect to the last four
arguments, with the matrix

(15 0 MR
Q= 0 1/7,Q 22(Ry)

and therefore, it results that the condition (bs) of the theorem 2.2.2 is met.
From the estimation of the difference:

(I A((D - A(y)(t)lj
| A = A(y))|

<

| AX(H) = AY)()|

(K t$35(¥2), ®), ®)— K.tsys ¥32), X0), ¥1))ds

IA
IN

1
[
0
1
[( K te¥s5(¥2), @), @)~ K,tsys ¥s2), ¥0), Y1))ds
0

h (K t$3s(¥2), ®), ®)— K.tsgs ¥s2), ¥0), YD) ds

IN

b

1
[| 2K t$xs(¥2), ®), ®)- K.tsg¥ ¥ys2), ¥0), YD) ds
0

and using the relation (2.23) and the generalized Chebyshev notme obtains

4/5 0
| Ax = A clonr) = [ 0 4/7JEux—y|| C0.1LR) ?

hence, the operator A satisfies a generalized Lipschitz condition with respect to the last four arguments, with
0
4/7

of the theorem 2.2.2 is met, i.e. the operator A is a generalized contraction.

The conditions of the theorem 2.2.2 being satisfied, it results that the system of integral equations
with modified argument (2.21) has a unique solution X JC([0,1],R?), that can be obtained by the method of
successive approximations, starting any element X,00C([0,1], R®), and if X, is the n-th successive
approximation, then the following estimation is true:

[X-%] < 4/5 0 (1/5 0 ‘ltn x|
Sl = 1o a7 0 3/7 %Al

1
[ =%, = 435 Jde-xl..
0 3D7n—1

4/5
the matrix [ 0 j , which converges to zero according to theorem 1.3.3. Therefore, the condition (b,)

1.e.

IN

Next, we determine the conditions of existence and uniqueness of the solution of the system of

integral equations (2.21) in the sphere g(f 30,
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B(f; 0= {0 QO R) [[x= | ¢y, <1 TORE

from the space C([0,1],R?).

We consider the system of integral equations (2.21), where KOC([0,1]x[0,1]xJ*,R?), JOR? compact,
f00C([0,1],R?) and g OC([0,1],[0,17).

Now, we check the conditions of the theorem 2.2.4 of existence and uniqueness of the solution of the

system of integral equations (2.21) in the sphere g(f :r) 0 C([0,1],R?).
We attach to the system of integral equations (2.21), the operator A: g(f :1)—C([0,1],R?), defined

by the relation (2.22), where r 0 R?, satisfies the condition:

xOB(f;r) = xHhOJOR?,

and we show that there exists at least one r with this property. We have:

% (t) = (2t +1)| .
1
[rzj

xOB(f;) = |x)-f@)|sr = <
|%,(t) = sint|
and therefore, it results that
St |X1(t)|
xOB(f;r) = , tajfo,1]. (2.24)
e ®f) "~

In what follows, we determine the conditions which ensure that the sphere g(f :r)0 C([0,1],R?) is

an invariant subset for the operator A.
We have:

1
I(“z (5)+2 lxsz>+§x(0)+§x(l)jd%
0

1
IN

| A = F ()]

1 1
X(82) to x(0) to &(l)jd%

1
(1220002
0

t+2 2t+1

% (s)+ ds

1 1
X( 32)+g >5(0)+§ %(1)

o’—.»—‘

IN

t+2 2t+1

%(S) + ds

1 1
X( §2)+7 >5(0)+7 % (1)

oS —_—

Also, for the function K we have

(I K(Isq,uz,us,u4)|J < (1/5 0 JEE| U, +| u21|+|u31|+|u41|]
| &(ISL{,UZ,%,U4)| 0 1/7 |Q2|+|uzz|+|u32|+|u42| ’
forall t, s0[0,1], u, wOJ, i =1,4

So, we have
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1
[ (% 3+ 2]+ xO0)+| x| Jds
0
|A<x)(t)—f(t>|s(”5 OJ
0o /7)1,
[ 2 8+] x(s2) +| %) +| %] )ds
0

and using the generalized Chebyshev nomme obtains

4/5 0
” AX)— | ” cron Ry = [ 0 4/7J [n X" CLONR 7

hence, according to (2.24) we deduce that
4r, +12

A1 o [H50 gt
CONRY T\ 0 4/7) (r,+1) | 4 +4

7

and now, it results the following condition of invariance of the sphere g(f ;1) Oc([o,1],R?):

4r, +12

5 < [N
an+4| = ()"

7

Therefore, if

h 12
r= > ,
r, 4/3

then the sphere g(f :r)0C([0,1],R?) is an invariant subset for the operator A, i.e. g(f ;0 OIA).

Now, we consider the operator A : g(f ;N —>§(f ;1) , which we denote also by A and is defined by
the same relation (2.22); the sphere g(f ;1) is a closed subset of the Banach space (C[0,1],R?).

The set of the solutions of the system of integral equations (2.21), in the sphere E(f :r)0C([0,1],R%),

coincides with the fixed points set of the operator A such defined.
By an analogous reasoning to that of the existence and uniqueness of the solution of the system of
integral equations (2.21) in the space C([0,1],R?), it results that the operator A is a generalized contraction.
The conditions of the theorem 2.2.4 being satisfied, it results that the system of integral equations

(2.21) has a unique solution X*Dg(f :r) 0 C([0,1],R?), that can be obtained by the successive approximations
method, starting at any element X,[] E(f :r)0C([0,1],R%), and if X, is the n-th successive approximation, then
the following estimate is satisfied:

1
HX*_X”HCS4n 5:)_1 1 [")%_Xlnc'

3 D;n—l
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2.5 Generalization

We consider the integral equation with modified argument

(X)t=J' K,it,sks X d9), X|,0)ds+ f(t), tOQ, (2.25)
Q

where Q 0 R is a bounded domain, K :Q x QxR™R™C@OQ,R™ - R™, f: Q = R"and g:Q - Q.
This equation is a generalization of the integral equation with modified argument (2.1) and we intend
to apply the Contraction Principlel.3.1 and the Perov's theorem.3.4, to obtain the existence and

uniqueness theorems of the solution in the space C(ﬁ ,R™ and in the sphere g(f ;g C(ﬁ ,R™. In
establishing of these results will be useful also, the results given by I.A. Rus in the paper [39].

Let Q 0 R™ be a bounded domain.
To establish the existence and uniqueness theorems of the solution of equation (2.25) in the space

C(§ ,R™) we reduce the problem of determining these solutions to a fixed point problem.
To this end we consider the operator A : C(ﬁ ,R™ - C(ﬁ ,R™), defined by the relation:

AX)E [ K sk Xd9), X 0)ds+ f(t) . (2.26)
Q

Observe that the set of the solutions of integral equation (2.25), in the space C(E,Rm), coincides
with the fixed points set of the operator A defined by the relation (2.26).

Applying the Contraction Principlel.3.1 for the operator A, we obtain the following theorem of
existence and uniqueness:

Theorem 2.5.1. Suppose that
(i) K OC(Q x QxR™R™C(dQ ,R™, R™), fOC(Q,R™), gOC(Q, Q);
(ii) thereexistsL > 0, such that

| K(tsu,u,u) = K(tsy,%,v)| <

s I'm W= V”R’" +|| Y- V2"R’" +|| U=V ||C(0Q,R"‘))

for all t, SDE, Uy, Uy, Vi, V2|:|Rm, Us, V3DC(GQ,Rm), i=1,m;
(i) 3-.L'megQ) < 1.
Under hese conditions, it results that the integral equati@r25) has a unique solutiorx'O

C(ﬁ,Rm), that can be obtained by the successive approximations method, starting at any element from

C(E,Rm). Moreover,if X, is the starting function andyxs the kth successive approximatiothen tre
following estimation is satisfied

. [3 OLmnes Q)]
[ =% darr) = 1-30Lmes0) T =% g ) -

(2.27)

Proof. Using the condition (i) we deduce that the operator A is properly defined.
We check the conditions of the Contraction Principlel.3.1. First, we show that the operator A is a
contraction.
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Existence and uniqueness of the solution

According to condition (ii) we have:

| (A0t ANE<|[] Ktsxs €89, Xog) = KESYS), Y d9), Yisa)] ds| <

< 3010mesQ) [ x- y||c(§,r<m)
and using the generalized Chebyshev noifmesults that
400~ A9l ) % 30T

Therefore, the operator A satisfies the Lipschitz condition with the constant 3-L-megQ). The
condition (iii ) allows us to apply the Contraction Principld.3.1 and so the proof is complete.
Theorem 2.5.2. Suppose that the following conditions are :met

(i) KOC(QxQx(Jyx. .. xI)x(Ji% ... xJn)xC(dQ ,R™, R™), fOC(Q,R™), gdC(Q, Q),
where J,, ..., JnOR are closed and finite intervals

(i) there existsL >0, such that

| K(tsu,u,u) - K(t S\{,Vz,V3)| < L(” y-y ”Rm +|| W - V2||Rm +|| U —V; ”C(aQ,Rm))

forall t,s0Q, U,U,Vi,\o0di% . .. %I Us,vs0C(OQ,R™, i=1,m;
(i) 3-L-megQ) < 1.
If r is a positive number such that
xOB(f;r) = x®OJIx...xJn, (2.28)
and thefallowing condition is met
(iv) McmesgQ) <, (condition of invariance of the sphef_e(f i0)),
where we denote by Ma positive constant, such that the function K verifies the inequality
| K(tsuvw)|<sM, , forall t,s0Q, u,vOIx...xJy WICOQR", (2.29)

then theintegral equation(2.25) has a unique solutior 0 E(f ;r)yd C(ﬁ,Rm), that can be obtained by the

succesise approximations method, starting at any element fﬁirh;r), and if X, is the starting function
and x is the k-th successive approximatitimen theestimation2.27) is satisfied

Proof. According to the condition () we deduce that the operator A: E(f ;r) - C(ﬁ ,R™) defined by
the relation (2.26) is properly defined, and from the condition (iv) and using the relation (2.29) it results that
A(E(f ;r))D E(f ;r), ie. E(f ;1) OI(A). Now, we will consider the operator A : E(f ;r) — E(f ;r), also
denoted by A and defined by the same relation (2.26); the sphere g(f ;r) is a closed subset of the Banach
space C(Q ,R™.

The set of the solutions of integral equation (2.25), in the sphere E(f ;0 DC(E ,R™), coincides with
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the fixed points set of the operator A such defined.
Using the conditions (ii) and (iii) we deduce that the operator A: g(f Hp) —>§(f ;r), defined by the

relation (2.26), satisfies the contraction condition with the coefficient 3-L-megQ).
Now, applying the Contraction Principld.3.1, it results the conclusion of theorem and the proof is
complete.

To ensure the conditions for applying the Perov's theoreml.3.4, we consider the generalized
Chebyshev normn the space 0(5 ,R™), defined in chapter 1, by the relation (1.7)

”Xl "c % _
||X||C =| .. |, forevery x=| ... |0C(Q,R™
¥l X
and such, we obtain a complete generalized Banach space.

Applying the Perov’s fixed point theorehB.4, we obtain:

Theorem 2.5.3. Such that
(i) K OC(Q x Q*xR™R™C(dQ ,R™, R, fOC(Q,R™), gOC(Q, Q);
(i) there exists Q1 Mnxm(R.) such that

| Ktsw . w- Keswwvlos Ql y=ve+w-w e+l u v | gennm )

forall t,s0Q, u, U, vi, .OR™, Us, v;OC@OQ,R™ ;
(iii) 3-mex(Q)-Q is a matrix which converges to null matrix

Under hese condition, it results that the integral equati@®5) has a unique solutionx'O
C(ﬁ,Rm), that can be obtained by the successive approximations method, starting at any element from

C(ﬁ,Rm). Moreover, if ¥ is the starting element and, s the k-th successive approximation, then the
following estimation is true:

H X - % Hc(ﬁ,Rm) = [30mee) DQ( [ﬁ h —30me&Q) [Q] B I:n %=X ||c(5,R’") (2.30)

Proof. We consider the operator A: C(Q,R™) — C(Q,R™), defined by the relation (2.26).
From the condition (i) we deduce that the operator A is properly defined.

Note that the set of the solutions of equation (2.25), in the space C(ﬁ ,R™), coincides with the fixed
points set of the operator A, defined above.

We check the conditions of the Perov's theorem 1.3.4. We show that the operatdk is a contraction.
According to condition (ii), the function K satisfies a generalized Lipschitz condition with respect to the last
three arguments, with a matrix Q OMq«(R+) and therefore we have:

| AC(t) = A(Y(®)
| A0~ A = Ce =
| A((D = A (V)|
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Existence and uniqueness of the solution

b
j[ KLESKS Xd9). X[50) ~ Ki(Ls, ¢35 ¥ d9), ym)]d%

= <

j[ O LSXB KG9, As0)~ Ka(1SX9,Y(A9), YIaQ)]d%

b
J| Kots&s xd9).X50) - K(Ls ¥ ¥ d9) Yloo)|ds

IN

b

J| #ts0oB €09, Hoa) = K(1SKY(A9), Viog)|ds

and according to the Chebyshev norom C(ﬁ ,R™), defined in chapter 1, by the relation (1.7), the following
estimate is obtained:

| A - Ay) "c(ﬁ,R'“) < 30mee) (L) x- y"C(ayR'“) '

Hence we deduce that the operator A satisfies a generalized Lipschitz condition with respect to the
last three arguments, with the matrix 3-me$Q)-Q UMp«m(R+). From the condition (iii) it results that the
operator A is a generalized contraction.

Now, the conditions of the Perov's theorem.3.4 being satisfied, it results that the integral equation

with modified argument (2.25) has a unique solution in the space C(§ ,R™) and the proof is complete.
Theorem 2.5.4. Suppose that the following conditions are met:

(i) KOC(QxQx(y%. .. xJ)x(Ji% . .. xJ)xC(dQ ,R™, R™), fOC(Q,R™),
gd C(ﬁ, 5), where J,, ..., JnOR are closed and finite intervals

(i) there exists Q! Mnxn(R.) such that

” Kitsy y, y)— Kt S\{avz’v3)||cS QU| Y- \{”c +|| b~V ”c +|| U = V3 "C(dQ,Rm))

forall ,s0Q , Uy, s, Vi, WOR™, Us, \OC@QR™) ;
(iii) 3-mex(Q)-Q is a matrix which converges to the null matrix
If rOMmna(Ry) is amatrix such that
xOB(f;r) = x®OJIx...xJn, (2.31)
and thefollowing condition is met
(iv) mesQ)- Mg <r (condition of invariance of the spheé(f;r)),
My
where we denote b, =| .. |OMn(R:) a matix with positive constants as elements, such that the
My

function K verifies the inequality
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| Ktsuv,w|e <My, forall t,s0Q, u,v0J, x... xJy, WICOQ,R™, (2.32)

then the inégral equation (2.25has a unique solution X §(f ;r)yd C(§,Rm), that can be obtained by the

successig approximations method starting at any element fﬁmﬁ;r). Moreover, if ¥ is the starting
element andxs the k-th successive approximation, then the estimation (2.30) is satisfied.

Proof. We consider the operator A: E(f i) - C(ﬁ,Rm) defined by the relation (2.26). Using the
condition (i) we deduce that the operator A is properly defined.

The condition (iv) together with the relation (2.29) assures us that the sphere E(f ;O C(ﬁ ,R™) is
an invariant subset for the operator A, i.e. E(f ;1) OI(A). Now, we consider the operator A : E(f ;r) —
g(f ;1), also, denoted by A and defined by the same relation (2.26); g(f ;1) is a closed subset of the Banach
space C(Q ,R™.

The set of the solutions of integral equation (2.25), in the sphere g(f ;1) O C(ﬁ ,R™), coincides with
the fixed points set of the operator A such defined.

From the conditions (ii) and (iii ) we deduce that the operator A : g(f ;1) — g(f ;1) , defined by the
relation (2.26), is a contraction with the coefficient 3-L-megQ).

The conditions of the Contraction Principld.3.1 being satisfied, it results that the integral equation
(2.25) has a unique solution X [ E(f ;O C(ﬁ ,R™), and the proof is complete.

2.6 References

[1] Albu, M., A fixed point theorem of Maia-Perov type, Studia Univ. BaheBolyai, Mathematica
3(1978), 76-79

[2] Ambro, M., Aproximarea solutiilor unei ecuatii integrale cu argument modificat, Studia Univ.
Babe-Bolyai, Mathematica2(1978), 26-32

[3] Andras, Sz., Fredholm-Volterra integral equations, Pure Math. Appl 13(2002)1:2, 21-30

[4] Andras, Sz., Fiber ¢-contractions on generalized metric spaces and applications, Mathematica,
45(68)(2003):1, 3-8, Cluj-Napoca

[5] Andras, Sz., Ecuaji integrale Fredholm-Volterra, Ed. Didactiz si Pedagogica, Bucuresti, 2005

[6] Coman, Gh., Rus, I, Pavel, G., Rus, I. A., Introducere n teoria ecuyilor operatoriale, Ed.
Dacia, Cluj-Napoca, 1976

[7] Corduneanu, C., Ecuaji difereryiale si integrale Univ. Iasi, 1971

[8] Corduneanu, C., Integral Equations and Application€ambridge University Press, 1991

(%] Dobritoiu, M., The solution to a Fredholm implicit integral equation in the _B(O; R) sphere,

Bulletins br Applied&Computer MathematicBudapest, BAM CV/2003, Nr.2162, , ISSN
0133-3526, 27-32

[10] Dobritoiu, M., The generalization of an integral equation, Proc. of the 9th National Conf. of the

Romanian Math. Soc., Ed. Universitatii de Vest Timisoara, 2005, Seria Alef, ISBN 973-7608-
37-2,392-396

[11] Dobritoiu, M., Existence and continuous dependence on data of the solution of an integral
equation, Bulletins for Applied&Computer MathematjcBudapest, BAM - CVI / 2005 , Nr.

