


 

       

 
 
 

Some Integral Equations with Modified Argument 

 
 
 

Editors 
Prof. Valeri Mladenov 
Prof. Nikos Mastorakis 

 
 
 
 
 

Author 
 

Maria Dobritoiu 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Published by WSEAS Press      
www.wseas.org 
 

ISBN: 978-1-61804-372-6 

http://www.wseas.org/


 

Some Integral Equations with Modified Argument 
 

 
 
 
 
 
Published by WSEAS Press      
www.wseas.org 
 
 
 
 
 
 
 
 
Copyright © 2016, by WSEAS Press 
 
All the copyright of the present book belongs to the World Scientific and Engineering Academy and 
Society Press. All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or 
otherwise, without the prior written permission of the Editor of World Scientific and Engineering Academy 
and Society Press. 
 
 
 
 
 
All papers of the present volume were peer reviewed by two independent reviewers. Acceptance was 
granted when both reviewers' recommendations were positive. 

 
 
 
 
 

 
ISBN: 978-1-61804-372-6     
 
 
 
 
 
 
 

 
 
 
 

 
 

     
 
World Scientific and Engineering Academy and Society  

http://www.wseas.org/


iii 

 

 

Preface 
 
 

The theory of integral equations is an important part in applied mathematics. The first books with 
theme of study, the integral equations appeared in the 19th century and early 20th century, and they have 
been authored by some of the famous mathematicians: N. Abel (1802-1829), A. Cauchy (1789-1857), E. 
Goursat (1858-1936), M. Bocher (1867-1918), David Hilbert (1862-1943), Vito Volterra (1860-1940), Ivar 
Fredholm (1866-1927), E. Picard (1856-1941), T. Lalescu (1882-1929). The first treatise in this field 
appeared in 1910 (T. Lalescu 1911, M. Bocher 1912, D. Hilbert 1912, V. Volterra 1913) (see I.A. Rus 
[100]). In the 20th century, the theory of integral equations had a spectacular development, both in terms of 
mathematical theories that may apply, and in terms of effective approximation of solutions. 

The main methods that apply to the study of integral equations are: fixed point methods, variational 
methods, iterative methods and numerical methods. In this book was applied a fixed point method by 
applying the contraction principle. By this approach, the study of an integral equation represents the 
development of a fixed point theory, which contains the results on existence and uniqueness of the solution, 
the integral inequalities (lower-solutions and upper-solutions), the theorems of comparison, the theorems of 
data dependence of the solution (continuous data dependence and the differentiability of the solution with 
respect to a parameter) and an algorithm for approximating its solution. 

The integral equations, in general, and the integral equations with modified argument, in particular, 
have been the basis of many mathematical models from various fields of science, with high applicability in 
practice, e.g., the integral equation from theory of epidemics and the Chandrasekhar's integral equation. 

In this book, the Picard operators technique has been used for all the stages of this type of study. 
This book is a monograph of integral equations with modified argument and contains the results 

obtained by the author in a period that began in the years of study in college and ended up with years of 
doctoral studies, both steps being carried out under the scientific coordination of Prof. Dr. Ioan A. Rus from 
Babes-Bolyai University of Cluj-Napoca. It is addressed to all who are concerned with the study of integral 
equations with modified argument and of knowledge of results and/or of obtaining new results in this area. 
The book is useful, also, to those concerned with the study of mathematical models governed by integral 
equations, generally, and by integral equations with modified argument, in particular. 

Finally, we mention several authors of the used basic treatises having the theme of integral 
equations: T. Lalescu, I. G. Petrovskii, K. Yosida, Gh. Marinescu, A. Haimovici, C. Corduneanu, Gh. 
Coman, I. Rus, G. Pavel, I. A. Rus, W. Walter, D. Guo, V. Lakshmikantham, X. Liu, W. Hackbusch, D. V. 
Ionescu, Şt. Mirică, V. Mureşan, A. D. Polyanin, A. V. Manzhirov, R. Precup, I. A. Rus, M. A. Şerban, Sz. 
András. 
 
I dedicate this book to my parents Ana and Alexandru. 
 
 
 
 

Dr. Maria Dobrițoiu 
University of Petroșani, Romania 
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Overview of the book 
 
 
 

The integral equations, in general, and those with modified argument, in particular, form an 
important part of applied mathematics, with links with many theoretical fields, specially with practical fields. 
The first papers that treated the integral equations had as authors renowned mathematicians, such as: N. H. 
Abel, J. Liouville, J. Hadamard, V. Volterra, I. Fredholm, E. Goursat, D. Hilbert, E. Picard, T. Lalescu, E. 
Levi, A. Myller, F. Riez, H. Lebesgue, G. Bratu, H. Poincaré, P. Levy, E. Picone. T. Lalescu was the author 
of the first book about integral equations (Bucharest 1911, Paris 1912). 

This book is a study of some of the integral equations with modified argument and it focuses mostly 
on the study of the following integral equation with modified argument 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()(  ,     t ∈ [a,b] ,    (1) 

where K : [a,b]×[a,b]×B4 → B,  f : [a,b] → B,  g : [a,b] → [a,b],  and (B,+,R,|·|) is a Banach space. 
 Starting with the Fredholm integral equation with modified argument 

 ∫ +=
b

a

tfdsbxaxsxstKtx )())(),(),(,,()(  ,     t ∈ [a,b] ,     (2) 

which is a mathematical model from the turbo-reactors industry, we have also considered a modification of 
the argument through a continuous function g : [a,b] → [a,b], thus obtaining the integral equation with 
modified argument (1). It is an example of a nonlinear Fredholm integral equation with modified argument. 
 The integral equations (1) and (2) have been studied by the author, laying down the conditions of 
existence and uniqueness of the solution, the conditions of the continuous data dependence of the solution, 
and also, of differentiability of the solution with respect to a parameter and the conditions of approximating 
the solution, and the obtained results were published in papers [2], [22], [23], [24], [26], [29], [31], [33], 
[34], [35], [37], [38]. 