74



[30]
[31]

[32]

[38]

[39]
[40]

Existence and uniqueness of the solution

ISSN 0133-3526

Dobritoiu, M., On an integral equation with modified argument, Acta Univ. Apulensis
Mathematics-InformaticNo.11/2006, ISSN 1582-5329, 387-391

Dobritoiu, M., Analysis of an integral equation with modified argument, Studia Univ. Babge
Bolyai, Mathematica, vol. 51, nr. 1/2006, 81-94

Dobritoiu, M., A Fredholm-Volterra integral equation with modified argument, Analele Univ.
din Oradea, Fasc. Matematica, tom XIII, 2006, ISSN 1221-1265, 133-138

Dobritoiu, M., Rus, I. A., Serban, M. A., An integral equation arising from infectious diseases,
via Picard operators, Studia Univ. BabgBolyai, Mathematicavol. LII, nr. 3/2007, 81-94
Dobritoiu, M., System of integral equations with modified argument, Carpathian Journal of
Mathematicsvol. 24 (2008), No. 2, 26-36

Guo, D., Lakshmikantham, V., Liu, X., Nonlinear Integral Equation in Abstract SpacE$uwer
Academic Publishers, Dordrecht, 1996

Hackbusch, W., Integral equationsBirkhduser, Berlin, 1995

Haimovici, A., Ecuaji diferenjale si integrale Ed. Didactica si Pedagogica, Bucuresti, 1965
Ionescu, D. V., Ecuaji diferengale s integrale Ed. Didactica si Pedagogica, Bucuresti, 1972
Lalescu, T., Introducere n teoria ecuilor integrale, Ed. Academiei, Bucuresti, 1956
Marinescu, Gh., Teoria ecuajlor diferengale si integrale Ed. Didacticd si Pedagogica,
Bucuresti, 1963

Mirica, St., Ecuaii difereryiale si integrale vol. I, II, III, Ed. Universitatii Bucuresti, 1999
Muresan, V., Ecugii diferenjale cu modificarea afin@ argumentulyiTransilvania Press, Cluj-
Napoca, 1997

Muresan, V., Functional-Integral Equation€d. Mediamira, Cluj-Napoca, 2003

Petrovskii, I. G., Lectures on the theory of integral equatipGisaylock Press, Rochester, 1957
Petrusel, A., Fredholm-Volterra integral equations and Maia’s theorem, Preprint Nr.3, 1988,
Univ. Babeg-Bolyai, 79-82

Polyanin, A. D., Manzhirov, A. V., Handbook of integral equation6RC Press, London, 1998
Precup, R., Positive solutions of the initial value problem for an integral equation modelling
infectious disease, in “Seminarul de Ecuay Diferenyiale: Preprint Nr.3, 19917, 1. A. Rus ed.,
Univ. Babes-Bolyai, Cluj-Napoca, 1991, 25-30

Precup, R., Ecugii integrale neliniare Univ. Babes-Bolyai Cluj-Napoca, 1993

Precup, R., Periodic solutions for an integral equation from biomathematics via Leray-Schauder
principle, Studia Univ. BabgBolyai, Mathematica, 39, No.1 (1994), 47-58

Precup, R., Existence and approximation of positive fixed points of nonexpansive maps, Rev.
Anal. Numer. Theor. AppraxX6(1997), 203-208

Precup, R., Kirr, E., Analysis of a nonlinear integral equation modelling infection dise®ses.
of the Int. Conf., University of the West, Timisoara, 1997, 178-195

Precup, R., Some existence results for differential equations with both retarded and advanced
arguments, Mathematica, Tome 44(67), Nr. 1, 2002, 31-38

Precup, R., Methods in nonlinear integral equatiai§luwer Academic Publishers, 2002
Ramalho, R., Existence and uniqueness theorems for nonlinear integral equation, Univ. Federal
de Pernambuco, Notas e Comun. de Matematica, 40(1972), 1-42

O'Regan, D., Petrusel, A., Fixed point theorems for generalized contractions in ordered metric
spaces, J. Math. Anal. App) 2008

Rus, I. A., On a fixed point theorem of Maia, Studia Univ. BahgBolyai, Mathematica, 1(1977),
40-42

Rus, I. A., Principii si aplicasi ale teoriei punctului fixEd. Dacia, Cluj-Napoca, 1979

Rus, I. A., Metrical fixed point theorem&Iniversity of Cluj-Napoca, 1979

75



Chapter 2

[41] Rus, L. A., A delay integral equation from biomathematics, Babg-Bolyai Univ. of Cluj-Napoca,
PreprintNr.3, 1989, 87-90

[42] Rus, . A., Weakly Picard mappings, Comment. Math. Univ. Carolind4, 3(1993), 769-773

[43] Rus, I. A., Ecuaji diferenjale, ecuaii integrale si sisteme dinamiceCasa de editura
Transilvania Press, Cluj-Napoca, 1996

[44] Rus, I. A., Picard operators and applications, Babg-Bolyai Univ. of Cluj-Napoca, Prepriitr. 3,
1996

[45] Rus, I. A., An abstract point of view for some integral equations from applied mathematics
Proc. of the Int. Conf., University of the West, Timisoara, 1997, 256-270

[46] Rus, I. A., Fiber Picard operators on generalized metric space and applications, Scripta
Scientiarum Mathematicarurfomus I, Fasciculus II, anno MCMXCIX, 1999:2, 326-334

[47] Rus, I. A., On a class of functional-integral equations, Sem. On Best Approximation Theory
Cluj-Napoca, 2000

[48] Rus, I. A., Generalized contractions and applicatio3uj University Press, Cluj-Napoca, 2001

[49] Rus, I. A., Picard operators and applications, Scientiae Mathematicae Japonica(2003):1,
191-219

[50] Rus, I. A., Muresan, S., Muresan, V., Weakly Picard operators on a set with two metrics, Fixed
Point TheoryVol. 6, No. 2, 2005, 323-331

[51] Rzepecki, B., On the existence of exactly one solution of integral equations in the space L’ weith
a mixed norm, Ann. Polon. Math XXX, 3, 1975

[52] Stuart, C. A., Existence theorems for a class of nonlinear integral equations, Math. Z. 137(1974),
49-64

[53] Serban, M. A., Existence and uniqueness theorems for the Chandrasekhar’s equation, Académie
Roumaine Filiale de Cluj-Napoca, Mathematica, Tome 41(64), Nr. 1, 1999, 91-103

[54] Serban, M. A., Fiber ¢-contractions, Studia Univ. BaheBolyai, Mathematica, 34(1999), Nr.3,
99-108

[55] Serban, M. A., Teoria punctului fix pentru operatori definipe produs cartezian, Presa
Universitara Clujeana, Cluj-Napoca, 2002

[56] Serban, M. A., Application of fiber Picard operators to integral equations, Bul. Stiingific Univ.
Baia Mare, Seria B, Matematidnformaticz, Vol. XVIII(2002), Nr.1, 119-128

[57] Serban, M. A., Rus, 1. A., Petrusel, A., A class of abstract Volterra equations, via weakly Picard
operators technique, Math. Inequal. App) 13(2010), no. 2, 255-269

[58] Walter, W., Differential and integral inequalitieSpringer, Berlin, 1979

[59] Yosida, K., Equations différentielles et integral@UNOD, Paris, 1971

[60] Yosida, K., Lectures on differential and integral equatiohsterscience, 1960

76



Gronwall lemmas and comparison theorems

3 Gronwall lemmas and comparison theorems

The integral inequalities have been studied using both classical theory and the abstract Gronwall's
lemma.

From the basic treatises which have as their object of study the integral inequalities based on the
classical theory, we mention: D. Bainov and P. Simeonov [3], D. Guo, V. Lakshmikantham and X. Liu [13],
V. Lakshmikantham and S. Leela [14], D. S. Mitrinovi¢, J. E. Pecari¢ and A. M. Fink [16], B. G. Pachpatte
[19], R. Precup [21], J. Schroder [36], W. Walter [40] and from the basic treatises, having the integral
inequalities like theme, obtained using the abstract Gronwall's lemma, we mention: Sz. Andras [2], Gh.
Coman, I. Rus, G. Pavel and 1. A. Rus [6], S. S. Dragomir [12], V. Muresan [18], I. A. Rus [22], [23], [27],
[32], M. A. Serban [37].

Also, we mention some of the articles that contain Gronwall type integral inequalities: Sz. Andras
[1], P. R. Beesak [4], A. Buica [5], A. Constantin [7], C. Craciun [8], N. Lungu and I. A. Rus [15], I. A. Rus
[24], [25], [26], [28], [29], [30], [31], [33], [34], [35], V. Muresan [17], A. Petrusel and I. A. Rus [20], M. A.
Serban [38], M. A. Serban, I. A. Rus and A. Petrusel [39], M. Dobritoiu [9], [11], M. Dobritoiu, I. A. Rus
and M. A. Serban [10], M. Zima [41].

In this chapter, divided into three paragraphs, we use the Picard operators technique for integral
equations, the abstract Gronwall's lemma 1.4.1 arttie abstract comparison lemma 1.4.5 to establish some
comparison theorems and integral inequalities concerning the solution of the integral equation with modified
argument (2.1). These results are given in the first two paragraphs of this chapter.

Note that in establishing these integral inequalities and comparison theorems, some results from the
following treatises, were useful: Gh. Coman, I. Rus, G. Pavel and I. A. Rus [6], I. A. Rus [22], [27], [32], M.
A. Serban [37], Sz. Andras [2]. Also, the results given by I. A.Rus in the paper [33] were usefull.

In the third paragraph three applications of the theorems 3.1.1, 3.1.2 and 3.2.2, established in the first
two paragraphs, are given.

The results presented in this chapter have been obtained by the author, and published in [9] and [11].
We present them below.

3.1 Gronwall lemmas

Let (B,+,R,|'|) be an ordered Banach space. We consider the integral equation with modified
argument (2.1)

b
ME[ Ktsxs &g, X, Xb)ds+ f(t)

where K :[ab]x[ab]xB* = B, f:[ab] -~ B, g:[ab] - [ab].

Theorem 3.1.1. Suppose that the following conditions are met
(i) KOC([a,b]x[a,b]xB", B), fOC([a.b].B), gOC([a,b], [a,b]):;
(i) K(t, s, CICILIDY is increasing for alt, sO[a,b] ;
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(iii) there existsLx > 0 such tha
UK(t, s, Uy, Uy, Us, Uy) — K(L, S, Vi, Vo, V3, Vg) [ <
< Ly (Ou—v; CH-Dup—vo) CH-Dus—v3) CH-Dug—vy) 0)),
for all t,sO[a,b], u;, B, i =1,_4 ;
(iv) 4L (b-a)<1

andlet X0C([a,b],B) bethe unique solution of the integral equation with modified argurteht Under
these conditions it results that

(a) if xdC([a,b],B) is a lower-solution of the integral equation (2.then x< x.

(b) if xOC([a,b],B) is an upper-solution of the integral equation (2then x> X

Proof. Weconsider the operator A : C([a,b],B) — C([a,b],B) defined by the relation (2.3)
b
AOE] Ktsxs €63, X3, Xbyds+ f(t), tO[ab].

The conditions of the theorem 2.1.1 being satisfied (hypothesis (i), (iii) and (iv)), it results that the
integral equation (2.1) has a unique solution in the space C([a,b],B), that we denote by X .

From the condition (i) it results that the operator A is increasing.

Now, we apply the abstract Gronwall's lemma.4.1 and it results that the following two
implications are true:

X<AX) = X<X

X>AX) = X=X

or explicitly

X=AX) = O<)TST K.tsX($, X(g9),x (a),x (h)ds+ (1), tO[ab]

b
Xx2AX) = O] Ktsx($ X(g9),x (@), X(byds+f(t), tO[ab].
a
and the proof is complete.
Remark 3.1.1. The theorem 3.1.1 remains true in the particular cases B=R, B=R"™ and B =I*R),
if we replace the conditions (i), (iii) and (iv) with certain conditions that ensure the existence and uniqueness
of the solution of the integral equation with modified argument (2.1) in the spaces C[a,b], C([a,b],R™) and

C([a,b],IA(R)) respectively. We present these results in the cases B=R™ and B =*(R).

In the particular case B = R™, for the system of integral equations with modified argument (2.6)

b
WE[ Ktsxs & g9, X3, Xbyds+ f(t), tO[ab],
or
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b
E] K, tsxe & 63, X3, XD)ds+ f(t)

b
X 1:{ BESX9 Q). XA Xyds+ RO

b
KOE[ KL LSKE &3, X3, Xb)ds+ f(t)

where X: [a,b] — R™, K: [ab]x[ab]xR"™<R"™xR™<R™ —-R™ g:[ab] — [ab] and f:[ab] — R", we
have:

Theorem 3.1.2. Suppose that the following conditions are :met

(i") KOC([ab]x[a,b]xR™R™R"™xR™, R™), fOC([a,b], R™), gOC([ab], [ab]);
(i) K(t, s, LICILIDY is increasing for alt, sO[a,b] ;

(iii" ) there exists QMpn«(R+) such that

| Ktsy u wy)- KEsy,w,wv)|. <

< Qv e+ u = vl +lu = wle *us —vile)

for all t, sO[a,b], u, vOR™, i =14 ;
(iv) 4b-a)Q"—0 as n—w
andlet XOC([a,b],R™) bethe unique solution of the system of integral equations with modified argument

(2.6).
Under these conditions it results that

(@) if xdC([a,b],R™) is a lower solution of the system of integral equati@ns), then x<x, i.e.
b
Rt [ KtsX B X g9, X(3, X(D)ds+ f(1).
(b) if xOC([a,b],R™) is an upper solution of the system of integral equatidig, then x> x, i.e.

b
Wtz [ KtsX B X(d9), X (a),x (b)ds+ f(t).

In the particular case B = I(R), for the Fredholm integral equation with modified argument (2.12) (or
(2.12%)

b
RE] Ktsxs €9, xa, xb)ds+ f(t), tO[ab],

or
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b
QO E] K, tss & 63, X, Xb)ds+ f(t)

b
HOE[ K LS 69, X3, XD)ds+ f,(t)

................................................................. , tO[api],

where x: [ab] —»IA(R), K : [ab]x[ab]xI*(R)xI*(R)xI*(R)xI*(R) — I*(R), g : [ab]—[ab] and f:[ab] —
I(R), we have:

Theorem 3.1.3. Suppose that the following conditions are:met

(") KOC([ab]x[ab]x*(RxI(RxI*(R)XI*(R), I((R)), fOC([abl.l*(R)), gOC([a.b].[ab]);

(i) K(t, s, LICILIDY is increasing for alt, sO[a,b] ;

(ii" ) there existsL, >0, such that
| Kitsp u g, y)- K(IS\{,VZ,V3,V4)|||2(R) <
< Ll u =l ey 1= ey =l + 0= vel )
for all t,sO[ab], u, OIXR), j =14 ;
(iv) 4L (b-a)<1

and le x0C([a,b],IA(R)) bethe unique solution of the integral equation with modified argur(zi2).
Under these conditions it results that

(@) if xOC([a,b],I*(R)) is a lower-solution of the integral equation (2.]#en x< X

(b) if XOC([a,b],I*(R)) is an upper-solution of the integral equati@nl?2), then x> x.

Next, we apply the theorem 1.4.7, given by Sz. Andras in [2], to the operator defined by using the
integral equation (2.1) and we establish an integral inequality.

To ensure the conditions for the applicability of theorem 1.4.7 (Sz. Andras [2]), we assume that the
functions K : [ab]x[a,b]x J*=~ R,, JOR is a compact interval, f:[ab] - R, and g : [ab] - [a,b], are
continuous.

Then we obtain the following theorem.

Theorem 3.1.4. If the following conditions are met
(i) KOC([a,b]x[a,b]xJ", R,), JOR is a compact intervafdC([a,b],R.), gOC([a,b],[a,b]);

(i) Mk (b—a) <r, where M is apositive constant, such that for the restricti&n|[ J0O

ababpxd*’
R compact interval, we have

[K(t,s,Up, U, Us,Uy)| < My, forall t,s[ab], uy,Us,us,u0J; 3.1
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(iii) there existsLx >0 such tha
UK(t, s, Uy, Uy, Us, Uy) — K(L, S, Vi, Vo, V3, Vg) [ <
< Ly (Bup—v CHOup—vo) CHOUs—v3) CHCug—Vvg) 0)),
for all t, sO[a,b], u;, vi(1J, i :ﬁ ;
(iv) 4L (b-a) <1,
then thefollowing inequality
Xt < r+ M+ A(x)—x||qab] , t0[ab], AOO,1),
implies
x(t) < X'(t), forall tO[ab],

where x' is the unique solution of the integral equati@nl) ), in the sphere@(f ;1) 0 C[a,b], andM; is a
positive constant such that

| ft)|<M;, tOab]. (3.2)
Proof. We consider the operator A: E(f ;1) —>§(f T, E(f ;1) 0 C[a,b], defined by the relation:

b
AOE] Ktsxs €63, X3, Xbyds+ f(t), tO[ab].

From the conditions (i), (ii), (iii), (iv) and since the functions K and f are positive, it results that the
operator A is an increasing Picard operator and we have:

aAxX)(h) + BR (X)) = (1= B) KX + BRX)(L) =
= OB A0 A= A3+ Bl A A - AXD) =

b
=[ Ktsxs &g, xa, XD)ds+ f(t)+

b

+B|] KtsAX 5 AXd9), AxX@), AY(Dds+ f(t)-

a

b
-] Ktsxs €@, xa, xb)ds—f(t)|=

D — T

K £S5 & 3, X3, Xb)ds+f () +
b
B[ K e £ KX DS (AKA (AP~ K LsKs & 69, X3, Xb)|ds<

b
<[] Ktsxs &9, X3, Xds+|f(t)+
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b

+B[| K teRX € KX Bs (Ax).a(AKb- K tsxs & ¢, X3, Xb)|ds<

a

where a, f10(0,1) and a+ = 1. According to relations (3.1), (3.2) and to condition (iii ) it results that

b
a GOSN Xt M(b a+ M +8[ L{ A3 xs)|+

+| (AX(9B- (x@F+ AX B- «&+| A3(b- xbj)ds.

From the condition (ii) of invariance of the sphere E(f ;1) 0 C[a,b] and using the Chebyshev norm
in the right side, we obtain:

ak)t)+ LD ST+ M, +4 L (b= af| A0 =K., -
and according to condition (iv) of contraction of the operator A, it results that
a AR+ BRIV 1+ M, + B A0 =K, -

Now, applying the theorem 1.4.7 (Sz. Andras [2]) it results that x(t) < X (t), for any t0[a,b] and the
proof is complete.

3.2 Comparison theorems

Consider the integral equation with modified argument (2.1) corresponding to functions K; and f;,
i=1,2
b
WE[ K, tsxs & ¢9, X3, Xb)ds+ fi(t), tO[ap] (3.3)
a

and
b
(&FJ K, tsxXp €99, X3, Xxb)ds+ f,(t), t0[ab], (3.4)

where K;,K;: [ab]x[ab]x B*~ B, f,f,:[ab] - B, g:[ab] - [ab].

Theorem 3.2.1. If the following conditions are met
(i) Ki OC(fab]x[ab]xB*, B), f, C([a,b],B), i = 1,2 and gOC([a,b], [a,b]);
() WSV, LSV, LSV, WSV = Ki(tSsug,l,Us,Us) < Ky(t,SVi,Vo,V5,Va);
(ii) there existsL; >0, i=1,2 such hat

UK (t, S, Uy, Uy, Us, Uy) — Ki (L, S, Vi, V, V3, Vy) [ <

< L (Ouy — v THOU, — Vo [CH-Ous — v [H-Ouy — v

for all t, sO[a,b], u, vOB, j =1,_4 ;

(iv) 4L (b—-a)y<1, i=1,2
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and denote by *xf respectively, the unique solution of the integral equa3a®), and (3.4) respectively,
then the following inequality is true:

X'(t) < X(t), foralltO[ab].
Proof. We consider the operators A; : C([a,b],B) — C([a,b],B), i = 1,2, defined by the relations:
b
BOE[ K tsKs 3. Xa, Xb)ds+ fi(t), tO[ab], i=12

and the functions X, and Xo[O C([a,b],B), x(t) < ;(o(t) , for any t0[a,b].

The successive approximations sequences corresponding to the operators A; and A, will be

a1 =A%), X1 = A(Xn), for nON.

From the conditions (i), (iii ) and (iv) it results that the sequences (X,),y and (;(n)rﬂN respectively,

converge to X and to X  respectively, and from the condition (ii) it results that the following inequality is
true:

X, (t) < Xa(t), foralltO[ab] and nON.

The inequality from the conclusion of the theorem is obtained when n — oo,
The proof is complete.

Now, we consider the integral equation with modified argument (2.1), corresponding to the functions
Ki and fi, i:1,2,3

b

0= K.tsks X d9).x@), Xb)ds+ fit), tO[ab], (3.5)
b

t=[ K(.tsx9, X g9).x(3, Xb)ds+ f,t), tO[ab], (3.6)
b

Ot=[ KO.ts X9, X 99).X(3, XB)ds+ fy(t), tO[ab]. 3.7)

Theorem 3.2.2. Suppose that the functioKs fi, i = 1, 2, 3 andg satidy the following conditions:
(i) Ki OC([ab]x[ab]xB*, B), f, OC([a,b],B), i =1,2,3 and gOC([ab], [ab]);
(i) Ky(t, s, LICICID is increasing for alkt, sC[a,b] ;
(iii) Ki <K, <K; and f; <f, <f5;
(iv) thereexistsL; >0, i=1, 2,3 such that

UKi(t, s, Uy, Uy, Us, Ug) — Ki(t, S, vy, Vo, V3, Vg) <

< L (0uy — viTHOU, — Vo) [HOus — v3) [HOug — vy 0)

for all t, sO[a,b], u;, vOB, j:1,_4 ;

(V) 4Li(b-a)<1, i=1,2,3.
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If we denote byx', x, and x; respectivelythe unique solution of the integral equati@ns), (3.6)
and(3.7) respectivelythen

* *

XX <X < X .
Proof. We consider the operators A; : C([a,b],B) — C([&,b],B), i =1, 2, 3, defined by the relations:
b
BOE[ K tsKs €63, X9, Xb)ds+ fit), tO[ab], i=1,2,3.