The book contains results of existence and uniqueness, of comparison, of data dependence, of 
differentiability with respect to a parameter and of approximation for the solution of the integral equation 
with modified argument (1) and a few results related to the solution of a well known equation from the 
epidemics theory. 

Chapter 1, entitled “Preliminaries”, that has eight paragraphs, is an introductory chapter which 
presents the notations and a few classes of operators that are used in this book, the basic notions and the 
abstract results of the fixed point theory and also, the notions from the Picard operators theory on L-spaces 
and the fiber contractions principle. 

There are also presented the quadrature formulas (the trapezoids formula, the rectangles formula and 
Simpson’s quadrature formula) that were used for the calculus of the integrals that appear in the terms of the 
successive approximations sequence from the obtained method of approximating the solution of the integral 
equation (1). 
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The seventh paragraph contains a very brief overview of Fredholm and Volterra nonlinear integral 
equations and the basic results regarding the existence and uniqueness of the solutions of these equations 
(see [10]). 

In the eighth paragraph there are presented two mathematical models governed by functional-integral 
equations: an integral equation from physics and a mathematical model of the spreading of an infectious 
disease. 

The first model refers to equation (2), and the results of existence and uniqueness, data dependence 
and approximation of the solution (theorems 1.8.1, 1.8.2 and 1.8.3), presented in this paragraph, were 
obtained by the author and published in the papers [2], [22], [23], [24], [26] and [29]. 
 The presentation of the mathematical model of the spreading of an infectious disease, which refers to 
the following equation from the epidemics theory 

 ∫
−

=
t

t

dssxsftx
τ

))(,()(  ,          (3)  

contains results obtained by K.L. Cooke and J.L. Kaplan [18], D. Guo, V. Lakshmikantham [42], I. A. Rus 
[88], [93], Precup [73], [75], R. Precup and E. Kirr [78], C. Iancu [47], [48], I. A. Rus, M. A. Şerban and D. 
Trif [114]. 
 The fiber generalized contractions theorem 1.5.2, theorem which is a result obtained by I.A. Rus in 
paper [100], was used to lay down theorem 1.5.3 in this chapter, theorem that was published in paper [27]. 

Chapter 2, entitled “Existence and uniqueness of the solution” has five paragraphs. Three of them 
contain the conditions of existence and uniqueness of the integral equation with modified argument (1), in 
the space C([a,b],B) and in the sphere );( rfB ⊂ C([a,b],B), in a general case and in two particular cases for 
B : B = Rm  and  B = l2(R). In order to prove these results, the following theorems have been used: the 
Contraction Principle 1.3.1 and Perov’s theorem 1.3.4. 

The fourth paragraph of this chapter contains three examples: two integral equations with modified 
argument and a system of integral equations with modified argument and for each of these examples the 
conditions of existence and uniqueness, which were obtained by using some of the results presented in the 
previous paragraphs, are given. 
 In the fifth paragraph was studied the existence and uniqueness of the solution of the integral 
equation with modified argument 

 )()|)),((),(,,()( tfdsxsgxsxstKtx += ∫
Ω

Ω∂ ,     t ∈ Ω  ,     (4) 

where Ω ⊂ Rm is a bounded domain, mmmm RRCRRK →Ω∂×××Ω×Ω ),(: , mRf →Ω:  and Ω→Ω:g . 
This equation is a generalization of the integral equation (1). 
 Some of the author’s results that are presented in this chapter, were published in papers [31] and 
[37]. 

Chapter 3, entitled “Gronwall lemmas and comparison theorems” has three paragraphs. Several 
Gronwall lemmas, comparison theorems and a few examples for the integral equation with modified 
argument (1) are presented. These results represent the properties of the solution of this integral equation. In 
order to prove the results presented in this chapter, the following theorems were used: the abstract Gronwall 
lemma 1.4.1 and the abstract comparison lemmas 1.4.4 and 1.4.5. The third paragraph of this chapter 
contains examples which are applications of the results given in the first two paragraphs. These results were 
obtained by the author and published in the papers [35] and [38]. 

In chapter 4, entitled “Data dependence”, which has four paragraphs, the author present the theorems 
of data dependence, the differentiability theorems with respect to a and b (limits of integration), and 
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theorems of differentiability with respect to a parameter, of the solution of the integral equation with 
modified argument (1) and also, a few examples. 

In order to prove the results presented in this chapter, the following theorems were used: the abstract 
data dependence theorem 1.3.5 and the fiber generalized contractions theorem 1.5.2. These results were 
published in the papers [31], [33], [34] and [37]. 

In chapter 5, entitled “Numerical analysis of the Fredholm integral equation with modified argument 
(2.1)”, following the conditions of one of the existence and uniqueness theorems given in the second chapter, 
a method of approximating the solution of the integral equation (1) is given, using the successive 
approximations method. For the calculus of the integrals that appear in the successive approximations 
sequence, the following quadrature formulas were used: the trapezoids formula, Simpson’s formula and the 
rectangles formula. 

This chapter has five paragraphs. The first paragraph presents the statement of the problem and the 
conditions under which it is studied. In paragraphs 2, 3 and 4 there are presented the results obtained related 
to the method of approximating the solution of the integral equation (1). The results obtained in paragraphs 
2, 3 and 4 are used in the fifth paragraph to approximate the solution of an integral equation with modified 
argument, given as example. 
 The MatLab software was used to calculate the approximate value of the integral which appears in 
the general term of the successive approximations sequence, with trapezoids formula, rectangles formula and 
Simpson’s formula; for each of these cases was obtained the approximation of the solution of the integral 
equation given as example. In appendices 1, 2 and 3 one can find the results obtained by these programs 
written in MatLab. 

Some of the results obtained by the author for equation (1), that were presented in this chapter, were 
published in paper [31]. The results obtained for the numerical analysis of equation (2) were published in the 
papers [22], [23], [24] and [26]. 

Chapter 6, entitled “An equation from the theory of epidemics”, has four paragraphs and contains the 
results obtained through a study of the solution of the integral equation (3), using the Picard operators. This 
study was carried out by the author in collaboration with I.A. Rus and M.A. Şerban, and the results obtained, 
refering to the existence and uniqueness of the solution in a subset of the space C(R,I), lower and upper 
solutions, data dependence and differentiability of the solution of the integral equation (3), with respect to a 
parameter, are published in paper [36]. 

The bibliography used to write this book contains several important basic treatises from the theory of 
integral equations, scientific papers on this topic, of some known authors and scientific articles which 
contains the author's own results. 
 Each of the six chapters has its own bibliography and all these references are listed in a bibliography 
at the end of the book. 

 The basic treatises used for the study in this book are the following: T. Lalescu [56], I. G. Petrovskii 
[69], K. Yosida [129], Gh. Marinescu [59] and [60], A. Haimovici [45], C. Corduneanu [20], Gh. Coman, I. 
Rus, G. Pavel and I. A. Rus [15], D. Guo, V. Lakshmikantham and X. Liu [43], W. Hackbusch [44], C. Iancu 
[48], D. V. Ionescu [49] and [50], V. Lakshmikantham and S. Leela [55], Şt. Mirică [61], D. S. Mitrinović, J. 
E. Pečarić and A. M. Fink [62], V. Mureşan [65], B. G. Pachpatte [66], A. D. Polyanin and A. V. Manzhirov 
[72], R. Precup [74] and [81], I. A. Rus [88], [89], [95], [106], I. A. Rus, A. Petruşel and G. Petruşel [109], 
D. D. Stancu, Gh. Coman, O. Agratini and R. Trîmbiţaş [119], D. D. Stancu, Gh. Coman and P. Blaga [120], 
M. A. Şerban [124], Sz. András [6]. 

This book is a monograph of some of the integral equations with modified argument and it contains 
the results on which the author had been working, starting with the university years and ending with the 
years of Ph.D. studies, under the the scientific coordination of professor Ioan A. Rus from the "Babeş-
Bolyai" University of Cluj-Napoca, Romania. 
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The purpose of this book is to help those who wish to study the integral equations with modified 
argument, to learn about these results and to obtain new results in this field. 

This book is also useful for those who would like to study the mathematical models governed by 
integral equations, in general, and integral equations with modified argument, in particular. 
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1  Preliminaries 
 
 
 
 In this chapter we present the principal notions and results which were used in this book. It is an 
introductive chapter composed of seven paragraphs, which contains the notations that were used, several 
classes of the used operators, the basic notions and the abstract results from the fixed point theory, some 
notions from the theory of Picard operators on L-spaces and the fiber contractions principle, that represent 
the basis of the obtained results which were presented in this book. 
 There are also presented the quadrature formulas: the trapezoids formula, the rectangle formula and 
Simpson’s quadrature formula which were used for the calculus of the integrals that appear in the terms of 
the successive approximations sequence from the method of approximation of the solution of integral 
equation (1). 
 In the last paragraph of this chapter there are presented two mathematical models governed by 
functional-integral equations: an integral equation from physics and a mathematical model of the spreading 
of an infectious disease. 

The theorems 1.5.3, 1.8.1, 1.8.2, 1.8.3 and the algorithm for approximating the solution of the 
integral equation (1.31) presented in this chapter, are the results obtained by the author. These results were 
published in the papers [1], [19] and [20]. 
 
 

1.1  Notations and notions 
 

Let X be a nonempty set and  A : X → X  an operator. Then, we denote: 

P(X): ={ Y ⊂ X / Y ≠ ∅ } – the set of all nonempty subsets of X 

 A0: =1X,   A1: =A, . . . , An+1: =A◦An,   n ∈N – the iterates operators of the operator A 

I(A): ={Y∈P(X) / A(Y) ⊂ Y } – the family of the nonempty subsets of  X, invariants for the operator A 

FA: ={x∈X / A(x) = x} – the fixed points set of the operator A . 

Let X be an ordered set and A : X → X an operator. Then, we denote: 

 })(/{:)( xxAXxUF A ≤∈=  – the upper fixed points set of the operator A 

})(/{:)( xxAXxLF A ≥∈=  – the lower fixed points set of the operator A . 

 Let (X,d) be a metric space, x0∈ X,  r ∈ R+  and  A : X → X  an operator. Then 

 B(x0;r): ={x ∈ X / d(x,x0) < r} – the opened sphere with center x0 and radius r 

 );( 0 rxB : ={x ∈ X / d(x,x0) ≤ r} – the closed sphere with center x0 and radius r. 

 Also, we denote: 

Pb(X): ={Y∈P(X) / Y is bounded set} – the set of all nonempty and bounded subsets of X 

 Pcl(X): ={Y∈P(X) / Y = Y } – the set of all nonempty and closed subsets of X 
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 Pb,cl(X): ={Y∈P(X) / Y is bounded and Y = Y } – the set of all nonempty, bounded and closed subsets 
of X 

 Pcp(X): ={Y∈P(X) / Y is compact set} – the set of all nonempty and compact subsets of X 

Ib(A): ={Y∈I(A) / Y is bounded set} – the family of all bounded subsets of X, invariants for the 
operator A 

Icl(A): ={Y∈I(A) / Y = Y } – the family of all closed subsets of X, invariants for the operator A 

Ib,cl(A): ={Y∈Ib(A) / Y = Y } – the family of all bounded and closed subsets of X, invariants for the 
operator A 

 CT(X,X): ={ f : X → X / f is contraction} 

 Lip[a,b]: ={ f : [a,b] → R / f satisfies the Lipschitz condition}. 