From the conditions (i) (iv) and (V) it results that the operators A are a;—contractions with the
coefficients o; =4L;-(b-a), i=1, 2, 3 and therefore they are Picard operators. According to the Coiraction
Principle 1.3.1, it results that every of the integral equations (3.5), (3.6) and (3.7) has a unique solution in the

space C([a,b],B) and we denote these solutions by X , i=1,2, 3.

From the conditions (ii) it results that A, is an increasing operator, and from the condition (iii) it
results that A; <A, < A;.

The conditions of the abstract comparison lemmat.5 being satisfied, it results that the following
implication is true:

XEX% <X = R(x) < (%)< A(X),

and A, , A, , A; are Picard operators and according to the remark 1.4.2 we obtain

*

f< X <
XXX

and the proof is complete.

3.3 Examples
In this paragraph we give three examples: two integral equations with modified argument and a
system of integral equations with modified argument, and we will verify the conditions of some Gronwall

type lemmas and comparison theorems respectively, of the first two paragraphs.

Example 3.3.1. We consider the integral equation with modified argument (the case B =R)

= (| Lxe+ 3 S )4 L )+ B,
x(t)—£[7 )(s)+5x( 5 j+7>(0)+5 )(1)}d$+14t o’ t 0[0,1] (3.8)

where K O C([O,I]X[O,l]xR“L Kt sy, UZ,U3,U4) :%u1 +§ U, +71U3 +§1U4 ,

t0Clo,11, f(t) = % —%, g OC(0,11,[0,1]) , o(S) = 37” and X0 C[0,1].

The solution of this integral equation is X (t)=t, t0[0,1].
We attach to this equation, the operator A: C[0,1] — C[0,1], defined by the relation:
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Lt s (s+1 13. 17
AX)(t) = [—)(s)+—>{ j+_ X0) +— xl)}d s+—t—-—, t0[0.1]. (3.9)
{ 7 50 2 14 60

The set of the solutions of integral equation (3.8), in the space C[0,1], coincides with the fixed points
set of the operator A, defined above.

Since the function K satisfies the Lipschitz condition with the constant 7 relative to the third and the
. . 1 . .
fifth argument respectively, and with the constant 3 relative to the fourth and the sixth argument

. . . . . . 24 .
respectively, it results that the operator A is a contraction with the coefficient a = Ev and therefore A is a

Picard operator.
According to theorem 2.1.1, in the particular case B=R, it results that the integral equation (3.8) has a
unique solution X JC[0,1]. This solution is X (t) =t, t0[0,1].
Since the function K(t, s, [ILILI0 s increasing for any t, slJ[a,b], it results that the conditions of the
theorem 3.1.1 are met (the case B=R) and the following integral inequalities are true:
- if x[OCJ0,1] is a lower-solution of the integral equation (3.8), then

1
[ S « S+1 | 1 « 13 17
X< ||=Xx(s)+=x|— |+=X(0)+=x(1 dS+—t——, ta[o,1];
(t) .([{7 ()5(2j7 ()5()} 2t 60 [0.1]

- if x[OC[0,1] is an upper-solution of the integral equation (3.8), then

. s+1 13, 17
X(t) = [—x(s)+ ( j+— X (0) +— x(l)}ds+—t—— t O[o0.1].
{ 7 2 14" 60

Example 3.3.2. We consider the system of integral equations with modified argument (the case B =
R

X (t) = j[ X(9)+ 2 X1(§2)+§1>f(0)+g1>i(l)}d8+2t+l

(3.10)

X(t) = j[ %(9)+2 1(s2)+71>s<0)+71x2(1)}ds+t

where KOC([0,1]X[0,1]xR**xR*xR*xR?, R?),

Ktsuuup=( K.tsy u uy), K(tsy,u,u.u,)),

K(1s oy =20 e 2y Ly v Ly

U, b, U, U, T 15 U, 5U31 5t
_t+2 L2 1

K(tsy,u,u,u,)= U, + 3] Uzz"'7u32+7u42 >

fOC(0,1], R, f(®) = (h(t), 1), fi(1) =2t+1, fy(t)=t,
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gdC([0,11,[0,1]), g(s) =s/2 and xOC([0,1],R%).

We attach to this system of integral equations the operator A : C([0,1],R*) — C([0,1],R?), defined by
the relation:

2t+1

Mt+2 1 1
ACO® = [ [ SO+ (2)+ o xO0) + x(l)}dsm +1
0

(3.11)

1
AXD) =£[t2+12 %(9) + 2;1 x( §2)+71 &(0)+71 &(1)}13“.

The set of the solutions of the system of integral equations (3.10), in the space C([0,1],R%), coincides
with the fixed points set of the operator A, i.e. with Fp .
The operator A satisfies a generalized Lipschitz condition with the matrix

_(4/5 0 O MR
Q= 0 4/7,Q 22(RY),

which according to theorem 1.3.3, converges to zero and therefore, it results that the operator A is a
generalized contraction with the matrix Q.

Now, the conditions of the theorem 2.2.2 being satisfied it results that the system of integral
equations (3.10) has a unique solution X' T C([0,1],R?).

Since the function K(t,S,-,-,+,*) is increasing for any t, S[1[0,1], it results that the conditions of the
theorem 3.1.2 are met and the following integral inequalities are true:
—if x OC([0,1],R?) is a lower solution of the system of integral equations (3.10), then

Y () j{uz X9+t (32)+§1 £(0)+= X(l)}ds+2t+1
1 < 0 |
% (1) t+2 , 1

f %(5)+ (9‘2)+7 >5(0)+ (1) |ds+t

— if x OC([0,1],R?) is an upper-solution of the system of integral equations (3.10), then

Ht+2 X ( L2+l 1 . 1 .
= 92)+= X(0)+—= X (1) |ds+2t +1
" I{ 5 (s2)+2x©@ Sm}

\Y

(9 + —5(32)+$>5<0>+ &(l)}ds“

X, (t) j[[t+2 .
21

0

Example 3.3.3. We consider the integral equations with modified argument (the case B =R)

s+1) 1 1 27. 1
X(t) = j[ X(S) +— {Tj—gxm—gxl)} +§t+g, ta[o,1], (3.12)
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B! t (s+1) 1 17 33
HD=|— +—X — [—-— X0)—— X1) |ds+—t+—, t0O[0,1], 3.13
X {_6’“) 6{2j - X0) X)}S Sattoge tond (3.13)
i s+1) 1 179
H=|l—- +— —— X0)—— X1) |ds+t +—, td[o,1], 3.14
X(t) j_ XS) x(2j9m ><>}s T [0.1] (3.14)
where K, K,, K; OC([0,1]x[0,1]xR",
ot t 1
K(tsy,u,u,u,) = §U1+8Uz——u3— U
K(ts U)=lu s Ly -ty Ly
U, U, W, U, o 6“2 7”3 7
1
K(tsy u, y, LA):—LH Uz‘—Ua —U4,
27 1 17 33 179
f,,f,;0C[0,1], fi(H)=—t+—, HH)=—t+—, HH=t+——,
LEROCIONL fih=tes, RO =t+20, fiO) e

s+1
g DC([Ovl]a[Oal])a g(S) = T

and xO C[0,1].

The solutions of the integral equations (3.12), (3.13) and (3.14) respectively, are Xf 1 =t,

X (t) =t+1 and x;(t) =t+2 respectively, for t [0,1].

We attach to these integral equations, the operators A; , Ay, A; :

relations:
A()(®) = j[ X9+ {37”]—51 X0) -~ ><1)}

1
A =]
0

2 9

A =

1 t (s+1) 1 I
6 *gX(TJ 7 X070

LM 1 (s+1) 1 1]
I X9 +Z>{_J ) X0) —— >(1)_

C[0,1] — C[0,1], defined by the

27 1

ds+—t+—, t0O[0,1], 3.15
273 [0,1] (3.15)

ds+1—7t+£, tafo,1], (3.16)
24 28

ds+t+£, tO[0,1]. (3.17)

The function K| satisfies the Lipschitz condition with the constant g relative to the third and the

fourth argument respectively, and with the constant

% relative to the fifth and the sixth argument

. . . . . 1
respectively, and therefore the operator A, is a contraction with the coefficient a, = s

The function K, satisfies the Lipschitz condition with the constant o relative to the third and the

fourth argument respectively, and with the constant
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. . . . . 13
respectively, and therefore the operator A; is a contraction with the coefficienta, = TR
The function Kj satisfies the Lipschitz condition with the constant Z relative to the third and the

. . 1 . .
fourth argument respectively, and with the constant 5 relative to the fifth and the sixth argument

. . . . . 13
respectively, and therefore the operator As is a contraction with the coefficient a; = TS

Therefore, A, , A, , A; are Picard operators. According to theorem 2.1.1, in the particular case B = R,

it results that the integral equations (3.12), (3.13) and (3.14) have the unique solutions Xf , X; and

X; C[0,1] respectively, and therefore the solutions of these equations are
X () =t, x(t)=t+1 and x(t)=t+2 respectively, t 0[0,1].

Since the function Ky(t, s, LILILID is increasing for any t, SLI[0,1], it results that A, is an increasing
operator.
Also, between the functions K, , K, , K; and f;,f,, f; respectively, there are the relations

Ki <K, <K; and f; <f, <f; respectively.

Since the conditions of the theorem 3.2.2. are met, it results that

* *

*
X =X =X,

what is observed, also, in

t<t+1 <t+2, foralltlJO,1].
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4 Data dependence

The data dependence was studied both by direct methods and abstract methods. We mention several
of the basic treatises which have the data dependence like theme, studied by direct methods: D. V. Ionescu
[13], Gh. Marinescu [15], C. Corduneanu [4], A. Haimovici [12], St. Mirica [16], and by abstract methods: P.
Pavel and 1. A. Rus [19], V. Muresan [17], [18], I. A. Rus [22], [25], [32], I. A. Rus, A. Petrusel and G.
Petrusel [34], M. A. Serban [40], V. Berinde [3], Sz. Andras [2].

We mention, also, several of the articles which contain the data dependence results: 1. A. Rus [23],
[24], [26], [27], [29], [30], [31], [33], [35], [37], I. A. Rus and S. Muresan [28], I. A. Rus, S. Muresan and V.
Muresan [36], R. Precup [21], R. Precup and E. Kirr [20], E. Kirr [14], M. Dobritoiu, I. A. Rus and M. A.
Serban [10], M. A. Serban [39], [41], M. A. Serban, I. A. Rus and A. Petrusel [42], J. Sotomayor [38], Sz.
Andras [1], M. Dobritoiu [5], [6].

In this chapter, divided into four paragraphs, we study the data dependence of the solution of the
integral equation (2.1) and the differentiability of the solution of this equation with respect to a and b and
with respect to a parameter, respectively.

In the first three paragraphs theorems of the data dependence of the solution and theorems of the
differentiability of the solution with respect to a parameter, are given. It also gives a theorem of data
dependence of the solution of the system of integral equations with modified argument (2.6). For establishing
of these results were useful the following theorems: the abstract data dependence theored5 and some of
the results of I. A. Rus in the papers [29], [31], [33] and [35].

In the paragraph 4 three examples are treated, two integral equations with modified argument and a
system of integral equations with modified argument; the first two examples are applications of the theorems
4.1.1 and 4.1.3 respectively, and the third example is an application of the theorem 4.2.1.

The results presented in this chapter were obtained by the author and they were published in the
papers [7], [8], [9] and [11].

4.1 Continuous data dependence

A. Data dependence of the solution of the integral equation with modified argument

Consider the integral equation with modified argument (2.1)

b
WE[ Ktsxs kg, xa, xbds+ f(t), to[ab],

and the perturbed integral equation

b
(Ve[ Htsys ¢ 0P, Y3 ¥bds+hd), to[ab], (4.1)

where K, H : [ab]x[ab]xB* - B, f, h:[ab] - B, g:[ab] - [ab], and (B,+,R,|) is a Banach space.
We have the following theorem of continuous data dependence of the solution of integral equation

@2.1).
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Theorem 4.1.1. Suppose that

(i) the conditions of the theorem 2.1.1 of existence and uniqueness of the solution of the
integral equatiori2.1) in the space (a,b],B) are fulfilled and we denote by3C([a,b],B)
theunique solution of this equatipn

(i) HOC([a,b]x[a,b]xB*B) and h[T([a,b],B);
(iif) there existsn,, 17, >0 such that
OK(t,S, Up,Up,Us,Ug) — H(E,S, Uy, Up,Us, U< 77y,
for all t, s[a,b], u;, W, us, u,L1B
and
() — h(O< rp,, forall th[a,b] .

Under these conditions, if '§C([a,b],B) is a solution of the integral equation (4.1dhen the
following estimate is true

m(b—a)+n,

1-4L(b-a) (42)

*_ *
HX y “(qab],m

Proof. We consider the operator from the proof of theorem 2.1.1, A: C([a,b],.B) — C([a,b],B),
attached to integral equation (2.1) and defined by the relation (2.3):

b
A= Ktsxs & g9, X9, Xbyds+ f(t), tO[ap].

Now we attach to the perturbed integral equation (4.1) the operator D: C([a,b],B) — C([a,b].B),
defined by the relation:

b
O E[ Htsys ¢ 0¥, ¥a yYbhds+ht), tO[ab]. (4.3)

Using the condition (ii) and the condition (a;) from the theorem 2.1.1, we deduce that the operator D
is correctly defined.

The set of the solutions of the perturbed integral equation (4.1), in the space C([a,b],B), coincides
with the fixed points set of the operator D defined by the relation (4.3). We have:

b
| (At O[t=|] Ktsxs &¢3P, X3, Xb)ds+ f(t) -

b
-] Htsxs k@, xa xbyds-h)| <

<

b
I[ (K tEXE X Ps (Ra(0p- H tsXs & ¢ 3. X3, XD)lds| +
+| () -ht)| <
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<

| (KX XPs (AN~ H tsxs & §3), X3, Xh)ds +

QD ——— T

b

+ | f(t)=h(t)

and according to condition (iii ) it results that:
| AX() = DOY(Y|< 77,(b-a)+7,, forall tO[ab].
Now, using the Chebyshev norme obtain:
| A% =D (qaney < mb-a)+n, . 44)

We apply the abstract theorem of data dependeh@es, and it results the estimate (4.2). The proof
is complete.

Next we consider the perturbed integral equation:

b
WE] Htsys §¢9, ¥a, Ybyds+f(t), tO[ab], (4.5)

where H : [a,b]x[ab]xJ' - B, f:[ab] - B, g:[ab] - [ab], (B,+,R,|) is a Banach space and J [1 B is
compact.

We denote by My a positive constant such that for the restriction H | J O B compact,

[abx[ab]xJ*?
we have:

[H(t,s,u;, b, Us,Uy)| € My, forallt,sO[a,b], u, W, W, u0Jd. (4.6)

Theorem 4.1.2. Suppose that

(i) the onditions of the theoreh1.2 of existence and uniqueness of the solution of the
integral equatiori2.1) in the sphereE(f ;r) 0 C([a,b],B) are fulfilled and we denote by

X0 §(f ;1) the unique solution of this equatipn
(i) HOC([a,b]x[a,b]xJ*, B), J 0 B compact,
(iii) My(b—a)<r;
(iv) there exists77>0 such that
OK(t,s, Up,Up,Us, Ug) — H(L,S, Up,Us, Us,u)< 77,
for all t, sO[a,b], u;, Uy, Us, U1J .

Under trese conditions, if *ﬂg(f ;r)0 (C[a,b],B) is a solution of the integral equati¢#.5), then
the following estimate is true

7(b-3) 4.7)

[x -y = =4l (b-a)
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Proof. We consider the operator from the proof of theorem 2.1.2, A: E(f r) — g(f ;I), attached to
integral equation (2.1) and defined by the relation (2.3):

b
AR E=] Ktsxs & g9, X9, Xbyds+ f(t), t0[ab].

We attach to the perturbed integral equation (4.5) the operator D: g(f ;r) — C([a,b],B), defined by

the relation:
b
(D)V)PI Htsys ¥ 09, Ya, Yb)ds+ f(t), th[ab]. (4.8)

Using the condition (iii ) it results that the sphere E(f ;I) is an invariant subset for the operator D,
ie. E(f ;r)0I(D), and now, we can consider the operator, also denoted by D, D : E(f r) — E(f ;r)and

defined by the same relation (4.8).
Using the condition (ii) and the conditions (&) and (&;) from the theorem 2.1.2, we deduce that the
operator D is correctly defined.

The set of the solutions of the perturbed integral equation (4.5), in the sphere g(f ;1) 0 C([a,b],B),
coincides with the fixed points set of the operator D defined by the relation (4.8). We have:

| (At D)K)|t=

b
[ &Ktsxs @3, xa, xb)ds+ f(t)-

b
-] Htsxs & g3, X3, Xb)ds— f(t)

b
[[ (Ktex< x9s (na(b- H tsxs & g9, xamb»]d{ <

<

| (KtexL XPs (Ra(Nb- H tsxs & g3, X3, Xb)|ds,

QD ——— T

and according to condition (iv) we deduce that:

| AX(Y - DY <n(b-a), forall tO[ab]

Using the Chebyshev norwe obtain:

| A% = D(x)c < n(b-a) . 4.9)
We apply the abstract theorem of data dependeh@e5, and it results the estimate (4.7).

B. Data dependence of the solution of a system of integral equationswith modified argument

In the particular case B = R™, we consider the system of integral equations with modified argument
(2.6) or (2.6°):
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b
ME[ Ktsxes & ¢, X3, Xds+ f(t), tO[ap],

or

b
E[ K, tsxB & @9, X3, Xb)ds+ f,(t)

b
K1=] KCESXS (U9 K XSt L)

b
JOE[ KL tsKs & g9, X3, Xb)ds+ ()

where K :[ab]x[a,b]xR™<R™R™R™ —, R™, f:[ab] - R™, g:[ab] - [ab].
To study the dependence of the solution of the system of integral equations (2.6) with respect to the
functions K and f, we consider the perturbed system:

b
(YE] Htsys ¢¢¥. ¥a yYbhds+ht), tO[ab] (4.10)

or

b
WE[ K. tsys ¢ g, Y3 Abyds+h(t)

b
Y X= j H(ts Y9, M99), Y3 Yh)ds+h (1) . tO[ab] (4.10)

b
HE[ HLtsys ¢ 69, Y3 Yb)ds+hy )

where H :[a,b]x[a,b]xR™R"™xR™xR™ _, R™, h:[ab] - R", g:[ab] - [ab].
We have the following theorem of continuous data dependence for the solution of of the system of
integral equations (2.6).

Theorem 4.1.3. Suppose that

(i) the conditions of theorem 2.2df existence and uniqueness of the solution of the system
of integral equation€.6) in the space C¢,b],R™) are fulfilled and we denote by
X0OC([a,b],R™) the unique solution of this system

(i) H O C([a,b]x[a,b]xR™xR™xR™xR™, R™) and h 00 C([a,b],R™ ;
(i) there exists T, 0 Mpx1(R:) such that
| Ktsu oy, W= Hisu, u,u,u). < T,

for all t, sO[a,b], uy, W, Us, L,OR™

and
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[f(y-ho|. < T,, forall tOfab].