In what follows, we present a few basic notions which were used in this book. 
 
 Definition 1.1.1. ([53]) Let X be a nonempty set. A functional d : X × X → R that has the following 
properties: 

 (i) d(x, y) ≥ 0 ,   for all  x, y ∈ X ;   d(x, y) = 0  if and only if  x = y ; 

 (ii ) d(x, y) = d(y, x) ,   for all  x, y ∈ X ; 

(iii ) d(x, y) ≤ d(x, z) + d(z, y) ,   for all  x, y, z ∈ X , 

is called metric on X. 

The conditions (i), (ii ) and (iii ) are called the axioms of the metric. 
 
 Definition 1.1.2. ([53]) A pair (X, d) consisting of a set X and a metric d on X, is called metric space. 
 
 Definition 1.1.3. ([53]) A sequence (xn)n∈N  of elements in a metric space (X, d) converges to an 
element x0∈X,  if for each  ε  > 0  there exists  n0(ε) ∈ N  such that 

 d(xn , x0) < ε ,  for each  n > n0(ε). 
 
 Definition 1.1.4. ([53]) A sequence (xn)n∈N  of elements in a metric space (X, d) is called fundamental 
sequence or Cauchy sequence, if for each  ε  > 0  there exists  n0(ε)∈N such that 

 n∈N, m > n0(ε)  imply  d(xn,xm) < ε . 
 
 The following theorem is true. 

 Theorem 1.1.1. ([41]) Any convergent sequence is a Cauchy sequence. 
 
 Proof. Let ε  > 0  and  (xn)n∈N  be a sequence which converges to x0.  Therefore, for this  ε > 0  there 

exists  n0(ε)∈N  such that  d(xn, x0) < 2
ε ,  for each  n > n0(ε)  and  d(xm, x0) < 2

ε ,  for each  m > n0(ε). Now, we 

have 

 d(xn, xm) ≤ d(xn, x0) + d(x0, xm) < ε 

and the proof is complete. �  
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 The reciprocal theorem of the theorem 1.1.1, generally is not true. 
 
 Definition 1.1.5. ([53]) The metric space in which every fundamental sequence is convergent is 
called a complete metric space. 
 
 Example 1.1.1. ([53]) Let Rm be the set X , i.e. X = Rm. The functionals d, δ, ρ : Rm×Rm → R+ 
defined by the following relations: 

 ( ) 2
1

1

2),( 






 −= ∑
=

m

i
ii yxyxd ,   x, y∈Rm , 

 ∑
=

−=
m

i
ii yxyx

1
),(δ ,   x, y∈Rm , 

 ii
mi

yxyx −=
≤≤1

max),(ρ ,   x, y∈Rm 

are metrics on X, and the metric spaces (X, d), (X, δ) and (X, ρ) are complete metric spaces. 
 
 Let (X,+,R,|·|) be a normed linear space, i.e. a real linear space (X,+,R) endowed with a norm  |·| . 
 
 Definition 1.1.6. ([53]) A functional |·| : X → R that satisfies the following conditions: 

 (i) |x| ≥ 0 ,   for all  x ∈ X ;   |x| = 0  if and only if  x = 0 ; 

 (ii ) |λ x| = |λ |⋅|x| ,   for all  λ ∈ R  and  x ∈ X ; 

(iii ) |x+y|  ≤  |x| + |y| ,   for all  x, y ∈ X 

is called norm on X. 

 The functional d : X×X → R, defined by d(x, y) = |x– y|, represent a metric on the set X. This metric is 
called metric induced by the norm |·|. 
 
 Definition 1.1.7. ([53]) A normed linear space is called Banach space (or complete normed linear 
space) if this space is complete with respect to the metric induced by the norm. 
 
 Let (B,+,R,|·|) be a Banach space. In this book were considered the following cases: B = Rm  and  B 
= l2(R). 

In the particular case  B = Rm,  |·|  is one of the following norms (see [53]): 

- Euclidean  norm 
E

⋅ : Rm → R ,  defined by the relation: 

2
1

1

2: 






= ∑
=

m

i
iE

xx ,   x∈Rm ,       (1.1) 

- Minkowski's  norm 
M

⋅ : Rm → R ,  defined by the relation: 

∑
=

=
m

i
iM

xx
1

:  ,   x∈Rm ,       (1.2) 

- norm of Chebyshev 
C

⋅ : Rm → R ,  defined by the relation: 
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i
mi

C
xx

≤≤
=

1
max:  ,   x∈Rm ,       (1.3) 

and the spaces (Rm, + , R, 
E

⋅ ),  (Rm, + , R, 
M

⋅ )  and  (Rm, + , R, 
C

⋅ )  are Banach spaces. 

In the particular case  B = l2(R), 

l2(R): =






 +∞<∈ ∑

∈
∈

Nn
nnNnn xRxx 2,/)( , 

the norm  |·|  is the functional )(2 Rl
⋅ : l2(R) → R+ ,  defined by the relation: 

 
2
1

1

2
)( :2 







= ∑
∞

=i
iRl

xx  ,   x∈ l2(R)        (1.4) 

and the space  (l2(R), + , R, )(2 Rl
⋅ )  is a Banach space (see [53]). 