Under these conditions, if [JC([a,b],R™) is a solution of the system of integral equati¢hs0),
thenthe following estimate is true

H X~ 9“0 < [h-4(b- 9d"[(b-aT+T,] . (4.11)

Proof. We consider the operator from the proof of theorem 2.2.2, A : C([a,b],R™) — C([a,b],R™),
attached to the system (2.6), defined by the relation (2.9) (or (2.9%)):

b
AR E=] Ktsxs & g9, X9, Xbyds+ f(t), tO[ab],
or

b
BOE] K, tsxs & ¢, X3, Xb)ds+ fi(t)

b
Aot =1 & X12=£ K(£SX9, X 9(8), X3, Xb)ds+ f,(t)

b
ANOE [ KL ESKS €GP, X3, XD)ds+ f(t) -

Also, we consider the operator D : C([a,b],R™) — C([a,b],R™), attached to the perturbed system
(4.10), defined by the relation:

b
Oy E[ Htsys ¢ P, ¥a ybyds+ht), tO[ab] (4.12)

Using the condition (ii) and the condition (b;) from the theorem 2.2.2, we deduce that the operator D
is correctly defined. The set of the solutions of the perturbed system (4.10), in the space C([a,b],R™),
coincides with the fixed points set of the operator D, defined by the relation (4.12). We have:

| %= 3 =] an-epf <] a%-an| +]ay)-pon],
and

|ACOM - AYOO | [ |AY)® - DY)
<

e + e <
| ACO® = AOW] | || AYID = Doy (D)

b

[| (K 83, SOx(@s ") - K, tsY 5 X 69, ¥(a, y(b)ds

a
b

[| nK . 183 SOX(@s )2’ OP- K, tsY B X 69, V(3 y(b)ds

a
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b
[| (K U8y, S(y(@s ¢)a'y)p- K.tsYs ¥ 69, (3, y(b)ds

b . . .
[| w6 189, S(y(@s ®)a"y)h- H.tsY B X 69, V(3 y(b)ds

| f.()—h()|

+

| f,() = h, )|

Since the function K satisfies a generalized Lipschitz condition with respect to the last four
arguments, with the matrix Q (condition (bs) of the theorem 2.2.2, from the chapter 2) and according to
condition (iii ) and to generalized norm, given in chapter 1, by the relation (1.7), we obtain:

* 3

X= Y

. s 4e :)C#i—y"”c + (b-aT, +T,,

and now it results the estimate (4.11). The proof is complete.

4.2 The differentiability of the solution with respect to aand b

We consider the Fredholm-type integral equation with modified argument (2.1)

b
WE[ Ktsxs kg, xa, xbyds+f(t), tOaf] (4.13)

where o, AOR, a<p, a bO[af] and KOC([o,f]X[a,f]XR™R"™R™R™, R™), fOC([a,f],R™),
g0C[a,fB], a<g(s)<b, sO[ab] and xOC([a,5],R™) .
We have:

Theorem 4.2.1. Suppose that there exists a matriXi@,.(R.) such that
() 48 -a)Q]"—0 as n—owo;

| K(ESU, U, Uy, U)= K(ESY, VL Vs,V
(i) S <
| KOtsW W, 4, u)- Kn(tS\.{,VZ,V3,V4)|
| W - Y1|+| U, - \51|+|l&1_\€1|+|u41_v41|
< Q S
| Y U W V] Uy = Vi)

for all t, <J[a,B], u, VOR™, i =14.
Then

(@) the integral equatioé.13) has a unique solution, x/7a, HOC([,f],R™) ;
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(b) for all %OC([a,8],R™), thesequenceX").on, defined by the relation:
b
"X(; tabE [ K ts%;sah X g% ab, X(aab),x"(bab)ds+f(t),

conveges uniformly to X for all t, a, KJ[«.] and

X = _ Jx - x],
<[1,,-4(B-a)Q| '[4(B-a)Q]" . . :

1 0
x—xH
c Hm Mic

-,

(c) the functionx’:[a,8]x[e.8]%[a,f] —R™, (t, a, by X (t; a, b) is continuous
(d) if Kts DODD0CR™ xR™xR™ xR™, R™) for all t, $7[a,5], then
X*(t; DmDCl([a,ﬁ]X[a,ﬁ],Rm) for all tO[a,f] .

Proof. Denote X := C([a,5]’,R™). We consider on X the geeralized normiefined in the chapter 1
by the relation (1.7):

[ xile %
Ix|lc=| .. |, forall x=| .. |OC(ab],R",

[ %l X

where || Xy ||C = ggﬁ X (], k=1,m.

Also, we consider the operator B : X— X defined by the relation:

b
(Bx.tpb| (Ktéxsap(x@s ah &aab, xbab)ds, (4.14)

for all t, a, bO[a,f].
Using the conditions (i), (ii) and applying the Perov’s theorenh.3.4, it results that the conclusions
(a), (b) and (c) are fulfilled.
(d) We prove that there exists o , o
da b

*

If we assume that there exists aai , then from (4.13) it results that:
a

X (tab) _

" - Ktax:aah X gB ah x(aab, xX(hab)+

+T 0 K tsg;sab X g% ab x(aab,X(bkab) | fox(sab)),
a dx(sab) oa

NE K.tsX:sah X( g% ab, X(aab).x (kab)) (ax(gs:ab) .
dX(dg9;ab) oa
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0 K.tsX:sah X( g% ab,x(aa b, x(kab) EE@X*(a;a,b)J+
9% (aab) oa

0 K tSx;sab X @5 ah X(aah,x(hab) [Eai‘(na,b)J i
d%(kab) da '

This relation leads us to consider the operator C: X x X — X defined by the relation:

(CXy tabF- Ktaxaab xga ah xaab, Xhab)+

o0 K.tsxssah kg9 ab,xaa b, xhab)
+IK ox(sab) Jmsa’b%

0 ;K 1sxsab (xg@r ah xaab,xhab)
0x(g9;ab)

Jmiqs);a,bﬁ

0 ;K 1sxsab (x@r ah xaab,xhab)
Maab
dx(aab) j {aap)s

(2 K 19xsab x@B ah xaab,ma,bnjwbab) ds (4.15)
0x(bab)
Using the condition (ii) we obtain:
[6 K(ts:,uz,%,up} . [|a lg(tsq,uz,w,uolJ <o,
Uy, 4_ | 0, | i =
i,j=1 1=l
(4.16)

[6 Ig(tsq,Lb,u3,u4)jm <0 [|6 ﬁ(ISHa%a%,u4)|jm <0
ous; im ’ | ou,, | ’

i,j=l

for all t, sO[a, B8], Ui, Us, Us, UsOOR™ .
Using (4.15) and (4.16) it results that:

” ax y)—Ca(x yz)" = 4(ﬂ_a)Q[H]y1 Y

, forall X, y, y,UX..

Now, if we consider the operator A: X x X — X x X, A= (B, C) then we observe that the conditions
of the fiber generalized contractions theoreins.2 are fulfilled and therefore it results that A is a Picard

operator and the sequence (){‘”(t ab, y"'(t a,b)), defined by the relations:
b
"G teB [ (Kt80c sa9b"k @)s ab X aab, R(bab)ds+ f(t),
"V ta- (Ktdk;sab W g5 ah X(aab X' (hab)+
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+TK6 [t sab, 2(g9:ab), &(aab, X(kab)

auli JDyﬂ(Sa’b)-‘_

L9 K 1Sk sab X (ga)j abh X(aah, X(hab)) 0y (g 9:ab)+
2i

L0 K tsK;sap X Gaﬁ ab R(aab,xX'(hab)) "y (aab)+
3i

0Y(bab|ds

+[a K 186:sab % gk ab R(aab, X(kab)

ou,

converges uniformly (with respect to t, a, bl[a,8]) to (X,y)OFa, for all (y*)OXxX .

1 n

ox
If we take X' = y* = 0, then y' =6_ and we prove through induction that y" = %X
a a

. Thus, we
have:
X" [ R X as N— o
n .
%D@'fma y  as nN—oo,
a

* *

. . o0x . .. . . X *
and it results that there exists 28 (i.e. X is differentiable with respect to a) and o8 =y
a a

*

. . X
By an analogous reasoning we prove that there exists e

4.3 The differentiability of the solution with respect to a parameter
In what follows we apply the fiber generalized contractions theoreni.5.2, to study the

differentiability with respect to a parameter of the solution of the Fredholm-type integral equation with
modified argument:

b
WE] Ktsxs & g9, X3, Xb:Ads+ f(t), tO[ab] (4.17)

where K O C([a,b]x[a,b]*xR™xR™xR™xR™xJ, R™), J R is a compact interval and
f 0 C([a,b],R™), g0 C([ab], [ab]) and x O C([a,b],R™) .

The following theorem of differentiability of the solution is true.

Theorem 4.3.1. Suppose that there exists a matriXi@,.(R.) such that
(i) [4b-a)Q"—0 as n—ow;
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| K(tsu,Uy,Ug, U= K(ESW, VvV,
(i) o <
| KOISW W, Y, u)- Kn(ts\ﬁ,V2,V3,V4)|
| W= Y1|+| y, - \£1|+|L§1_\61|+|u41_v41|
< Q e e e e
|4 Ve U S W ] U = Vi
forall t, <7[a, 1, u, vOR™, i=14.
Then
(a) for all A0J, the integral equatioK4.17) has a unique solution, ®71) OC([a,b], R™);

(b) for all xoOC([a,b]xJ, R™), the £quencex)).n, defned by the relation
b
"K(A) =] KtsX ), X g§), R(ad), X(hAyds+ f(t),

converges uniformly to x for all td[a,b], ADJ and

n *
X =X

c ) Hxll_xlouc
< [Iln-4lb- 3 [a(b-a)Q"l . . . |;

n * 1 0
Xm ~ X’"“C me - Xm“c

(c) thefunctionx:[a,b]xJ — R™, (t; A) X (t; A) is continuous
(d) if Kts DODDD0CHR™R™R™R™J, R™) for all t, $I[ab],
then x(t; 10 C'(J, R™ for all tO[a,b] .

Proof. Denote X := C([a,b]xJ,R™). We consider the generalized norm on X, defined in the chapter 1
by the relation (1.7).
Also, we consider the operator B : X— X defined by the relation:

b
B)A):=] Ktsxs), & g5A), xald), XhA)ds+f (1), (4.18)

for all tO[a,b], ACIJ.
From conditions (i), (ii) and applying the Perov’s theorenh.3.4, it results that the conclusions (@),
(b) and (c) are fulfilled.

(d) We prove that there exists 6L and OL X,
04 04

*

We assume that there exists % . Then using (4.17) we obtain:

X (6A) (9K (1 sX(SAX (9. X(@d). X (i) T (X)),
04 . 9% (s;1) " Y
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0 K,tsX ),

X( g 9:1), X(&4),X (b;A);1)

0 K,tsX s,

0% (9g(s)A)

X( 4 9:7), X(&4),X (b;A);1)

0 K, tsX s,

0x (a5 A)

X( 4 9:4), X (&), X (b;A);1)

0x (b;A)

X( 4 9;1), X(&4),X (0;A);1)

{a [ s D),

041

m
i,j:IDé
m [E
ij=l

m [E
i,j=1

a>é‘(g<s>;/|>]+

041

X (a;4)
)

ox (b; 1)
0

[

This relation leads us to consider the operator C: X x X — X defined by the relation:

COYA) = |

a

b[[a Ki(1sXS1), X(9(9:1), X&), x(b;1); 1)

0%(s;4)

0 K(.ts&s). xd9.4). XaA),xb,A);A))"

0%(9(s);A)

d K(,ts&sl), X d9:4), Xad), xo;A);A))"

0% (a; A)

0 K(,ts&sh), xg9;4), Xad), xb;1);4)

0% (b; 1)

041

forall X,y X.
From condition (ii) we

0 K(1sy,u,u,u,)
ou;;

0 K(tsy,u,u,u,)
ou,;

obtain:

m
[
i,j=1

jm
i,j=1

for all t, SD[a., b], Uy, U, Us, U4DRm .
From (4.20) and (4.21) it results that

<Q,

A N

a K( 1 Sl-la u27u37u4)

0U,,

0 K(Isy,u,u,u,)

ou,

0 K. tsksh), xd9: ), ><aA>,x(b;A);A)J’“ ] s
=1

(4.19)
j s 1) +
i,j=1
Oy g(s),A) +
i,j=1
Ova,A) +
i,j=1
Oy(b; A) +
i,j=1
(4.20)
] <.
i,j=1
(4.21)
[ .
i

[ Cxy)- Cxy)|<4b-aQly -y,|, foral x y,y0X.

102



Data dependence

Now, if we consider the operator A: XxX — XxX, A=(B,C), A(Xy) = (B(X),C(x,y)), then we observe
that the conditions of the fiber generalized contractions theoreht.2 are fulfilled and therefore it results

that A is a Picard operator and the sequences:

X" (4 A):= BX"(t,A))
Y A) = CX"(1,A), y" (1, A)),

converge uniformly (with respect to tO[a,b] and A 0J) to (X',y )OFa, for all (X,y*)0XxX.
n

0
If we take X’OX, y’OX, such that y° =% , then we prove by induction that y" = ad)il . Thus, we

have:
x" O e x” cand Nn— o

ox" if * A
Y O M - y cand Nn— .

. . . . X .. . .
Using the Weierstrass’s theoretin results that there exists (;—/‘ (x is differentiable with respect to

*

ox”
A d —=
) an 3 y

4.4 Examples

Example 4.4.1. We consider the integral equation with modified argument:

X(t) = j [sin( x9)* 7°°S( Xs/2) X(O); X(l)}ds+ 2cost+1, tO[0.I] (4.22)
0
where KOC([0,11x[0,11xR*), K(tsu,u,,u;,u,)= sin(u, ) ‘;COS(Uz) +. ;’U4

B

f OC[0,1], f(t) = 2cost + 1, gOC([0,11,[0,1]), g(S)=S2, and XOC[0,1]

and the perturbed integral equation:

Yt = j[sm( ¥9) +;°S( Ys/2) , y(0)5+ ya 2} ds+cost, t0[0,1] (4.23)
0

i + +
where  HOC([0,1]X[0,1]xR?), I—(tsq,vz,v3,v4)zsm(vl)7COS(V2)+ Vit™Ve 4o,

hJC[0,1], h(t)=cost, glJC([0,1],[0,1]), g(s)=¢5?2, and yOIC[O0,1].
The operator A: C[0,1] — CJ[0,1], attached to equation (4.22) and defined by the relation:

AX)(t) = j[sm( X9) +7°°S( Xs/2) , X(O); X(l)}ds+ 2cost +1, tO[0,1] (4.24)
0

1s an a-contraction with the coefficient a = g .

103



Chapter 4

Since the conditions of theorem 2.1.1 of existence and uniqueness of the solution in the space C[0,1]
are fulfilled (chapter 2, paragraph 2.4, example 2.4.1, II), it results that the integral equation (4.22) has a
unique solution X' JC[0,1].

We have:

| Ktsu,u,up,u)= Htsu,u,,up,u)|=|t+2]<3, forallt,s[0,1]
and
| f(t)=h(t)| =|cost +1| <2, forall t[0,1].

The conditions of theorem 4.1.1 are fulfilled and therefore, if y' 0C[0,1] is a solution of the integral
equation (4.23), then the following estimate is true:

H * * 3[(1_0)"'2 _ 175
X - < —— = — .
C[o,1] l—ﬁ 11
35

Example 4.4.2. In what follows we consider the system of integral equations with modified
argument:

X, (t) = J[ X(9)+ L x(s/2)+ e (URs x(l)}ds+2t+1
,t0[o,17, (4.25)

x2(s/ 2) + x2 0)+= xz(l)}ds+ sint

X, (t) = j[—xz( S)+

where K [ C([O,1]><[0,1]><R2><R2><R2><R2, R?),

Ktsuu 4 p=( K.tsy u, 4, y), K(Isu,u,u,u,)),

_t+2 2t +1 1 1
K(ISU“ uzau3’u4)_Full +T U, +§U31 +§u41 5

2 2'[+1u2 +lu +lu
2Ty e T e

t+
K(isu,u,u,u,)= o1 U, o1

f OC([0,11,R%), f(t)=(fi(t), fxt)), f,(t)=2t+1, f,(t)=sint,
gdCc([0,11,[0,1]), g(s)=s2 and xOC([0,1],R%)

and the perturbed system of integral equations with modified argument:

3 y(52) +% y(0) +% y (1) —3}ds+2t -1

L0001 (4.26)
; Y (0) +% y, (1) - 1}ds+ cost

yi(t) = j[—yl

Y, ()= j[_ Y, (S 3]
where H O C([0,1]x[0,1]xR*xR*xR*xR? R?),

Htsyv v M=( H.tsy v, v, W), H(ISV. v, v,VY,)),
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S+3 2S+3 1 1
H(tSY,V,V,V,)= 15 Vi 15 V21+EV31+§V41_3’

s+ 3 Zs+3 1 1
H(ESVY, %, v,v,) = Vi 1 Vas +7V32 +7V42_1 >

hOC([0,11,RY), h(t) = (hy(t), hy(t)), h,(t)=2t-1, h,(t)=cost,
gadC([0,11,[0,1]), g(s)=s?2, and xOC([0,1], R?).

The operator A : C([0,1],R*) — C([0,1],R%), AX)(t)=(A:(X)(1),A(X)(t)), attached to system (4.25)
and defined by the relation:

A = j{—xl()+ Lx(s/2)+ L x1(0)+—>;<1)}ds+2t+1

, tOo,1],  (4.27)
A (X)) = I[—Xz() —Xz( 12)+— X2(0)+_X2(1)} S+sint

/s 0

satisfies a generalized Lipschitz condition with the matrix Q = ( 0 1/7

J and according to theorem 1.3.3

4/5

it results that the matrix 4(1- 0)Q =
0 4/7

) 4/5 0
the matrix .
0 4/7

The conditions of theorem 2.2.2 of existence and uniqueness of the solution of a system of integral
equations, being satisfied, it results that the system of integral equations with modified argument (4.25) has a

j converges to zero. So, the operator A is a contraction with

unique solution X JC([0,1],R?) and the following estimates are true:

3
| Ktsy uww- HEsyw,u,u))|e s[lj,forau t, s0[0,1]

and

It =h)|. < @ for all t0[0,1].

Under these conditions, if y [0C([0,1], R?) is a solution of the system of integral equations (4.25),
then according to theorem 4.1.3, the following estimate is true:

(2276 6 )

Example 4.4.3. We consider the system of Fredholm-type integral equations:

*
-

x( 1= I[—(H $>f(5)+ % (s/2)+ 51X1(a)+%>§(b)}ds+l—cost

(4.28)

% (1= I[ x(s) + xz(a)+—>g(b)} S+sint
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where t, a, bJ0,1], KOC([0,1]x[0,1]xR**xR*xR*xR?, R?),

Ktsuu U B=( K.tsy u, 4, y), K(Isu,u,u,u,)),
1 1 2t+1 t+2
K(gtsy, U, u, Lh)=E(t+ U, +—Uy + 15 us, 15 Uy s

21 2t+s 1 2t +1
IS( 1 SL‘!a uz’ u37u4)_5u11 +7u22 +§u22 +

t+2
2q 2Ty e

fOC([0,11,R?), f(t)=(fy(t), fx1)), f,(t)=1-cost, f,(t)=sint,

gC([0,11,[0,17), g(s)=s2 and xOC([0,1],R%)

and applying the theorem 4.2.1 we will study the differentiability of the solution of this system with respect
to aand b.

From the condition (ii) of the theorem 4.2.1, we have:

| KOtsy U, 4, 4)- K(IS\.{,VZ,V3,V4)|

IN

| K(,tsW U, 4, u)- KZ(IS\{,VZ,V3,V4)|

s 0o |lt’l_Y1|+|L&l_\él|+|%1_v31|+|u41_v41|
[1/2 1/8} - bstiod.
| W = Y2|+| Léz_\éz|+| Lkz_V32|"'|u42_V42|

According to theorem 1.3.3, it results that the matrix

4/5
4(b—a)Q=(b—a)[ ) 1/2}’ 0<b-a<1, QOMux(R,)

converges to zero.

Hence, the conditions of theorem 4.2.1 being satisfied, it results that:

the system of integral equations (4.28) has a unique solution X ([] &, b) in the space C([0,1],R?);
for all X0 C([O,l],Rz), the sequence (X")non, defined by the relation:

"Xt 31‘19? (Kitsk;sab™ @s ah X aab X(bab)ds+ f(t)
converges uniformly to X, forall t,a b0O[0,1], and
b=l . (5 o] %4/5 0 ] [ =l
e ) * Lo 22 Qg

the function X :[0,1]x[0,1]x[0,1] — R?), (t; & b) — X'(t; & b) is continuous;
if K(t,s, JDD0 O C'(R*R**R*xR?, R?) for all t,s[0,1], then

X (t; O C'([0,1]x[0,1], R?) forall t I[0,1].
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5 Numerical analysis of the Fredholm integral equation
with modified argument (2.1)

The study of an integral equation represents the development of a fixed point theory, which contains
the results on existence and uniqueness of the solution, the integral inequalities, the theorems of comparison,
the theorems of data dependence of the solution and an algorithm of approximation of the solution.