In this book we will consider the metric of Chebyshev d : C[a,b]×C[a,b]→R, on the set  C[a,b] = { f : 
[a,b]→R / f  is a continuous function },  defined by the relation: 

 )()(max:),(
],[

xgxfgfd
bax

−=
∈

 ,   for all  f, g ∈ C[a,b] ,     (1.5) 

and the norm induced by this metric, i.e. the norm of Chebyshev 

 )(max:
],[

xff
baxC ∈

=  , for all  f ∈ C[a,b] .      (1.6) 

Also, we will consider the norm of Chebyshev on the space C([a,b],Rm), defined by the relation: 

 
















=

Cm

C

C

x

x

x ...:
1

 ,   for all 
















=

mx

x

x ...
1

∈C([a,b],Rm) ,     (1.7) 

where )(max
],[

txx k
batCk ∈

= , mk ,1=  . 

 
 

1.2  Classes of operators 
 
 The successive approximations method is a basic tool in the theory of operatorial equations, 
generally, and in the fixed point theory, in particular, and the evolution of this method occurred in three 
periods. 
 In the first period, represented by L. A. Cauchy, J. Liouville, R. Lipschitz, G. Peano, E. I. Fredholm 
and E. Picard, for each fixed point equation are studied:  

(i) the uniqueness of the solution, 
(ii ) the convergence of the successive approximations sequence, 
(iii ) the limit is a solution of a given equation. 

In the second period that begins with the papers of S. Banach and R. Caccioppoli, are given, in an 
abstract case, conditions that include (i), (ii ) and (iii ). Thus, with S. R. Banach and R. Caccioppoli begins the 
metric theory of the fixed point, for which we mention also the papers of W. A. Kirk and B. Sims [35], I. A. 
Rus [54], [55], [64] and V. Berinde [8]. 
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During the third period, the conclusion of a fixed point metric theorem is used as a means of 
definition. This way introduce new classes of operators: Picard operators and weakly Picard operators (I. A. 
Rus [55]). 

In what follows we give the problem underlying the successive approximations method (see [53]). 
 Let (X, d) be a metric space,  f : X → X  an operator and  x0∈X . Relative to the operator f the 
following problem is formulated: 
 
 Under what conditions on f and X, the sequence of the successive approximations ( ) Nn

n xf ∈)( 0 , x0∈X, 
converges and its limit is a fixed point of operator  f  ? 
 

Next, we present several classes of operators from the metric theory of fixed point ([10], [54], [64]). 
 Let (X, d) and (Y, ρ) be two metric spaces. 
 
 Definition 1.2.1. An operator  f : X →Y  is continuous in point x0∈X , if for each sequence (xn)n∈N ,  
xn∈X , which converges to x0 , the sequence  (f(xn))n∈N  is convergent and its limit is f(x0), i.e.: 

 ∀(xn)n∈N  , xn ∈X ,  0),(lim 0 =
∞→

xxd n
n

    ⇒ 0))(),((lim 0 =
∞→

xfxf n
n

ρ  . 

The operator  f  is continuous on  X  if f is continuous at any point x0∈X . 
 
 Definition 1.2.2. An operator  f : X → Y  is a  bounded operator  if 

  A ∈ Pb(X) ⇒ f(A) ∈ Pb(Y) . 
 
 Definit ion 1.2.3. An operator  f : X → Y  is a  compact operator  if 

  A ∈ Pb(X) ⇒ )(Af  ∈ Pcp(Y) . 
 
 Definition 1.2.4. An operator  f : X → Y  is a  complete continuous operator  if  f  is compact and 
continuous operator. 
 
 Example 1.2.1. ([41]) A linear operator f : Rm → Rm  is a complete continuous operator. 
 
 Example 1.2.2. ([41]) Let K : [a,b]× [a,b] → R  be a continuous operator. The integral operator  A : 
C[a,b] → C[a,b],  A(x) a  x,  where 

 ∫=
b

a

dssxstKtxA )(),())(( , 

is a complete continuous operator. 
 
 Definition 1.2.5. An operator  f : X → Y  is uniformly continuous operator on X  if  for any  ε > 0, 
there exists a number δ = δ(ε) > 0 such that from 

 δ<)'','( xxd , for all x’, x” ∈ X , 

it results that ερ <))''(,)'(( xfxf . 
 
 Definition 1.2.6. An operator  f : X → Y  is a  closed operator  if the graph of  f , 
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G(f)={(x,f(x))∈X × Y / x ∈ X } ⊂ X × Y 

is a closed set. 
 
 Definition 1.2.7. An operator  f : X → X  is called: 

 (i) Lipschitz operator (α–Lipschitz operator) if there exists  α∈ R+  such that 

d(f(x), f(y)) ≤ α·d(x, y) ,  for all  x, y ∈ X . 

 (ii ) contraction (α–contraction)  i.e.  f ∈CT(X,X),  if there exists α∈(0,1) such that  f  is α–Lipschitz. 

 (iii ) contractive operator  if  d(f(x), f(y)) < d(x, y) ,  for all  x, y ∈ X , x ≠ y . 

 (iv) non-expansive operator  if  f  is a 1–Lipschitz operator, i.e. 

  d(f(x), f(y)) ≤ d(x, y) ,  for all  x, y ∈ X . 

 (v) non-contractive operator  if  d(f(x), f(y)) ≥ d(x, y) ,  for all  x, y ∈ X . 

 (vi) expansive operator  if  d(f(x), f(y)) > d(x, y) ,  for all  x, y ∈ X , x ≠ y . 

(vii) expansion operator  (α–expansion operator) if there exists  α > 1  such that 

d(f(x), f(y)) ≥ α·d(x, y) ,  for all  x, y ∈ X . 

(viii ) isometry if  d(f(x), f(y)) = d(x, y) ,  for all  x, y ∈ X . 
 
 Example 1.2.3. ([64]) 

a) The operator  f : R → R,  f (x) = 
2
1

x  is a contraction. 

b) The operator  f : R → R,  f (x) = 2x  is an expansion operator. 

 c) The operator  f : R → R,  f (x) = x  is an isometry. 

 d) The operator  f : [1,+∞) → [1,+∞),  f (x) = x +
x

1   is a contractive operator. 

 According to the above definitions we have: 
 
 Theorem 1.2.1. (Gh. Coman, I. Rus, G. Pavel and I. A.Rus [10]) The following implications are true: 

 (ii )  ⇒  (i) 

 (ii ) ⇒ (iii ) ⇒ (iv) . 
 
 In this book we use the continuous, bounded, Lipschitz and contractions operators. 
 
 

1.3  Fixed point theorems 
 
 In order to establish some of the results presented in this book, were used several basic theorems of 
fixed point theory, which we present below. 
 Thus, in order to obtain the existence and uniqueness results of the chapter 2, was used following 
fixed point theorem. 
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 Theorem 1.3.1. (Contraction Principle) Let (X, d) be a complete metric space and A : X → X an α -
contraction (α < 1). Under these conditions we have: 

 (i) A has a unique fixed point  x*, i.e.  FA = {x*} ; 

 (ii ) the successive approximations sequence considered for an x0∈X 

  x0,  x1=A(x0),  x2=A(x1)=A(A(x0))=A2(x0),  . . . ,  xn=A(xn-1)=An(x0),  . . . 

 converges to x*, i.e. 

)(lim 0
* xAx n

n ∞→
= ,   for all   x0∈X ; 

 (iii ) ))(,(
1

))(,( 000
* xAxdxAxd

n
n

α
α
−

≤ . 

 
 The proof of this theorem, which became classic, can be found in [53] and for this reason is omitted. 

Also, we mention the following fixed point theorem in a set with two metrics: 
 

Theorem 1.3.2. (M. G. Maia) Let  X  be a nonempty set,  d and ρ  two metrics defined on X  and  A : 

X → X  an operator. Suppose that 

 (i)  d(x,y)  ≤  ρ(x,y),   for all  x, y ∈ X ; 

 (ii )  (X, d)  is a complete metric space ; 

 (iii )  A : (X, d) → (X, d)  is a continuous operator ; 

 (iv)  the operator A : (X, ρ) → (X, ρ)  is an α–contraction. 

Then 

(a)  FA  = {x*} ; 

(b)  *)( xxA dn →    as   n → ∞,   for all  x∈X . 
 
 In the paper [53] I. A. Rus makes the following remark: 
 

Remark 1.3.1. (I. A. Rus [53]) The Maia's theorem remains true if the condition (i) is replaced by the 
following condition: 

 (i ’)  there exists  c > 0  such that  d(f(x),f(y))  ≤  cρ(x,y),   for all  x, y ∈ X . 
 
 Another variant of the Maia's theorem, presented by I. A. Rus in the paper [70], is as follows: 
 

Theorem 1.3.2’. (I. A. Rus [70]) Let X be a nonempty set,  d and ρ  two metrics defined on X  and  A 

: X → X  an operator. Suppose that 

 (i)  (X, d)  is a complete metric space ; 

 (ii )  there exists k ∈ N, sucht that the operator Ak: (X, ρ) → (X, d) is uniformly continuous; 

 (iii )  A : (X, d) → (X, d)  is a closed operator ; 

 (iv)  the operator A : (X, ρ) → (X, ρ)  is an α–contraction. 

Then 
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(a)  }{ *
AA xF = ; 

(b)  *)( A
dn xxA →    as n → ∞,   for all   x∈X ; 

(c)  *)( A
n xxA →ρ    as  n → ∞,   for all  x∈X ,  and 

  ρ( An(x), *
Ax ) ≤ αn·ρ(x, *

Ax ) ,   for all  n∈N*  and  x∈X ; 

(d)  ρ(x, *
Ax ) ≤ 

α−1
1 ρ(x, A(x)) ,   for all  x∈X . 

 
 Also, in the paper [70], I. A. Rus makes a few remarks: 
 
 Remark 1.3.2. (I. A. Rus [70]) The implication  (i) – (iv)  ⇒  (a) +  (b)  is the fixed point theorem of 
Maia, 1.3.2. (see M. G. Maia [38], I. A. Rus [52], R. Precup [51]). 
 

Remark 1.3.3. Using the Picard operators (see [66] and [67]) we have the following conclusions of 
theorem 1.3.2’: 

 (a) + (b)  –  The operator  A : (X, d) → (X, d)  is a Picard operator. 

(c) + (d)  –  The operator  A : (X, ρ) → (X, ρ)  is an 
α−1

1 –Picard operator. 

 
Remark 1.3.4. ([66]) The condition  d(Ak(x), Ak(y)) ≤ Cρ(x, y)  implies the condition (ii ) of the 

theorem 1.3.2’. 
 

 In Rm we consider the natural ordering, i.e. if  x, y ∈ Rm ,  x = (x1 , . . . , xm),  y = (y1 , . . . , ym), then  x 
≤ y  if and only if  xi ≤ yi ,  mi ,1= . 
 
 Definition 1.3.1. ([53]) Let  X  be a nonempty set. An operator  d : X × X → Rm that satisfies the 
conditions: 

 (i) d(x, y) ≥ 0 ,  for all  x, y ∈ X  and  d(x, y) = 0  if and only if  x = y , ( 0 = (0, 0, . . . , 0) ) ; 

 (ii ) d(x, y) = d(y, x) ,   for all  x, y ∈ X ; 

(iii ) d(x, y) ≤ d(x, z) + d(z, y) ,   for all  x, y, z ∈ X , 

is called generalized metric on X. 
 