The numerical analysis of an integral equation consists in establishment of a method for
approximating the solution of this equation.

The references used to establish a method for approximating the solution of the integral equation
(2.1) includes treatises of numerical analysis of integral equations (W. Hackbusch [10]), treatises which have
chapters with this subject of study (Gh. Coman, I. Rus, G. Pavel and I. A. Rus [3], D. D. Stancu, Gh. Coman,
O. Agratini and R. Trimbitas [21], D. D. Stancu, Gh. Coman, P. Blaga [22]), papers with this subject of study
(M. Ambro [1], G. Pavel [15], C. Iancu [11], R. Precup [17], M. Dobritoiu [5], [6], [7], [8] and [9]) and other
results which are used in this book on this topic (D.V. Ionescu [13], Gh. Coman [4], P. Cerone and S. S.
Dragomir [2], C. Iancu [12], Gh. Marinescu [14], A. D. Polyanin and A. V. Manzhirov [16], I. A. Rus [18],
[19], I. A. Rus, M. A. Serban and D. Trif [20]).

In this chapter, divided into five paragraphs, a procedure for approximating the solution of the
integral equation with modified argument (2.1) is given. For this, we assume that the conditions of one of the
theorems of existence and uniqueness, established in chapter 2, are fulfilled.

The first paragraph contains the problem statement, specifying the conditions under which the
method for approximating the solution of the integral equation with modified argument (2.1) is given.

In the following three paragraphs, the successive approximations method is used to determine a
method for approximating the solution, and for the approximate calculation of the integrals that arise in the
terms of the successive approximations sequence is used the trapezoids formula, the rectangle formula and
the Simpson’s quadrature formula, respectively.

In the paragraph 5 we use the results presented in the first four paragraphs, to establish a method for
approximating the solution of the integral equation with modified argument that has been considered as
example.

The results presented in this chapter were published in the paper [9].

5.1 The statement of the problem
To establish the procedure for approximating the solution of the integral equation with the argument
modified (2.1) were used the results given by Gh Coman, I. Rus, G. Pavel and I. A. Rus [3], D.V. Ionescu

[13], I. A. Rus [19] and Gheorghe Marinescu [14].
We suppose that the integral equation with modified argument (2.1):

b
WE[ Ktsxs kg3, X3, xb)ds+ f(t), tO[ab],
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has a unique solution in the sphere T3( f; r) 0 Ja,b]. Hence, in the particular case B = R, the conditions of
the theorem 2.1.2 are fulfilled, 1.e.:

(hy) KOC([a,b]x[a,b]xJ*), J O R compact ;

(hy) fOC[a,b] ;

(hs) gOC([a.b],[a.b]) ;

(hy) Mg (b-a)<r (condition of invariance of the spheﬁs{f ;r)),

where we denote by Mg a positive constant such that for the restriction K |[ J U R compact, we

ab(abpxJ*’
have:
[K(t,s,up, W, U3, Uy)| < My, forall t, sC[a,b], uj, W, W, us1J; (5.1)
(hs) there exists Lk >0 such that
UK(t,S,U1,Up, Us,Uy) — K(1,5,V1,V0,V3,V,) I <
< Lk (Ouy — v CH-Oup — o) EHOus — v3) CH-Dug — vg) D),
forall t,sO[a,b], u,v0J, i=14;
(he) 4Lc(b-a)<1. (contraction conditior)
We denote this solution by X*DTB( f; 0 Ja,b]. According to theorem 2.1.2 (B = R) this solution

can be obtained by the successive approximations method, starting at any element XODTB( f;n 0 dab].

Moreover, if X, is the n-th successive approximation, then the following estimation is true:
A (b2
T 1-4L(b-a)

Therefore, for the determination of X’ we apply the successive approximations method.
The sequence of the successive approximations is:

"VX* [ % =% - (5.2)

¥(3= 1) 0B tROab]

b
Y= Kt s¥(9,%(909).% (3, % ()ds+ f ()

b
XOE[ Kt s X3, X(909),%, (3, x(Byds+ f(t) (5.3)

To get a better result, it is considered an equidistant division A of the interval [a,b] through the points
a=t, <t <...<t, =b and the successive approximations sequence will be:
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% (t) = (&)
x(ds) = f(g(s)
%(a) = f(a)
%(b) = f(b)

b
Xd=] Kt s€5 1d9. f(a, f(b)ds+ f(t,)
b
(X[ K@s.sEx € g9, {a (bhds+ f(gs)
b
K| Kas€s €¢9). f(a f(b)ds+ f(a)

b
KFE[ Kbs€s g9, (a3 f(byds+ f(b) (5.3)

i ( k):i €t .S (B %2( 09, %2(3, Xoa (B)dS+ F(E)

m-X( (@Si (K(9.s, 8% ()5 X ( @B, Xo( & X,(b)dst f(g(s)
mX ( )&i K. asX,( )5 (09, %2(8 Xo(b)ds+ f(a)

mX ( )Bi KBS ()5 Xa2( 09, %2(3, %o (D)ds+ f(b)
n?(k)zi €l .S (B % ( 09, % (3, X (B)dSH+ F(E)

m (X ( @Si (K(9.s,8x()s X1 ( @B, %.( & ¥ (h)yds+ f(g(s)
mk )&i Kasx ()5 (89, %1(8 X (b)ds+ f(a)

b
OB K BSX ()5 5 ( 09, ¥a( 3 % (D)ds+ f(b)

In the following three paragraphs we present the method for approximating the solution of integral
equation (2.1), obtained by applying the successive approximations method and using, also, the trapezoids
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formula, the rectangles formula and the Simpson's formula for the approximate calculation of the integrals
that appear in the terms of the successive approximations sequence.

5.2 The approximation of the solution using the trapezoids formula
We suppose that the following conditions are fulfilled:

(hy) KO C(abx[ab]xJ*), JOR is closed interval ;

(hp) fOC[ab];

(hi) gd C(abl[ab])

and using the trapezoids formula (1.14) for the approximate calculation of the integrals that appear in the
terms of the successive approximations sequence (5.3”), with the estimate of the rest given by (1.15), we will
approximate the terms of this sequence.

In the general case for X (tx) we obtain:

Ka60 =22 KL 858 (T8 Ko (3, K 0 + (5.4)

n-1
22 K b 0t (8, % (905D, X501 (), X0, (D)) +

+ Kot b (O X 6D k(B ¥ (D]+ (P+ Ry, k=0,n, mON

with the estimate of the rest:

(b- i) Chax
12n €l ab]

R <

[ Kt Sai( B %a( d9)) %o (D xnl(b»]J

According to condition (hy;) it results that there exists the derivative of the function K from the
estimate of the rest R', cand it has the following expression:

[ Kb 5205 5l 49 % (@t )] = 420K e (g4
k> » 1 -1 > ‘-1 > m-1 s 682 asmxm_l m-1
9°K Xt 9°K Xt
2o D‘;ag YO %, 1<s))2+2axm B‘;D% (90g(s)+
oK Xy | 2 K Xm-1 0K Xm-1
+ + +
v X'y (9) + PV j H{g(s) v Laga g (s) Xm_laa;tg@
where
m](t) J‘aK(t’SaXm 2( 5 %1 2( QS) XnZ(a) Xm Z(b))ds+ fV(t)

ot
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b 32
X"m—l (t) - J. a K’t’s %—2( $ %—Za(tzg 9)’ Xn—Z(a)’ Xm—2 (b)) dS+ f"

®.
Denote

max| 0 l‘(tsq,tg,ug;u4)a|’
a2 10 €100y U ouous |

T —
M, = |a|=a, +a,+a,+a, +a; +a, ,

M7 =max‘f(”)(t)‘ and MJ =max‘g(”)(t)‘ :
as<?2 as<2
tab] tab]

Now, using the expressions of the derivatives of Xy, (1), it results that

|%2(0] < (b-a)M[ +M], a=12,

and for the derivative of the function K from the expression of the rest R',  we obtain:
[ K 8% 5 i 819) %0y (@ (D)

< M 1+[MT (b-a)+ MT]cfs + amT )+ (14 MT M7 (b-2)+ MI 2= M7

It is obvious that M J doesn’t depend on mand Kk, so we have the estimation of the rest:

o3
R <My E2255, M7 = M (K DF K. £,0 1,6,07)

aj<2 (5.5)

and thus we obtain a formula for the approximate calculation of the integrals that appear in the terms of the
successive approximations sequence (5.3”). Using the successive approximations method and the formula
(5.4) with the estimation of the rest resulted from (5.5), we suggest further on an algorithm in order to solve
the integral equation (2.1) approximately. To this end, we will calculate approximately the terms of the
successive approximations sequence. Thus we have:

Xo(t) = f (1)

b
X(D=] Kt s (39, f(g9), f(a), f(b)ds+ f(t,)=

b- n-1
=2_na[ Kt 3 (3, f(g@), f(a), f(b) +2X K.t F(t), f(g(t)), f(a), f(b)+
i=1

+ KL b Ab fgb), f(a), f(B))+ f(t)+R, =

=%+ R}, k=0,n
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b
XD = K& sx3 x(99).%(3, x(b)ds+ f(t)=

=228 Kt A B K 89 A K+ 25 KL LXK (8D, K50+

+ Kt DX B X @b), X(3, x()]+ (L) + R}, =

=28 ka0 Bk o+ BOHar B XO+R))+

25 KX RN 00 R RLX (DR

+ KLBOB ROk 0B+ R W a+ R X(D+R)]+

1) +RL =23 K AKX 2 g ) K@ X 0)+

25 KATOONK @O D+ Kt B R 80K AN+ 11+ R, =

=%()+R,, k=0,n

and the following estimate of the rest:

R =500 = 220k o & +55 B[ 4R,

n

R
a3 a3
s4(b—a)LKMJE$%+MJ ?z? =
n n

_ (b-a)’
12n?

M] [4 L (b-a) +1] .

The reasoning continues for m= 3, ... and through induction we obtain:

b- - - ~ -
xm<tk):2—rf‘[ Kb 8% 2 % ( g 8), % (a), Xy (0) +

n-1
+ 23 Kt b oy (1), Xy (A1) Xy (8), Xy (D)) +

i=1
+ K B0 RT%L( gD % (8, % (D)) + F(t) + Ry, =
=%(t)+ R, k=0,n,
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with the estimate of the rest:

— )3 I
(?z D oMy uib-ay™ L+, . +1], k=0.n,
n

_— N
‘ Rﬂ,k‘ = | Xt = Xm(tk)| =
that according to the contraction condition (hg), is

(b-a)’ T

oT
‘R”L"‘S12n2[1—4LK(b—a)] . .

Thus, using an equidistant division of the interval [a,b] through the points a=1t, <t; <...<t,=Db,

we obtain the sequence (Ym(tk))m]N , k=0,n, that estimates the successive approximations sequence

(Xm(tk))nﬂN , k= O,_n with the following error in calculation:

(b-a)’ T
12nz[1—4LK(b—a)]EM° '

| Xl ti) = Kenlti)] < (5.7)

Now, using the estimates (5.2) and (5.7) it is obtain the following result.

Theorem 5.2.1Suppose that, in the particular caBe= R, theconditions of the theorem1.2 are
fulfilled. In addition, we assume that the exact solutionfxhe integral equatio(2.1) is approximated by

the sequencéim(tk))mm, k =0,_n, on the nodest k =O,_n, of the equidistant divisioh of the interval

[a,b], using the successive approximations metid) and the trapezoids meth@tl14)+(1.15).
Under these conditions, the error of approximation is given by the evaluation:

(b-a)’ T

A" (b-a)"
12r[l-4L (b-a)

1-4L(b-a)

(5.8)

X () = Rn(ty)| < % =%+

5.3 The approximation of the solution using the rectangles formula

Suppose that the following conditions are fulfilled:

(hy) KO Cabix[ab]xJ*), JOR is closed interval ;
(hy) fOCTab];

(hs) gd C(abl,[ab])

and we will approximate the terms of the successive approximations sequence (5.3”) using the rectangles
formula (1.21) with the rest given by (1.22), considering the intermediary points of the division of the
interval [a,b] on the left end of the partial intervals § =t; .

In the general case for X(tx) we obtain:

Xt = 2230 Kb 2% 2 % (G @), o () X s (D) + (5.9)

n
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£3 KL KCE X 0D KB $a(B]+ €D+ By, k=0n, mON
with the estimate of the rest:

R < O tmae

[ K Sl B %.( 9, % () xm(b))]J

According to condition (hy;), it results that there exists the derivative of the function K from the

estimate of the rest Rn[ik and it has the following expression:

[k 5009 (G, (85 O] = 24 10 94 2K P g
0s 0x, 0 ag

-1 -1

In what follows, we use the expressions of the derivatives of X (t) given in the previous paragraph
and we note down:

MID_ | 07 Ktsy,u,u,u,) |

|aflaé’zaq’au§ 5 5auff<’| la|=a,+a, +a,+a, +a5 +aq,

MP = max‘ f (”)(t)‘ and M} = max‘g
asi
0 a,b] ta,b]

to obtain

[ %ot (D] < (B=)MP + MP
and for the derivative of the function K from the expression of the rest R,'?Lk it results that:
[KCt 8% 5 %189 i (@ %, 0)] s MP{1+[MP(b-2) + M2 ] emP} = M

It is clear that M) doesn’t depend on m andk, so we have the estimation of the rest:

N2
R =M E2 WP = MP(K DK, 1,0 £,0.D%), @ =1 (5.10)

and thus we obtain a formula for the approximate calculation of the integrals that appear in the successive
approximations sequence (5.3”). Using the successive approximations method and the formula (5.9) with the
estimation of the rest resulted from (5.10), we suggest further on an algorithm in order to solve the integral
equation (2.1) approximately.

To this end, we will calculate approximately the terms of the successive approximations sequence.
So, we have:

Xo(t) = f(ti)
b
X(D=] Kit.s (3, f(g9), f(3, f(bds+ f(t,)=
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:?{ Kt a f(a, f(ga), f(a), f(b))+§K(tk,ti’f(ti),f(g(g)), f(a), f(b))}
+ P+ R =XW+R. k=0n

b
Xd=[ Kt .sx s X 69, X(3, x(byds+ f(t,)=

-b- a{ Kt.ak)a xk@n X & Kb)+Z KL b xCh, x(Ca D), x(a, X(b))}
+f(tk)+R2[,)k:

=¥[ K.t.36)a B XK 0B+ R, Wa+ R, %(bD+RY)+

n-1
2 KL XD+ BRI+ RLX (3+ RLX (D + R+
+ f(tk)+R2D,k:

b= a{ Kt aX 8% ¢3).%a, X(b))’fz K 1. X (6, X (g 1), %(a), Xl(b))}

+KD+F§|< )5(&)+@k k=0,n

and

N2 N2
,ij+\F§“,’k\s4(b—a)LKM5’ G

n

Ref = 222 4R
=—(b_na)2 IMp[4 L (b-a) +1].

The reasoning continues for m=3, ... and through induction we obtain:
_b-a ~ ~ ~ ~
Xt === Kb (2510 018). %001 () K (B)) +

n-1 ~
+2 Kb B %D 0 (0 D) %0 (3%, (D] F(t) + R, =
i=1

:~>§71(§<)+~R?Lka k=0,n

with the estimate of the rest:

=~ ~ b- : m- m-1; m— nn
R =0 = Rt < & na) MR b-a™ L+, . +1] L k=0,
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that according to the contraction condition (hg) is

(b-a)’ D

T-at oo™ (5.11)

‘ﬁrtr)uk‘g

Thus, using an equidistant division of the interval [a,b] through the points a=1t, <t; <...<t,=Db,

we obtain the sequence (Ym(tk))m]N , k=0,n, that estimates the successive approximations sequence

(Xm(tk))nﬂN , k= O,_n with the following error in calculation:

(b-a)’ M P

-t oma] ™ (5.12)

| Xn(t) = im(tk)| <

Now, using the estimates (5.2) and (5.12) it is obtain the following result.

Theorem 5.3.1Suppose that the conditions of the theofen® are fulfilled (B = R). In addition, we
assume Hat the exact solutionx’ of the integral equation(2.1) is approximated by the sequence

(im(tk))m]N, k :O,_n on the nodest k =0,n, of the equidistant divisioA of the interval[a,b], using the

successive approximations methdd) and the rectangles meth@d.21)+(1.22). Under these conditions,
the error of approximation is given by the evaluation

(b-a)’ D

4" (b-a)"
Mi-4L(b-a)]

1-4L(b-a)

ER Ik (5.13)

X (t) - im(tk)‘ <

5.4 The approximation of the solution using the Simpson's formula
Suppose that the following conditions are fulfilled:

(hs) KO C(abix[ab]xJ*), JOR isclosed interval ;

(hy) fOC'[ab];

(hs) g C'([a bl [ab])

and using the Simpson's formula (1.27) for the approximate calculation of the integrals that appear in the
terms of the successive approximations sequence (5.3”), with the estimate of the rest given by (1.28), we will
approximate the terms of this sequence.

In general case for Xq(tx) we obtain:

Xm(tk):%[ KE ax (3 %(d3), % (8, % (D) + (5.14)

n-1
22 Ko & (1) X0t (91, X1 (8), X1 (D)) +

S G+, ti +ti+ ti +ti+
+4§K(tk , - 2| 1 ,Xm—l( 5 1J,Xm—1(g( 5 IJJ’ Xt () )ﬂn_l(b)j+

+ Kot B (b (@1, xR % (D)]+ (p+ Ry, k=0,n, mON
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with the estimate of the rest:

RS <! ax|| Kt S B % 49 % (@ X0, O)]Y]

2880n4 sD[ bJ

and according to condition (h;;) it results that there exists the derivative of the function K from this estimate
and it has the expression:

v _ 0'K 'K
[ Kt S0 3 %0 99 %@ 50O =< P Y
04K axm 1 a4K 64K axm .
959%,, 09 (9(9)+ asza 2 (X“ I(S))z asza > g %-1(90(s)+

PK 0K [ | (g K 0Ky
+6 _(S)+6 —m-l (g 1 +
o aszaxrzn_l( e j(g(s)) 920 agps IO

K 0%,y 9K 9K ox.
\AJ 4 +
90x,,, 09 gE DX, (X“ (s ))3 asﬂxﬁn_ 2 (Xn 1(5))29 (s)
+12 oK %1—1(3)4';1—1(5)"'12 oK aX 1(3(9(5))
00X P o
K 9%, . FK o, .
+9 : (Sg(s) 12 1 _(S)g'(s)+
DX, 0Ps Hr1 dDx, g Xn-1

PK . K . K (0% V1o s
+12 1 . N +4 . +4 1 ] +
a9, g %-1(99'(s) P Xn-1(S) % (—ag (g(s)

P ox., 92, ) FK (x,, )
+12 1 Lg'(s)) +12————| L ''(S) +
P R e (9'(9)) s | ag ) 9390

2 3 2 2 2
4 a K a Xm—21 g|(S)+5 a K a Xm—l g”(S)+4 a K 6Xm 1 '”(S)+
09X, 09PS 09X, 0Ps 09X, 0dg

a“K (Xn 1(8))4 4 0'K axml
Xy 0%

(>s”<s)ag(s)+6 (% (9) Xa(9)+

-1 —1

0K (3% ) ( el K % () .
+66X§1_1( o J(xn_1<s>)z(g OF #6555 (%.(sf gee+

0°K 0%, X 0%y "
2 1<s>>&1(99(s>+6axm_1 ag( %(9f g'(9) +
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2

0°K 64K axm_l 3 ' ' .
+36xm_1( I(S))2+3 e %1 (9%0-1(9)+ 46%1(—691 ] % (9(g'(9)) +

aK ox. . 9> , K (ax.. Y .
Pt € Fon -1<s)(g'<s))2+6ﬁ(hJ % (3(d(®) +
—1

axml dg 0gs Jg
0°K (o, 2 PK dx,, .
+12 1 ~ 1" +3 1 . +
0’K 0% PK %, .
+4 1 _ \ +6 1 ~ .
o age (99O 05T 0 (39O
g 0K Oy (g +ad K Py (594
aXm | 0gs o ox3_, 99 us
3 K 0% PK %, .
' 4—— ~ 1"
dxfn_l g %(9G'(s)+ e ag %-1(99"(s) +
K (0% ) (v s K (% T 0% (0
+ —— +6 (o
6xm( dg j(g(s)) 2| o9 ) ogs (g(s)

O’K (9%, ’ 2 L K (0%, PK .
+3——— i 11 8 ' +3 1
ax;_l( agasJ (d(s) P (g( 9f + o (%

K ox., %, ) LK (0%, ) ) %y
+ '(s +3 Zm-1 ] l
o oy age (g(s) 22| a0 (g'@) +  oge IO
9°K ox,_, 0° 9K (6><m J
+14 1 ; 999" (9 + A (9)+
axml og 693 axm—l a9 0%y )én
0K 0%, GK Xm oK 0%y
3 n( ) 1 gvn( )+ 1 g(4)(s)'
X1 a(ﬁ Xm-1 ag’ 6Xm—l ag

Now, we use the expressions of the derivatives of Xp (1)

X (1) = Iaa KSH,( 8 %2( 99 %0(8). %00 (B)) g, (0. g=Ta
ot?

and if we denote

VS = max |07 KESU LW |
als |afla§zaq’au§a Ul

a|:a1 +a,+a,+a,+as+a;,
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M = max‘f(”)(t)‘ and M = max‘g(”)(t)‘ ,
a<4 as<4
tab] Tl a,b]

then we obtain

X2 (0] (b-aMS+MS, a=14,

and for the derivative of the function K from the expression of the rest R,ik it results that:

[ K saa (B % 49 % (A XD < MF
It is obvious that M doesn’t depend on mand k, so we have the estimation of the rest:

RN
\R;k\smfd;%%, MS=MS(K,DK, ,D7f), |a|<4 (5.15)

and thus we obtain a formula for the approximate calculation of the integrals that appear in the successive
approximations sequence (5.3”).