 Definition 1.3.2. ([53]) A pair (X, d) which consists of a set X and a generalized metric d, defined on 
X is called generalized metric space. 
 
 Example 1.3.1. ([53]) Let Rm be the set X  i.e. X = Rm . The operator d : Rm×Rm → Rm, defined by 
the relation: 

 ( )mm yxyxyxd −−= ,...,),( 11  

is a generalized metric defined on X. 
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 Example 1.3.2. ([53]) Let C([a,b], Rm) be the set X i.e. X = C([a,b],Rm). The operator d : X × X → 
Rm, defined by the relation: 

 







−−=

∈∈
)()(max,...,)()(max),(

],[
11

],[
xgxfxgxfgfd mm

baxbax
,     f, g ∈ X, 

is a generalized metric defined on X, and (X, d) is a generalized metric space. 
 
 Remark 1.3.5. ([53]) The notions of convergent sequence, fundamental sequence, complete 
generalized metric space, generalized metric induced by a generalized norm are defined similarly as for 
ordinary metric spaces. 
 
 Definition 1.3.3. ([53]) Let (X, d) be a generalized metric space. An operator A: X → X satisfies a 
Lipschitz condition, if there exists a matrix Q∈Mm×m(R+), such that 

d(A(x), A(y)) ≤ Q·d(x, y) ,  for all   x, y ∈ X . 
 
 Definition 1.3.4. ([53]) A matrix Q∈Mn×n(R) is called matrix convergent to zero if the matrix Qk 
converges to the null matrix as  k → ∞. 
 
 The next theorem gives three equivalent conditions of convergence to zero of a matrix Q∈Mn×n(R+) 
and was used in example 2.4.2 of chapter 2, in example 3.3.2 of chapter 3, and in examples 4.4.2 and 4.4.3 of 
chapter 4. 
 

Theorem 1.3.3. (see [53]) Let Q ∈ Mm×m(R+) be a matrix. The following statements are equivalent: 

 (i) Qk → 0  as  k → ∞ ; 

 (ii ) The eigenvalues  λk, mk ,1= , of the matrix Q, satisfies the condition  |λk| < 1, mk ,1= ; 

 (iii ) The matrix  Im – Q  is  non-singular  and 

(Im – Q) –1 = I + Q + Q2 + . . .   . 
 

Theorem 1.3.4. (A. I. Perov) Let (X, d) be a complete generalized metric space, with the metric 

d(x,y) ∈ Rm  and  A : X → X  an operator. Suppose that there exists a matrix Q∈Mm×m(R+), such that 

 (i)  d(A(x), A(y))  ≤  Q d(x, y),   for all  x, y ∈ X ; 

 (ii )  Qn → 0   as   n → ∞ . 

Then 

 (a)  A has a unique fixed point  x*, i.e.  FA = {x*} ; 

 (b)  the successive approximations sequence  xn= An(x0), converges to x* for all x0∈X, i.e. 

)(lim 0
* xAx n

n ∞→
= ,   for all   x0∈X . 

 In addition, the following estimation 

d(An(x), x*)  ≤  (Im – Q)–1Qn d(x0, A(x0)),  n∈N* 

is accomplished. 
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 Some consequences of this theorem can be found in [53]. 
 In the chapter 4 we study the data dependence of the solution of integral equation (2.1) and the 
following theorem was used. 
 

Theorem 1.3.5. (Abstract data dependence theorem)  Let (X, d) be a complete metric space  and  A, 

B : X → X  two operators. Suppose that 

 (i) A is a contraction. Let α < 1 a Lipschitz constant  of  A  and  FA = { *
Ax } ; 

 (ii ) *
Bx  ∈ FB ; 

 (iii ) there exists  η > 0  such that 

η≤))(),(( xBxAd ,   for all  x ∈ X . 

Under these conditions we have: 

  
α

η
−

≤
1

),( **
BA xxd  . 

 
 The proof of this theorem can be found in [53] and for this reason is omitted. 
 Also, we mention the following theorem of data dependence of fixed points in a set with two metrics 
(I. A. Rus [70]). 
 

Theorem 1.3.6. (I. A. Rus [70]) Let X be a nonempty set, d and ρ two metrics on X, A : X → X  an 
operator and suppose that the conditions of theorem 1.3.2’ are satisfied. 

 Let  B : X → X  be an operator and η > 0  such that 

  ρ(A(x), B(x))  ≤  η ,   for all  x ∈ X . 

 Then 

  *
Bx  ∈ FB     ⇒     ρ( *

Ax , *
Bx ) ≤ 

α
η
−1

 . 

 
 

1.4  Picard operators on L-spaces 
 

In order to establish some of the results presented in the chapter 2 and in the chapter 3, were used a 
few results from the Picard operators theory on L-spaces, the abstract Gronwall's lemma 1.4.1 and the 
abstract comparison lemmas 1.4.4 and 1.4.5. 
 In the third period of development of the successive approximations method, as mentioned in 
paragraph 1.2, were introduced the Picard and weakly Picard operators (I. A. Rus [55]). The weakly Picard 
operators theory is useful in studying some properties of the solutions of those equations for which can be 
used the method of successive approximations. 
 In what follows, we present the general area where is acting the method of successive 
approximations (problem formulated in 1975 by K. Iseki) and some results of Picard and weakly Picard 
operators theory. 
 Let X be a nonempty set and the following set: 

  s(X):= {(x)n∈N xn∈X, n∈N} . 
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 Let c(X) ⊂ s(X) be a subset of s(X) and Lim : c(X) → X, an operator. 
 