Using the method of successive approximations and the formula (5.14) with the estimation of the rest
resulted from (5.15), we suggest further on an algorithm in order to solve the integral equation (2.1)
approximately. To this end, we will calculate approximately the terms of the successive approximations
sequence. Thus we have:

Xo(t) = f(ty)

b
Kd=[ Kt s€s 1g9). f(a, f(byds+ f(t)=

b- n-1
=6_na[ Kt 3 f(a, f(ga), f(a), f(0)+23 Kb, F(t), f(a(t), f(a), f(b))+
i=1

S t+h G+t G+t
+4§)K(tk, 5 ,f( 5 j,f(g( 5 D,f(a),f(b)}+

+ K(t, b f(b), f(g)), f(a), f(B)]+ f(t)+RS =

=~)f(§<)+~R?ka k=0,n

b
XD =] K sx3 x(99).%( 3, x(B)ds+ f(t,) =

=%{ Kb 2% B X 69, X3, >f(b))+2§ K(te £ % (0. % (3(D), X(a),xl(b))}

n-1 -+t t o+t t 4+t
+4§K[tk’tl +2|+1 ’Xl( i +2|+1 j’xl{g( i +2|+1 J} X(a)%(b)}'
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+ Kd bX B X gb), x(a x(b)]+ f(t)+RY, =

:%[ Kot,3& e 1?8,~1(( op+ R)J( 3+ %’X(b)+R§o)+
+2§ Kkliaflé(il+ IEQ,NIX gib)+ R,N?( a+ m’x(b)_i_Rlsl)_l_

n-l .+t -+ -+
+42K(tk, e Ce L z(g(ij} RS o

i=0 2 2

N?( E)+ Fﬁ,iﬂﬂ N)?(b) + Rli,i+1)+

+ KL BOF RT& @D+ RX 2+ R XD+ R+ f(0+RY, =

b- ~ ~ - N n-1 N _ _ _
:6—na[ Kit ax 37X ¢3),7%(3,%(0)+22 K, 1% (1), X(9(1). (@), % (b)) +
i=1

n-l G+t o6+t LA TR P
+4§K(tk, > ,xl( 5 }X{g( 5 D,x(a),&(b)]+

+ K £ %D, %(9(0), X, % ()] + f(4)+RS, =

=%(1)+ R, k=0,n

where
~q b—a n-1 s n-1 S
R = B (4 SR 168 . 4
i=1 i=
RN RS
< 4(b-a)LMEER" s
2880n 2880n
(b-a) s
= M4 L (b-a)+1] .
2880”4 0 [ LK( ) ]
The reasoning continues for m= 3, ... and through induction we obtain:

b- - -~ ~ -
xm<tk)=6—rf[ K& 8% 2 % g 8), %1 (8), Kot (0) +

#25° Kb § 508 Fo (90D Ty (2. e (B) +

n-1 4t 4t -+t
+4ZK(tkﬂtl +2t.+1 ’xn_l(ﬂ +t ., j,x“_l(g(t, +t., J}Xn—l(a)’xﬂ—l(b)J-’-

i=0 2 2
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+ K& A (B %A( 83, % (3% (D)) + F(L)+RS, =

=%()+ R, k=0,n,

where

NS
(228;:4 MS™ (b-a)y™ L+, . +1],  k=0.n

5S
R <
and according to contraction condition (hg) it results the following estimate of the rest:

(b-a)’ s
2880r[1-4L (b-a)

‘ﬁ;k‘ < (5.16)
Thus, using an equidistant division of the interval [a,b] through the points a=1t, <t; <...<t,=Db,

we obtain the sequence (?m(tk )) won > K= 0,n, that estimates the successive approximations sequence
(Xm(tk))nﬂN , k= O,_n with the following error in calculation:

(b-ay’

S
2880n4[1—4LK(b—a)]EM° : (5.17)

|Xm(tk) - im(tk)| <

Now, using the estimates (5.2) and (5.17) it results the error of approximation and we obtain the
following theorem.

Theorem 5.4.1Suppose that the conditions of the theoei2 (B = R) are fulfilled Moreove,
assume that the exact solutinof the integral equatiok2.1) is approximated on the nodgs tk = 0,n, of
the equidistant divisios of the interval[a,b] by the sequencé?m(tk))mN, k =0,n using the successive

approximations methob.3) and the Simpson's formu{@&.27)+(1.28). Under these conditions, the error of
approximation is given by the evaluation

\ 5 4" M (b-a)™ (b-a)’ s
X ()X (t) S ————| X % |+ M. 5.18
(8 =%t 1—4LK(b—a)|X1 d 2880 [1-4L (b-a)] " 519

5.5 Example

We consider the integral equation with modified argument:
1 .

X(t) =j[sm( KSH;OS(XS/ 2) X(O);X(l)}ds+cost, to[o,1] (5.19)
0

i + +
where K OC([0,1]X[0,1]xRY), K(tsu,,u,,u,,u,) = 0t 7C°S(u2) 45 - s |

f O0C[0,1], f(t) = cost,

g OC([0,11,[0,1]), g(S)=s2 and xO C[0,1].
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The existence and uniqueness of the solution of this integral equation was studied in the paragraph
2.4 from the chapter 2. The conditions of theorems 2.1.1 and 2.1.2 are fulfilled and therefore we establish
under what conditions the integral equation (5.19) has a unique solution in the space C[0,1] and in the sphere
E(cost; r) O C[0,1], respectively.

We consider the case when the conditions of theorem 2.1.2 are fulfilled. So the integral equation
(5.19) has a unique solution X in the sphere E(cost; r) 0 C[0,1]. From the contraction condition 4Ly(b—a) =

4Ly = ﬁ <1, it results that L, = i
35 35

To determine X we apply the successive approximations method, starting at any element X,

Dg(cost; r) 0 C[0,1], and if X, is the n-th successive approximation, then the following estimation is true:

24"

< el

;
‘xn—x

To calculate the integrals that appear in the terms of the successive approximations sequence, there
have been used the following quadrature formulas: the trapezoids formula, the rectangles formula and the
Simpson’s formula.

Now, we have the sequence of successive approximations:

Xo(t) = cost

() = [ SnCH) reos(4(57) mm;mn}dsmst _
oL

_ Jl-_sin(cos(s)) + cos(cos(s/2)) N cos(0) +cos(1)
0

}ds+ cost =
7

_ j-_sin(cos(s)) + cos(cos(s/2)) + 1+0,5403
0

}ds+ cost =
7

7 +0,308}ds+ cost = (5.20)

_ j-_ sin(cos(S)) + cos(cos(S/2))
0

1 .
= J Sin(cos(s)) + cos(cos(s/ 2) ds+ 0,308 + cost

0 7

)= j[sin( SRS CUIN ><1(0)5+x1(1)} dot cost
0

sin( %-1(9) +cos(%1(5/2)) | X1 (0) %y (1)} ds+ cost
7 5

b
X (1) = j[
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Also, to get a better approximation of the solution, it was considered an equidistant division of the
interval [0,1] through the following points 0 =t, <t; <...<t,= 1 and now, the successive approximations
sequence will be:

%o (1) = cost,

%(S/2) =cos(s/2)

%(0) = cos(0)

Xy (1) = cos(1)

X (i) = j[sim B oosl(52) )Q)(O);)(O(l)}dﬁcostk
0

I -
>q(s/2)=j{sm( bt S))+7COS(>6(S/2))+ )%(0);)(0(1):|dS+COS(S/2)
0

X(O)= ] [Sm( H I oKD, )%(0);)(0(1)}ds+cos (0)
0

x (1) = j[sm( ¥9) +7C°S( X(52) %(O);“(l)}dy cos (1) (5.207)
0

Ko () = | [Sin( a9 C0sha(S2) "ﬂ-z(o)gxm-z(l)}dy cost
0

x_(s/2) = j‘[Sin( %-2(9) +;OS( %-2(8/2)) + Xn—z(o); Xm_z(l)}ds+ cos(s/2)
0

Xm—](O) - j'|:81n( ?{1—2( 3) +’(7:OS( )&—2(5/2)) + M_Z(O);Xm_Z(l):|dS+COS (0)
0

X (1) = j {Sin( Ba (9 ;OS( $-2(82) | Xn-p (O); Xm-2 (l)}ds+ cos (1)
0

X (t,) = Jl'{sm( X-1(9) +7COS( %1(52)) + )ﬂn—l(o);'xm—l(l)}ds_i_ cost,
0

% (5/2) = j-[sin( %1(9) +cos(%1(8/2) . )§n—1(0)5"‘ X, (1)
0

7 }ds+ cos(s/2)

%, (0) = j[sin( B8+ o (92), 20 xm_la)}dmos ©
0
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x (1) = 'l[[sm( X1(9) +7COS( %-1(8/2)) + )ﬂn—l(o)s"' Xm—l(l)}ds_'_cos )
0

Next we present the method for approximating the solution of integral equation (5.19), obtained by
the successive approximations method (5.20), combined with the trapezoids formula, the rectangles formula
and the Simpson's formula, respectively.

A. The approximation of the solution using the trapezoids formula

We observe that the conditions (h;;), (h;;) and (h,3) are fulfilled. Using the quadrature formula of the
trapezoids (1.14) to calculate the integrals that appear in the terms of the successive approximations
sequence (5.20%), with the estimate of the rest given by (1.15), we will approximate the terms of this
sequence. In general case for Xq(tx) we have:

X () = j-{sin( %o ( 3)+7cos( %1(S/2) , xn_l(O)gxm_l(l)}dsmstk _ (5.21)

0

_ 1 [sin(xm_m)) +0080%,1(0)) , Xyt (0) X,y (1)
2n 7 5

48[ SINCh- (1) + 08081 (§/2) | Xt (0 + X (D ],

in(x,_,(1 L3/2 L0 +x. (1 _
4 Sin(%y ())+;:0$(Xm i ))+ Xn-1( )5+Xm i ):|+COS(Tk)+ R-I;;k . k=0.n, mON

with the estimate of the rest:

‘R:nk‘ < LDnax

T 12n? sdo 7 5 s

{Sin( %1 (9) +cos(%,,(52) | >§n—1(0)+xm—1(1)]'

Using the expression of the derivative of the function K from the estimate of the rest Rllk :

[sin( %1(9) +00s(%1(8/2) | %,1(0) +xm_1(1)]' _
7 5 S

= 2i8 [ — 4 sin( Xn-1 (9l X;n—l (S))2 +4 cos( Y (9) M—l (s)-

—cos( %y s (8 2) Q% (5/2))* —sin( %, (8/2)) X, (s/2)]

and the expressions of the derivatives of Xm 1(t) and Xy _1(t/2):

X'm—l (t) - i’%(SIH( %—1( S) +’(7:OS( )&—1(8/2)) + )§n_1(0)5+ Xm—l(l)jd3+ (COSt)' - _Sint
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ds+ (cost)"= —cost

X" t sin( X, ( 9) +cos( X,- 1(3/2)) Xn=1(0) + X (1)
X'y (1) = Iat = 5

X (t/2) = j%[sm( $a(9) +7C°S( A1 (F2) ) e (O);’ Xt (l)jds+(cos(t/2))'= —%sin(t/Z)

0

(Sln( ?{1 1( 3)+COS( )ﬁn 1(5/2)) Xm 1(0)+Xm 1( )de'l' (Cos(t/z))n_ _—COS(t/z)
5

X' (172
Ko 012 =] S ‘

0

and denoting

MT = max |0 MU WU |
\a\<2 \a £19 €29 U au aus du s

= max
t,570,1]

sin( %1 (9)+cos(%,1(S/2)) | Xn-1(0) + Xy (1)
7 5

b

2cos( % ( BO¥ ( $-sin( %, (§/2)) Ky, (S/2)
14 ’

L] 4SO (9) D6y (9)° #4005 ,4(9) (9

c08( Xp-1(S))
’ 7

b

_Sin(y-1(5/2)
7

_ 0s(%(5/2))
7

L

b b

‘ _ sin( %,_;(S))
7

—cost|}=1,

M, =max ‘ f (@ (t)‘ max
as2 to,1]
t070,1]

M] = max‘g(") (t)‘ = max{
a<2 t010,1]
170,11

1’130 :l’
2 2

we obtain the estimates:

\x;n_1 (t)‘ =| -sint| <sin 1<0,841470985 , tO[0,1]
s (0] =| =cost| <1, tO[0,1]

lsm (1/2)<0,239712770, tO[0,1]

[Xea(2/2)] = ‘—

‘xml(t/Z)‘ ‘——cos(t/2)<025 t O[0,1]

and
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"
<
S

{sin( %1 ( 9) +cos( X%, (S/2)) + X1 (0) + X (1)}
7 5

< S| 806 (D (907 +4cosC o (9D (9)-
~C0S( Ky ( 8/ 2)) DXy (/2))” =sin Xy (/2)) By (87/2) | €
2
<L [4D1Bin2 1+4DE|1+1[€1J Bin? (1/2)+1EII—EI]J =
28 2 4

_ 16sin’*1+sin®(1/2) +17
112

=M, .

It is observed that M| doesn’t depend on mand k. Hence, we have the estimate of the rest:’

-1 16sin’1+sin*(1/2)+17 _ 1 1
IR < 5 G < 002124927355 (5.22)

and we obtain a formula for the approximate calculus of the integrals that appear in the terms of the
successive approximations sequence.

Using the method of successive approximations and the formula (5.21) with the estimate of the rest
resulted from (5.22), we suggest further on an algorithm in order to solve the integral equation (5.19)
approximately. To this end, we will calculate approximately the terms of the successive approximations
sequence and we will obtain:

Xo(ty) = costy

‘)= j{sin( B9+ os(4(52) | KO +%0)
0

}ds+ cost, =

_ 1 (sin(xo(o))+cos(x)(0))+ x0(0)+x0(1)j+
2n 7 5

48 (SInOR(D) +eos0(8/2)) , %(0)+%(D))
% 7 s

. (Sin(xo(l)) +eos(%,(1/2)) | %(0) +%,(1)

=X+ Ry, k=0n

X, (t,) = j{sin( X 9) +cos( X(s/2)) N X1(0)5+X1(1)
0

}ds+ cost, =
7
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Numerical analysis of the Fredholm integral
equation with modified argument (2.1)

_ 1 (sin(xl(O))+cos(x(0))+ x1<0)+x1(1)j+
2n 7 5

4o SINCA(E) +eos(%(§/2) | %(O) +x(1) ),
% 7 ;

+cos§(+R{k =

. (sinm () +cos(%(1/2)) , %(0) +% (l)ﬂ
7 5

1 Hsﬂn(i@ﬁ R)+cos(H0)+ Ry) X+ R, +7§(1)+R1T,o]+
2n 7 5

+2§[sin<~x(t>+aﬂ)+7cos<~x v+ R, X0+ F{i;xa)mﬂ}

C T ~ B X !
+{sm(>§(1)+R1,n)+7COS( x1/2)+ R N X(0) + RTn;LX(IHRI,nJ]HOSwR{k =

_ 1 (sin(?l(O)Hcos(X(O))+X(0)+Yl(l))+
2n 7 5

2B (SInCGH() +eos(X(4/2) , RO +XD)),
2 : ;

+(Sin(il(1))+003(7§(1/ 2) . %O +x) (1)
7 5

ﬂ+costk+§;,k =

=%(t)+R,, k=0n,

where
ST 1 = T U
‘RM‘ < %Dk 4‘ I%O‘+SZ I‘{i‘+4‘ R +‘R2,k‘ <
i=l
24d6sin21+sin2(1/2)+17 16sin®1+sin*(1/2) +17
< = + <
35 1344n° 13440
< 0,035820204 E—Il—2
n
The reasoning continues for m= 3, ... and through induction we obtain:

X..(t) = Jl-{sin( X-1(9) +;OS( %-1(S/2)) + X (O)S-I-xm_l(l)
0

}ds+ cost, =
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_1 (sin(im_l(O))+cos(Xn_l<0))+Xn_1(0)+im_1(1)J+
2n 7 5

4 (S0 (D) +008(%,1 (4/2)) |, Xyt (O) +% (D),
2 7 :

. (sin(%m_l(l)) +7cos(%m_1(1/2)) . mmm;mmﬂ rcost,+ BT, =

]

b

=N)§n(tk)+NRILka k=0,

where

- ) +qi 2 + m-1
‘erk‘sl6s1n 1 +sin (21/2) 17 (2_4) A k=on .
1344n 35

Hence, we have the following estimate of the rest:

. 2 + . 2 +
k‘sl6sm Lrsin (P17 1 0676113247 0 (5.23)
13440 24 n’

35

‘NT

and thus, we obtain the sequence (Ym(tk)) «on e K=0,n, that approximate the successive approximations

sequence (Xm(tk))ij , k= O,_n on the nodes t,, k= O,_n, with the error:
| Xt = Kooty )] < 0,0676113247 Bl—z . (5.24)
n

Now, using the successive approximations method (5.20) combined with the trapezoids method
(1.14)+(1.15) and the theorem 5.2.1, it results that the error of approximation of the exact solution X of the

integral equation (5.19) through the sequence (Ym(tk ))ij , k= O,_n, on the nodes of an equidistant division

of the interval [0,1], is given by the evaluation:

m
X (t) =X (t)| < ﬁ| X = % | +0,0676113247 [—»1—2 : (5.25)
n

B. Theapproximation of the solution using the rectangles formula

We observe that the conditions (hy;), (hy;) and (hy3) are fulfilled. We will approximate the terms of
the successive approximations sequence (5.20’) using the rectangles formula (1.21) with the estimate of the
rest given by (1.22), considering the intermediary points of the division of the interval [0,1] on the left end of
the partial intervals & =t .

In the general case for Xp(t) we have:

Xnt) = j{sm( $a(9) +7C°S( %1 (82) m_1(0)5+ Xm"l(l)}ds+ cost, = (5.26)
0
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_1 [sin(xm_l (0)) +¢080%1(0)) , %01 (0) + Xy (1)
n 7 5

S0 (1) + 0506, (1/2) | %s (@)%, Y]
Z 7 5

i=1

+cos( P+ By, k=0,n, mON

with the estimate of the rest:

‘R,?Lk‘ < lEi‘nax

n so.1j

[sin( %-1(9) +c0s( %1 (8/2) | Xy (0) + Xy (l)} '
7 5 S

Using the expression of the derivative of the function K from the estimate of the rest R,'?Lk :

!

S

{Sin( o1 (9) +eos( %, (S/2) | Xt (0) Xy (l)}
7 5

_ 2cos( % ( B0 ¥ (3=sin(%-, (8/2) B (5/2)
14

and the expressions of the derivatives of Xm_1(t) and Xq_1(t/2):

X (t) = jﬂ(sm( %1 (9 +00s(%(8/2) | Xy (0) +% (1)

st+ (cost)' = —sint
oot 7 5

X (t/2)= j % [Sin( %1 9) +c0S(% (52)) , %y (0) 5+ X (1)

- jds+(cos(t /2))'= —%sin(t/Z)

0

and denoting

_ 0% K(1SY,U,u,u,) |
M” = max | o
‘fLaEab]|a £19 €20 0L+ dusou’

= max
t,s00[0,1]

sin( %, (9) +co8(%,1(5/2)) . X1 (0) + X1 (1)
7 5

b

2cos( %, ( BO¥, ( $-sin( %, (S/2)) Ky, (S/2)
14

b

cos(Xu-1 ()
7

b

_sin( %, (s/2)) ‘ }
7 b

MP = max‘f(a)(t)‘ = max{| cost
asi {010,1]
ta,b]

—sint|}=1 ,

b
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t
MP = max‘g(”) (t)‘ = max{ —
asl too]| | 2

tab]

we obtain the estimates:

\x;n_l(t)\ =| - sint| < sin 1< 0,841470985 , t0[0,1]

X (02 = ‘—%sin(tu)

< %sin (1/2) < 0,239712770 , t0J[0,1]
and

'
<
S

[Sin( %-1(9) +cos( %(52)) + Xn1(0) + Xm—l(l):|
7 5

< ﬁ‘?.COS( % ( ED}'{H( $—sin( %,,(52)) D<n—1(3/2)‘ <

1

_4sinl+sin(1/2) _ ., p
14 - =My

28

<

(2[1 Binl+1%@in(l/2)j

It is observed that M OD doesn’t depend on mand k. Hence, we have the estimate of the rest:

4sinl+sin(1/2) Bl—

D
‘Rmk‘ < < - < 0,1373324814[4:; : (5.27)

and we obtain a formula for the approximate calculus of the integrals that appear in the terms of the
successive approximations sequence.

Using the successive approximations method and the formula (5.26) with the estimate of the rest
resulted from (5.27), we suggest further on an algorithm in order to solve the integral equation (5.19)

approximately. To this end, we will calculate approximately the terms of the successive approximations
sequence and we will obtain:

Xo(ti) = costy

X () = j[sin( ¥(9) *+cos(%(5'2)) )%(0)5"')(0(1)
0

}ds+ cost, =
7

_1 Ksmmw» +c0s(%(0) , %(0) +xo<1)j .
n 7 5

. "‘1(sin(>§)(ﬁ))+005(>§>(ti /2) . )(0(0)+X0(1)j} + cost, + R’
= 5 k 1k

% (t,) = j-{sin( W9 +cos(X(8/2) )(1(0)5+x1(1)
0

}ds+ cost, =
7
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_1 Ksin(xl (0)) +cos(%(0) , %(0)+, (I)J .\

n 7 5

=}

+
i

‘l(sin(x(t))+cos(>s(ﬁ/2)) L %0+ ()
5

1

1 Hsmwﬁ R)+cos(NO) + ), X0+ R +X W)+ Pf’o}
n 7 5

e sinx(4) +RY) *eos4(4/2)+ RD , X0+ F§5+7s(1)+ R H eost, + R, =
i=1

_1 (sin(il(o))ﬂos(?&(o))+X(0)+%(I)J+

ni 7 5
n-1 (X Y Y Y ~
[ SnCHD) +cos(X(1/2) x(0)+x1(1)J reost, +R0. =
i=1 7 5 ’
=%+ R, k=0n
with the estimate of the rest:
~p 1 n-1 D
‘Rz,k‘ s FDIK 4‘ FP?O‘*"‘Z; R?‘ +‘R2,k‘ s
< ﬁm4sm1+sm(1/2) +4sm1+sm(1/2) < 0’231503325711‘
35 28n 28n n
The reasoning continues for m=3, ... and through induction we obtain:

X (t) = j‘{sm( X-1(9) +;OS( %-1(5/2)) + Xn—l(o); Xm_l(l):|dS+COStk -
0

_1 Ksm(xﬂ_l(on +008(%,4(0)) , %,1(0) +im-1(1)j .
n 7 5

7 5

. “Z‘l(sin(Xn_l( £) +c0s(%1 (4/2) , Kyt (0) +% (l)ﬂ N

1
=
=)

+cos L+T§k:~)§n(tk)+~Rik9 k

where

. . m-1
‘%‘%%@ . 1} K=
n

Hence, we have the following estimate of the rest:
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.
k‘ g dsinl*sin/2) o 1 _ ) 43696698612 (5.28)
28n s n

35

R

and thus, we obtain the sequence (Ym(tk)) «on > K=0,n, that approximate the successive approximations

sequence (Xm(tk))m]N , k= O,_n on the nodes t,, k =0,n, with the error:
| Xt = Xt )| < 0,43696698612 d . (5.29)
n

Now, using the successive approximations method (5.20) combined with the rectangles method
(1.21)+(1.22) and the theorem 5.3.1, it results that the error of approximation of the exact solution X of the
integral equation (5.19) by the sequence (?m(tk ))ij , k= O,_n, on the nodes of an equidistant division of the

interval [0,1], is given by the evaluation:

X (1) = X (L) < | X =X, | +0,43696698612 E—Il— (5.30)

sm ‘a1
C. Theapproximation of the solution using the Simpson's formula

We observe that the conditions (hs;), (hs) si (hs3) are fulfilled. Using the Simpson's quadrature
formula (1.27) to calculate the integrals that appear in the terms of the successive approximations sequence
(5.20°), with the estimate of the rest given by (1.28), we will approximate the terms of this sequence.

In the general case for Xp(t) we have:

Xm(t) = Jl-{sin( $-1(9) +7COS( 1 (82) | )ﬂm‘l(o); Xm"l(l)}ds+ cost, = (5.31)

[Sin( Xm-1(0)) + cos( %, (0)) + Xn-1(0) + X (1) +
7 5

-

o

N n‘l(sin( Yot (D) +008( %0 (§/2)) |, Xy (0) +X (l)j .
7 5

i=1

t| +1 + t| +ti+l
| sin 2 COS| Xy 2 X ()% ()
+4 + -l -1 +

i=0 7 5

M

+ sin( Xy, (1)) +cos(X,,_;(1/2)) + Xn-1(0) + X (1)
7 5

}+cos(1;)+ F;ik, k=0,n, mON

with the estimate of the rest:

‘Rik‘ < X { sin( X_;( ) +cos( X,_,(5/2)) + X1 (0) + X, (1) }iv

1
2880 " syab) 7 5 S

Using the expression of the derivative of the function K from the estimate of the rest R,ik
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{Sin( %-1(9) +cos( %,,(5/2)) + Kol 0)+ Xm—l(l):|iv -
7 5 S

= 165008, (9,0, (9)" ~96cos( ¥ (9T ki (92 D91+

=48 sin( X, (9)) WXy, (8))* —64sin( ¥, ( §2)) D%y, (8/2) D6y (8/2) =
+16cos( X, ( BORL($+cos( % (52) X, (s/2))* -
+6sin( X, ( $2)) [ %,,(52))° D¢,,(5/2) =3cos( % (§/2)) A %,,(5/2))* =

— dcos( K, (8/2)) B, 1(5/2) DK, ( $2) =sin( x,,(5'2)) B, (s/2)]

and the expressions of the derivatives of Xm_1(t) and Xq_1(1/2):

X ()= i % (sin( %a(9) +;OS( Xa(S/2) | xﬂ_l(O);xm_l(l)J ds+ (cost) = —sint
0
X"m—l (t) - j‘:_tzz(SIH( %1—1( s) +;OS( )ﬂ1—1(5/2)) + )ﬁ‘n—l(o);_xm—l(l)jds_i_ (cost)n: —cost
0
X”'m—l (t) - j'aa_;(snl( %1—1( 3) +;OS( )6’1—1(8/2)) + )gn—l(o);— Xm—l(l)JdS_l_ (Cost)vn: sint
0
XY (1) = i%(sm( %1€ 5))+7COS( %1 (8/2) Xn-l(o);Xm_l(l)JdSJr(Cost)iv - cost

X'm—l (t/2) - j%(sm( ?{1—1( 3) +;OS( )Fn—l(S/z)) + X’n—l(o);-xm—l(l)JdS +(COS(t/2))': —%sm(t/2)

0

a_z(sm( $er(9) + oSy (52)) | %0s(0) +xm.1(1>jo,s+ (cos(t/2))"= ~Leos(t/2)
4

1
X' (t/2)=
m-1(1/2) £6t2 7 5

6_3(sin( $ea(9) + COS(K1(52)) | %a(0) +xm_1<1)jds+ (cos(t/2)"= Lsin(t/2)
5 8

1
X" (t/2) =
: {aﬁ 7

XY (t/2) = jg_;(sin( %1(9) +7coS( %1 (8/2) )ﬁ“_l(o);_xm_l(l)jds+(cos(t/2))iv =%cos(t/2)
0

and denoting

My = Ia ffa Fareiate "6| ’
L e1ab] Yoo du;
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M = max‘f(”)(t)‘ max
a<4

t0[a,b]

M —max‘g( )(t)‘ max{ t

t[a,b]

tpo,1]

to,1

2

1
9_’0 :l’
2 2

we obtain the estimates:

\x;n_1 (t)‘ =| -sint| <sin 1<0,841470985 , tO[0,1]

\x;;_l(t)\ =|-cost| <1, tO[0,1],

\x;;;_l(t)\ =|sint| < sin 1< 0,841470985 , t0[0,1]

xix_l(t)\ =|cost|<1, tO[0],

[Xer (1/2) = | -
\x;'n_l(t/z)\ = —%cos(t/Z) <025, tO[0]],
\x;;;_l(t/z)\ = < %sin (1/2)< 0,05992819233 ,
Xy (8/2)] = %cos(t/Z) <0,0625 , tO[0,1]
and
{Sin( %-1(9) +cos( %,-4(52)) + Xn-1(0) +Xm—1(1)}iv <
7 5

< é 16sin*1+96sin*1+48 +64%sin(l/2) G;-sin(l/z) +16 +%sin4(1/2) +

1

+35

_ 256sin*1+1536sin”1 +sin*(1/2) +80sin*(1/2) +1028 _

.-

< %sin (1/2)< 0,239712770 ,

t0[o,1]

t0[0,1]

6 sin?(1/2) 2 +4 L sin(1/2) Dsin(1/2) + - | =
2 42 8 16

1792

and we observe that M| doesn’t depend on mand k.

Now, we have the following estimation of the rest:

256sin*1+1536sin?1+sin*(1/2) +80sin*(1/2) +1028 o

—cost|}=

R <

1792
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and we obtain a formula for the approximate calculus of the integrals that appear in the terms of the
successive approximations sequence.

Using the successive approximations method and the formula (5.31) with the estimate of the rest
resulted from (5.32), we obtain an algorithm which solve the integral equation (5.19) approximately. To this
end, we will calculate approximately the terms of the successive approximations sequence and we will
obtain:

Xo(tk) = costy

Xl(tk):j[sin( X 5))+7COS(>6(S/2))+ >§)(0)S+Xo(1)
0

}ds+ cost, =

Ksin(xo(on +eos(%(0) , %(0)+ xo(l)j .\
7 5

S|~

=]

2 ‘l(sin( %(1) +7cos(>%(ﬁ /2) . &(O);XO(I)J .

Sln()(o(tl +ti+ljj+cos(xo(ti +ti+ljj
2 4 ), %00 |,

i=0 7 5

+(Sin(xo(l)) +eos(%(1/2)) | %(0) +x(1)
7 5

-

=XW+R%.  k=o0n

% (t) = Jl-{sin( X9 +7cos( X(s/2) , )(1(0)5-1-)(1(1)
0

}ds+ cost, =

“6n 7 5

>

_ 1 Hsin(xmon +cos(%(0) , %(0) +X1(Dj .

=

o -l(sin( HU)*os(1(4/2) x<0)5+x1<1)j+

1

; tl +ti+1 ti +ti+1
4 sm[xl( ) n+cos[xl( 4 D 0) +x(1
L 5O X |

n
+4
& : 5

+(Sin(xl(l))+cos(>ﬁ(1/ 2)) , %0 +x(1)
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1 [[sin(ixw R)+eos(N0)+ R) | X0+ R, +x<1)+R?o]+
6n 7 5

¢ 2§ SRRD*RD +eos(W WD)+ B) | KO+ B +~X<D+F"5J+

i=1 7 >
(ot +t o &+t
4 Sm(xl(tllﬂj + Rli,iﬂj +COS{X1(tI = j + Rl?,mj
n 2 4
+4y +
i=0 7

~ ~ S
, X0+ RSS+ X () + RM] N

+[sin<x<1)+ RO +eos(u1/2)+ R) | X0+ By +X () + RS,
7 5

ﬂ +cosl‘k+stjk =

_ 1 (sm(xw)wcosrx(on+x<0)+x<l)j+
6n 7 5

48[ SInCR(E) +eos(X(1/2) | X(O)+X(D) ),
% 7 5

al ¥ t| +ti+1 v ti +ti+l
-1 sm| X| ——— || tcos| X| ———— - -
+ 42 2 4 + )(1(0)"')(1(1) +

i=0 7 5

+(sin(x(l)) +o0s(%(1/2) | %(0) +%(1)

=%(+R%, K

1
=
>

with the estimate of the rest:

[R5 = o 0[4[RS +55

n-1
I:\’lsl‘ + 16];) F}ﬁ,iﬂ

+4‘ R

j+‘st’k‘S

- ﬁ5256sin41+1536sin21+sin4(1/2) +80sin”(1/2) +1028 o |
" 35 1792 2880n*

N 256sin*1+1536sin” 1 +sin*(1/2) +80sin*(1/2) +1028 o b
1792 2880n*
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_ 59(256sin*1+1536sin1 +sin(1/2) +80sin(1/2) + 1028

= <
180633600n*
<0,00073896059 E—Il—4 .
n
The reasoning continues for m=3, ... and through induction we obtain:

Xm(tk) — j‘|:Sil’l( ?%—1( s) + COS( )Fn—l( 5/2)) + )ﬂn—l(o) +Xm—1 (1)
0

ds+cost, =
7 5

1 (sin(im_l(O))+cos(Xn_l<0))+Xn_1(0)+im_1<1)j+
6n 7 5

#2308 (D) + €08y (1/2)) | Fors(0) * <1>j ¥

i=1 7 5
n— -1 -1 ~ o~

+43 2 - 4 ), m_1(0)5+xm_1(1) N
i=0

+(sm(xm_l(l»+cos<xm.1(1/2)) . xﬂ_1<0)+xm_1<1)j +cost + RS, =
7 5 ’
:N)ﬁn(tp()-l-’ﬁika kzoana
where
.4 .2 .4 ) m-1
‘Rrik‘s 256sin"1+1536sin"1+sin (1/24)+80$1n (1/2)+1028 (ﬁj + . 41|, k=0n.
5160960n 35
Hence, we have the following estimate of the rest:
. 4 ) - 4 .2
‘Rikks35@56mn 1+1536sin’ 1 +sin'(1/2) +80sin (1/2)+1028)S 533
56770560n
< 0,00139480234i4
n

and thus, we obtain the sequence (Xm(tk)) «on > K=0,n, that approximate the successive approximations

sequence (Xm(tk))m]N , k= O,_n on the nodes t,, k = 0,n, with the error:
|mﬂ@—iﬂ%ﬂstH%M&D%L%. (5.34)
n

Now, using the successive approximations method (5.20) combined with the Simpson's formula
(1.27)+(1.28) and the theorem 5.4.1, it results that the error of approximation of the exact solution X of the
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integral equation (5.19) by the sequence (?m(tk ))ij , k=0,n, on the nodes of an equidistant division of the

interval [0,1], is given by the evaluation:

24

1
—= | x =% ]+0,00139480234— . 5.35
35m‘1[111|x‘ %] n* (5.35)

X*(tk) =Xt <

D. Conclusions

The integral equation with modified argument (5.19), considered in this example:

X(t):j-[sin( ((5))+7cos()(s/2))+ X(O);X(l)}ds+cost, Lo,
0

has a unique solution in the space C[0,1], and in the sphere g(cost;r) O C[0,1] respectively (chapter 2,

paragraph 2.4).

It was considered the case when the conditions of the theorem 2.1.2, for B = R, are fulfilled, i.e. the
integral equation (5.19) has a unique solution X in the sphere E(cost; ryd C[o,1].

The solution X~ was determined using the method of successive approximations starting from the
element X,(t) =cost, X DE(cost;r) 0 C[0,1], and for the approximate calculation of the integrals that

appear in the terms of the sequence of successive approximations, the trapezoids formula, the rectangles
formula and the Simpson's formula, respectively, were used.
It is observed that the functions K and f fulfill the conditions:

- (hyy), (hyp) and (hy3), necessary to apply the trapezoids formula;

- (hyy), () and (hy3), necessary to apply the rectangles formula,
and respectively

- (hsy), (hsy) and (hs3), necessary to apply the Simpson's formula.

Also, to get a better approximation of the solution, an equidistant division of the interval [0,1]
through the points 0 =t, <t; <...<t,=1 was considered.

The approximate value of the integral that arise in the general term of the successive approximations
sequence:

X () = j{sin( %-1(9) +7cos( i (8/2) | m_1(0)5+ xm_l(l)}dsﬂostk’
0

was calculated as it follows:
a) when we use the trapezoids formula, we have the relation:

j‘|:Sin( %_1( 3) +;OS( )Fn—l(S/z)) + )gn_l(o);—xm_l(l):|d5:
0

- L|:Sin(xm—1(0)) +cos( %,-1(0)) + Kol (0) +Xp (1) +
2n 7 5

4y E(SINOR (1) + 05064 (4/2)) |, Xpa(O) X0, (D),
z 7 5
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+ $in( Xy (1)) + cos(Xy- (1/2)) + Xn-1(0) +Xm—1(1):| + Qlk . k=0.n, mON,

7 5

with the estimate of the rest:

1
3 Omax
12n= sOo.1]

‘RrTruk‘S

7 5 S

[sin( %1 (9) +0s( % (8/2)) | Xni(0) +xm_1(l)]'

b) when we use the rectangles formula, we have the relation:

j‘|:Sin( %1_1( S) +;OS( )fn—l( 8/2)) + Xh—l (0)5+ Xm_l(l) :| ds=
0

- l|:Sin(Xm—l(0)) +cos( %p-1(0)) + Sn1 (0) + X (1) +
n 7 5

7 5

=1

R ”z“(sim %ot (1) +€0SCfp 1 (£/2)) |, ¥ (0) w-l(l)ﬂ s

with the estimate of the rest:

{Sin( %-1(9) +cos(%,1(52) | Xn—l(o)““xm—l(l)]
s

‘Rﬁk‘slﬂnax 7 5

n sio.ij

¢) when we use the Simpson's formula, we have the relation:

j-{sin( %.(9) +;os< X (512) , V»n—1<0>5+xm-1<l)}ds:
0

- i|:5in(xm—1(0)) +cos(%,-1(0)) + Xn-1(0) + Xy (1) +
6n 7 5

+ o3[ SINCh- (1) + 08061 (§/2) | Xt () + X (D ],
z 7 5

i=1

Sin{)(f“_l(ti +ti+1jj+cos(xm_l(ti +ti+l )J
+43 2 4 ) K@ +% (@ |

i=0 7 5

0,n, mON,

S0 (1) + (%, (1/2) m_1(0)+xm_1(1)}+ ke
7 5 ko

with the estimate of the rest:

s |

. { sin( % 1(9) +cos(%, 1 (5/2) | Xpy(0) + %, (1) }iv
2880 h* sro.1 7 5 S
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Thus, using an equidistant division of the interval [0,1] through the points a=1t, <t; <...<t,=Db,

we obtain the sequence (Ym(tk))m]N , k=0,n, that estimates the successive approximations sequence

(Xm(tk))nﬂN , k= O,_n with the following error in calculation:

a) when we use the trapezoids formula, the error is:

Xt = Xn(t )| < 0,0676113247 E—Il—2
n

b) when we use the rectangles formula, the error is:
| Xt = Xt )| < 0,43696698612 G:;

c) when we use the Simpson's formula, the error is:
Xt = Xn(t)| < 0,00139480234% :

The calculus of the approximate value of the integral from the expression of the general term of the
successive aproximations sequence using the trapezoids formula, the rectangles formula and the Simpson's
formula respectively, was performed with a software developed in MATLAB. The results that was obtained
using this software product are given in appendices.

Knowing the number of sub-intervals with equal length, contained in the interval [0,1], the
approximate solution of the integral equation (5.19) was determined in the following two situations:

- when we know the error and respectively
- when we know the number of iterations.

Thus, for a division of the interval [0,1] in 100 equal parts and an error er < 10", the following
results have been obtained:

a) Using the trapezoids formula, the approximate solution of the integral equation is:

X(t) = cost +0,72289467701720 (appendix 1a)

and it was obtained after 18 iterations, with a requested error.
b) Using the rectangles formula, the approximate solution of the integral equation is:

X(t) = cost +0,72281138567569 (appendix 2a)

and it was obtained after 18 iterations, with a requested error.
¢) Using the Simpson's formula, the approximate solution of the integral equation is:

X(t) = cost +0,72289470137956 (appendix 3a)

and it was obtained after 18 iterations, with a requested error.
Finally, for a division of the interval [0,1] in 100 equal parts and after 20 iterations, the following
approximate solutions of the integral equation were obtained:

a) Using the trapezoids formula, the approximate solution of the integral equation is:

X(t) = cost +0,72289467704154 (appendix 1b)

and it was obtained after 20 iterations, with the error er = 5.008105041781619¢-012 .

142



Numerical analysis of the Fredholm integral
equation with modified argument (2.1)

b) Using the rectangles formula, the approximate solution of the integral equation is:

X(t) = cost +0,72281138569953 (appendix 2b)

and it was obtained after 20 iterations, with the error er = 4.898970118460966¢e-012 .

¢) Using the Simpson's formula, the approximate solution of the integral equation is:

X(t) = cost +0,72289470140390 (appendix 3b)

and it was obtained after 20 iterations, with the error er = 5.007882997176694¢-012 .
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6 An integral equation from the theory of epidemics

In the study of certain problems of the dynamics of population, with phenomena that occur
periodically, often occurs the following nonlinear integral equation:

k1= [ tsx9)ds, tOR, (6.1)

where the function f OC(RxR,) satisfies the condition of periodicity with respect to t (w> 0), f(ttawXx) =
f(t,x), for each tOR, xOOR, and 7> 0 is a parameter.

According to presentation in paper [12], this equation can be described in the terms of epidemics,
when the number of members of the population is constant, and also in the terms of one population increase,
when the birth rate varies periodically (chapter 1, paragraph 1.8.2).

Therefore, the integral equation (6.1) can be used as a mathematical model, important for the study
of the spreading of an infectious disease, which has a periodic contact rate and which varies seasonally. In
this situation, X(t) is a continuous quantity, which represents the number of members of the population that
were infected at a certain moment, t, function f(t,x(t)) represents the number of the individuals new infected
per unit of time (f(t, 0) =0), and 7 is the length of time in which an individual remains infectious.

K. L. Cooke and J. L. Kaplan have proposed this integral equation as a mathematical model of
epidemics and of population increase, respectively. This model has been intensely studied, and the conditions
of existence and uniqueness of the non-trivial positive and periodic solutions with period w > 0 were
obtained, emphasizing some of the interesting properties of the solutions.

Among those who studied this equation one can mention K. L.Cooke and J. L.Kaplan [3], D. Guo
and V. Lakshmikantham [5], R. Torrejon [20], R. Precup [9], [10], [11], E. Kirr [7], [8], A. Cafiada and A.
Zertiti [1], [2], R. Precup and E. Kirr [12], I. A. Rus [13], [14], [15], [16], I. A. Rus and C. lancu [17], C.
lancu [6], M. Dobritoiu, I. A. Rus and M. A. Serban [4], I. A. Rus, M. A. Serban and D. Trif [19].

In what follows, we present the results obtained by I. A Rus, M. A. Serban and M. Dobritoiu in a
study of the integral equation (6.1), using the Picard operators technique, and published in paper [4]. This
study contains the results regarding to existence and uniqueness of the solution, lower-solutions and upper-
solutions of the integral equation (6.1), the results regarding to the data dependence of the solution and the
differentiability of the solution with respect to a parameter.

6.1 The existence and uniqueness of the solution in a subset of the space C(R,l)

In order to study the existence and uniqueness of the solution in a subset of the space C(R, |) we
consider the nonlinear integral equation (6.1) under the following conditions:

(e) 1,J0R are compact intervals and fOC(RxI, J);

(&) f(t,):1 - J is Ly—Lipschitz for each t0R;

(&) Li-7<1;
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(&) there exists U O C(R,I) such that UUI(A), where the operator A is defined by the relation:

t
Ax(3= [ {sx9)ds, tOR. (6.2)
t-1
The following theorem of existence and uniqueness is true.

Theorem 6.1.1. (M. Dobritoiu, I. A. Rus and M. A. Serban [4]) Under tre conditionse)—(e,), the
integrd equation(6.1) has a unique solution in U.

Proof. We consider the Banach space (C(R,I), Eﬂ ¢ ) endowed with the supremum norm

b

[ ] =sup [ x®

and the operator A defined by the relation (6.2).

From the condition (&) it results that A(U) O U , so one can consider the operator A: U - U,
defined by the relation (6.2). The solutions set of the integral equation (6.1) coincides with the fixed point set
of the operator A.

From the condition (&) we have:

t

[( Esx - (sx(9)ds

t-r

<

| AXOE A0t =

<

[I (5008 (f.sx d%s

t-r

[ Y 3~ x(s]ds

and using the supremum norm, we obtain:

” AXx)- A(XZ)"C < L B-" X —X; ”c ’

and according to condition (&) it results that the operator A is an g-contraction with the coefficient a=L; - T.
Now, we obtain the conclusion of the theorem by applying the Contraction Principld .3.1.

Remark 6.1.1. If the conditions (€,)—(ey) are fulfilled, then the operator
AU, g ) - U dyg)

is a Picard operator.
Letbe 0<m<M, 0<a<p I=[apf, J=[mM].

Corollary 6.1.1. (M. Dobritoiu, I. A. Rus and M. A. Serban [4]) Suppose that:
(i) the conditionge,)—(&;) are fulfilled;
(i) asmr, B=2M-T.

Then the integral equatiqi.1) has a unigue solution iIG(R,1).

Proof. We consider U := C(R,I), where | = [a,f] and the operator A is defined by the relation (6.2).
From the definition of the function f it results that
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ft, x®)O[mM], forall tOR, xOU

and we obtain

i.e.

t
[ €sx9dsd[mzr,Mr], forall tOR, xOU,

t-r

AX)(t) O[mzMz], forall tOR, xOU .

From the condition (ii) it results that
AX)OO[a,p], forall tOR, xOU .

Therefore, U is an invariant subset for the operator A and now, applying the theorem 6.1.1 the proof

is complete.

Corollary 6.1.2. (M. Dobritoiu, I. A. Rus and M. A. Serban [4]) Suppose that the conditions of the

corollary 6.1.1 are fulfilled.In addition, we suppose that there exists 0 such that

f(t+ w u)y="»f(t,u), forall tOR, ull .

Then, he integral equatioli6.1) has a unique periodic solution, that has the pergd 0.

Proof. Consider

U:=X,:= { XOCR) | X(t + @) = X(t) , for all tOR }

and the operator A defined by the relation (6.2).

Using the condition (€,) and the condition (ii) of the corollary 6.1.1 and since the function fis -

periodic with respect to t, we deduce that A(U) [0 U, i. e. U [0 I(A). Thus, the conditions of the theorem 6.1.1
are fulfilled and therefore it results the conclusion of the corollary. The proof is complete.

6.2 Lower-solutions and upper-solutions

Consider the integral equation (6.1) under the conditions (e)—(&;) and we denote by X: UU the

unique fixed point of the operator A. In addition, we suppose that:

(e) f(t,): 1 - J isincreasing for all tUR.

We have:

Theorem 6.2.1. (M. Dobritoiu, I. A. Rus and M. A. Serban [4]) Suppose that the conditio(es)—(es)

are fulfilled If

then

AU ki< [ {sx9ds,
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Proof. We consider the operator A : U — U, defined by the relation (6.2). From the conditions (& )—
(&) it results that A is a Picard operator, and from the condition (&) it results that A is an increasing operator.
Since the conditions of the abstract Gronwall's lemma, 1.4.1, are fulfilled, we obtain:

X < X,

and the proof is complete.
Letbe 0<m<M, 0<a<p |I=[a/pf, J=[mM]. The following theorem is true.

Theorem 6.2.2. (M. Dobritoiu, I. A. Rus and M. A. Serban [4]) Let f, i=1,2,3 be three functions
and suppose that the following conditions are fulfilted

(i) FOCRxL D, i=1,2,3, wherel,JOR compact intervals
(i) fo(t, ) is increasing for alltlR ;

(i) f; < f, < f5;

(iv) fiit,):1 - J is Lfi—Lipschitz foraltOR, i=1,2,3;

(V) Lfi T<1,i=1,2,3;

(i) asmr, B=2M-T.

Let x , i =1, 2,3 be the unique solutionof the integral equation (6or)each of the three functions
fi, i=1,2,3. Then

X <X <X .
Proof. We consider the operators A : C(R,]) — C(R,l), defined by the relations:

A X )= j f(sx9)ds, tOR, i=1,2,3. (6.3)

From the condition (i) we deduce that the operator A, is increasing, and from the condition (iii ) it
results that

A15A2§A3.

Using the conditions (i), (iv) and (V) we obtain that the operators A are @, —contractions with the
constants a; = Lfi T, 1=1,2,3 and therefore A, i =1, 2, 3 are Picard operators.

According to the abstract comparison lemm&d4.5, it results that the following implication is
fulfilled:

X <% <X = K(X)SAX)SAK),
and since Ay, i =1, 2, 3, are Picard operators, we obtain that
X <X <X, ,
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and, finally, the proof is complete.

Theorem 6.2.3. (M. Dobritoiu, I. A. Rus and M. A. Serban [4]) Suppose that the conditio(e)—(e;)
and ;). Then

X< X, <Y,
forall xO(LF), and y O (UF)4.

Proof. We consider U := (LF)oU (UF)a and the operator A defined by the relation (6.2):

Ax(3= [ {sx9)ds, tOR.

t-r

From the condition (&;) it results that the operator A is increasing and therefore we have that
(LF)AOI(A) and (UF)A0I(A).  Hence it results that (LF)aU(UF)s O I(A) and, so, (LF)AU(UF), is an
invariant subset for the operator A.

Now, we consider the operator A: U — U, defined by the same relation (6.2).

From the conditions (&)—(&;) and the condition above, it results that A is a Picard operator.

Applying the theorem 6.1.1 it results that the operator A has in U a unique fixed point, which we

denote by X, .

Since the conditions of lemma 1.4.2 are fulfilled, we obtain the conclusion of this theorem and the
proof is complete.

6.3 The data dependence

In what follows, we study the dependence of the solution of the integral equation (6.1) with respect
to the function f, and for this, we consider the following perturbed integral equation:

gr= [ gsy9)ds, tOR, (6.4)

where gLIC(Rxl, J), and I, J I R are compact intervals.

Theorem 6.3.1. (M. Dobritoiu, I. A. Rus and M. A. Serban [4]) Suppose that:

(i) the onditions of the theorer.1.1 are fulfilled and we denote by the unique solution of the
integrd equation(6.1);

(ii) there existsn> 0, such that
Of (tu) —gt,wd< n, forall tOR,ull.

Under hese conditions, if/ is a solution of the integral equati®6.4), then we have

< nlir

X*—* S — .
Ye= 1oL

Proof. We consider the operator A : U — U, defined by the relation (6.2):

149



Chapter 6

Ax(3= [ {sx9ds, tOR.

Also, let B: U — U be an operator attached to the perturbed integral equation (6.4), defined by the
relation:

BY = [ gsy9)ds, tOR. (6.5)

From the condition (ii ) we have:

<

[[ ¢.s«p- gsx9)]ds

t-r

| At BX)t=

t

J

t-r

<

< j[/]ds =nk

t-r

| (f,s(x8- @5k d%ﬁ

and using the supremum norm, we obtain:
| A%~ B0, <7 .
Now, the proof of the theorem it results by applying the abstract data dependence theorem, 1.3.5.

We have, also, the following theorem of data dependence of the periodic solution of the integral
equation (6.1).
Theorem 6.3.2. (M. Dobritoiu, I. A. Rus and M. A. Serban [4]) Suppose that:

(i) the canditions of the corollary6.1.2 are fulfilled and we denote by the uniquew-periodic
solution of the integral equatiq.1);

(i) gt+ wu)=gt,u, forall tOR, ull ;
(iii) there existsn> 0, such that
Of (t,u) — g(t,wyd< n, forall tOR, ull .

Under trese conditions, ify" is an w-periodic solution of the perturbed integral equatiomi), then
we have

* E3

X -y nlir

<—-.

Proof. We consider
U =X, = {XOCR,) | X(t + @) = X(t) , for all tOR}

and the operator A: U — U defined by the relation (6.2):

AX 1= [ tsx9)ds, tOR.
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Let B: U — U be an operator defined by the relation (6.5):

BY X:=| ¢gsy9)ds, tOR.

t-r

From the condition (iii ) we have:

<

| Aot Bt=|[[ f.sxp- gsx9)]ds

t-r

t

<|[] (f.s(x8~ gs@)ld%

t-r

:”B‘

j[/]ds

t-r

and using the supremum norm, we obtain:
| A% B0, <7 .

Now, we obtain the conclusion of the theorem by applying the abstract data dependence theorem
1.3.5.

6.4 The differentiability of the solution with respect to a parameter

In what follows, we study the differentiability of the solution of the integral equation (6.1) (see [7],
[12], [18]) with respect to the parameter A:

Kih) = j { sXx9:A)ds, tOR, 0K, (6.6)

where fOCRxIxK, J), with | =[a,f], 0<a<pfB J=[mM], 0<m<M and KOR is an compact
interval.
Let be

Xo:= { XOCR %K, ) | X(t + @ A) = X(t, 2) , for all tOR, A0K },
where w> 0.

Theorem 6.4.1. (M. Dobritoiu, I. A. Rus and M. A. Serban [4]) Supposethat the following
conditions are fulfilled:

iy asm-r, B=2M-T;

(i) ft, u; 1) O[mM], foral tOR, udl, A0K ;

(ii) ft+ wu; 1) =1(t,u; 1), forall tOR, udl, AOK;

(iv) f(t, - ;) :1 - J is Ls— Lipschitz for alltOR, 20K ;

W) L-r<1.
Then

(a) the integral equatioii6.1) has a unique solution”in X,.

(b) forall x0X,, the sequencéx,),on defined by the relation:

151



Chapter 6

X.() = [ {sx(sA)ds

converges uniformip X ;

(c) if f(t, -, HOC'(I xK), then x'( t, -)OC'(K) .
Proof (a) + (b). We consider the operator B : X,,— C(RXK) defined by the relation:
t
BX )= [ {sxsA)ds.
t-1

From the conditions (i) and (iii ) it results that X, is an invariant subset for the operator B, i. e. X, []
1(B).

From the conditions (iv) and (V) it results that the operator B is an a—contraction with the constant o
=Li7.

Applying now, the Contraction Principld.3.1, it results that B is a Picard operator.

* *

(©). We prove that there exists % and that % O CRxK).

*

If we suppose that there exists % , then from

k)= [ {sxsA)dds

we have:

0X 1) _ j 0 f(s X)) OXSA) () j 0 f(s s AA)
oA ox 94 94 '

t-r t-r

This relation suggests us to consider the operator T : X XX, — X xX,, defined by the relation:
T=(B,C), TXxYy) =(BX,CxY),

where

coey = [ LPEDN e, | OMSHEDA) o

t-r t-r

We have:

oo - axan | | W‘m g sh) - 2s)|ds<

t
= lf'l:n Y #ICJ ds= L D-["y_znc >
forall x, y, zOX,.

Since the conditions of the fiber Picard operators theorem are fulfilled, it results thatis a Picard
operator and the sequences:

Xor1 =B(X)  and  Yni1 = C(Xn, Vi)
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converge uniformly to (X, y)OF+, for all Xo, YoOX,, .

0X
If we consider X, YolUX,,such that y, = 6_/;) , then it results that

=% rall nON.
o)

Yn
So

X, O BT X", as n— oo,

a—X”DﬂfJA y  as N— oo,

04

Now, using a Weierstrass argument, we deduce that X" is differentiable, i. e. there exists % and
;oo

e
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Appendices

The results obtained using the program MAS_TrapezE.m

>> The successive approximations method and the trapezoids formula

The input data:

We divide the interval [0,1] into n equal parts, n = 100
The error, er = 0.0000000001
The results:

The approximate solution of the integral equation is:

x(t) = cost +
ans =
0.72289467701720

and it was obtained for the required value of the error, after
ni =

18
iterations.

>>
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Appendix 1b

The results obtained using the program MAS_Trapezl.m

>> The successive approximations method and the trapezoids formula

The input data:

We divide the interval [0,1] into n equal parts, n = 100
The numbers of iterations, ni = 20
The results:
The approximate solution of the integral equation, was calculated after:
ni=
20

iterations and it is:

x(t) = cost +
ans =
0.72289467704154

with the error:

er =

5.008105041781619¢-012

>>
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The results obtained using the program MAS_DreptunghiE.m

>> The successive approximations method and the rectangles formula

The input data:

We divide the interval [0,1] into n equal parts, n = 100
The error, er = 0.0000000001
The results:

The approximate solution of the integral equation is:

x(t) = cost +
ans =
0.72281138567569

and it was obtained for the required value of the error, after
ni =

18
iterations.

>>

157

Appendices

Appendix 2a



Appendices

Appendix 2b

The results obtained using the program MAS_Dreptunghil.m

>> The successive approximations method and the rectangles formula

The input data:

We divide the interval [0,1] into n equal parts, n = 100
The number of iterations, ni = 20
The results:
The approximate solution of the integral equation, was calculated after:
ni=
20

iterations and it is:

x(t) = cost +
ans =
0.72281138569953

with the error:

er =

4.898970118460966¢-012

>>
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The results obtained using the program MAS_SimpsonE.m

>> The successive approximations method and the Simpson’s formula

The input data:

We divide the interval [0,1] into n equal parts, n = 100
The error, er = 0.0000000001
The results:

The approximate solution of the integral equation is:

x(t) = cost +
ans =
0.72289470137956

and it was obtained for the required value of the error, after
ni=
18

iterations.
>>
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Appendices

Appendix 3b

The results obtained using the program MAS_Simpsonl.m

>> The successive approximations method and the Simpson’s formula

The input data:

We divide the interval [0,1] into n equal parts, n = 100
The number of iterations, ni = 20
The results:
The approximate solution of the integral equation, was calculated after:
ni=
20

iterations and it is:

x(t) = cost +
ans =
0.72289470140390

with the error:

er =

5.007882997176694¢-012
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