Definition 1.4.1. ([55]) The triplet (X, c(X), Lim) is called L-space if the following conditions are 
satisfied: 

 (i) If  xn  = x,   for all  n∈N,  then (xn)n∈N ∈ c(X)  and  Lim(xn)n∈N  = x ; 

 (ii ) If  (xn)n∈N ∈ c(X)  and  Lim(xn)n∈N  = x, then for all subsequences Nini
x ∈)(  of the sequence 

Nnnx ∈)(   we have )()( Xcx Nini
∈∈   and  xxLim Nini

=∈)( . 

 
 Definition 1.4.2. ([55]) An element (xn)n∈N ∈ c(X) is convergent sequence, his limit is x:= Lim(xn)n∈N  
and we will write 

 xn → x ,  n → ∞ . 
 
 In what follows we denote by (X, →) an L–space. 
 In general, all set endowed with a structure involving a notion of convergence for sequences, from an 
L–space. Such structures are metric spaces, generalized metric spaces (d(x,y) ∈ mR+ ; d(x,y) ∈ R+ U  {+∞}), 
endowed with two metrics.  
 Let X and Y be two metric spaces and M(X,Y) the set of operators defined from X, to Y. We denote by 

→p  the punctual convergence in M(X,Y), by  →unif  the uniform convergence in M(X,Y) and by 
 →cont  the convergence with continuity in M(X,Y). The spaces (M(X,Y), →p ),  (M(X,Y),  →unif )  and  

(M(X,Y),  →cont )  are  L–spaces (see I. A. Rus [67]). 
 
 

1.4.1  Picard operators 
 
 Let (X,→) be an L-space. 
 

Definition 1.4.3. ([55]) An operator  A : X → X  is Picard operator if 

 (i) }{ *
AA xF = ; 

 (ii ) *)( A
n xxA →  ,   as   n → ∞ ,   for all  x ∈ X . 

 
Remark 1.4.1. (see [53]) If A is a Picard operator, then A is a Bessaga operator, i.e. 

nA
F  = FA = {x*} ,   for all  n ∈ N* . 

 The metric fixed point theory gives us examples of Picard operators. 
 In the paper [53] are given examples of Picard operators defined on different L-spaces, of those 
present the following two examples: 

 a) (Banach-Cacciopoli) Let (X, d) be a complete metric space and  A : X → X  an α–contraction. 
Then A is a Picard operator. 

b) (Perov) Let (X, d) be a complete generalized metric space with the metric d(x,y)∈ mR+  and let  
Q∈Mm×m(R+)  be a matrix such that  Qn → 0  as  n → ∞. If an operator  A : X → X  is Q–contraction, i.e. 

 d(A(x), A(y))  ≤  Q d(x, y) ,   for all  x, y ∈ X, 
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then A is a Picard operator. 
 
 

1.4.2  Weakly Picard operators 
 
 Let (X,→) be an L–space. 
 

Definition 1.4.4. ([55]) An operator A : X → X  is weakly Picard operator if the sequence 
( ) Nn

n xA ∈)(  converges for all x ∈ X  and his limit (which may depend on x) is a fixed point of A. 
 

A weakly Picard operator A for which  FA = {x*}  is Picard operator. 
If A is a weakly Picard operator,  then  nA

F  = FA ≠ ∅,   for all  n ∈ N* . 

Examples of weakly Picard operators and their properties are presented and studied by many 
mathematicians, among which: I. A. Rus [55], [57], [58], [62], [65], I. A. Rus, S. Mureşan and V. Mureşan 
[69], A. Petruşel and I. A. Rus [46], M. A. Şerban [76], [77], M. A. Şerban, I. A. Rus and A. Petruşel [78] 
and many others. 

If A is a weakly Picard operator, then defines the operator  A∞ : X → X  by the relation: 

)(lim:)( xAxA n

n ∞→

∞ =  

and observe that AFXA =∞ )( . 
 We present below a generic example of weakly Picard operator. 

Let  (Xi, di),  i ∈ I,  be a family of metric spaces, Ai : Xi → Xi  a family of Picard operators and *
ix  the 

unique fixed point of the operator Ai . 
Let U

Ii
iXX

∈
=:  be the disjoint union of the sets of family  (Xi)i∈I  and  d : X × X → R+ , a metric on X, 

defined by the relation: 







∈∈≠++

∈∈
=

.,,1),(),(

,,),(
:),( **

jijjii

ii

XyXxjiifxydxxd

IiXyxifyxd
yxd  

 Then the operator  A  is a weakly Picard operator (see I. A. Rus [57]). 
A basic result in the weakly Picard operators theory is the following theorem. 

 
 Theorem 1.4.1. (Theorem of characterization of weakly Picard operators) Let (X,→) be an L–space 
and A : X → X  an operator. The operator A is weakly Picard operator if and only if there exists a partition 
of X, 

U
Λ∈

=
λ

λXX , 

such that 

(a)  Xλ ∈ I(A) ,   λ ∈ Λ ; 

(b)  the restriction of  A  to  Xλ , λXA | : Xλ → Xλ  is a Picard operator for all λ∈Λ. 

 
 This theorem is useful to prove that certain operators are weakly Picard operators. 
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 To study the data dependence of the fixed points of an operator, is considered another class of 
weakly Picard operators defined on a metric space (X, d). 
 

Definition 1.4.5. ([55]) By definition, a weakly Picard operator A is c–weakly Picard operator, c > 0, 
if and only if 

d(x, )(xA∞ ) ≤ c d(x, A(x)) ,   for all  x ∈ X. 

 For example, the operator  A : X → X  of α–contraction type, defined on the metric space (X, d) is c–
weakly Picard operator with  c = (1– α)–1 . 
 Also, if (X, d) is a complete metric space, A : X →X is an operator and if we suppose that: 

(i) there exists α ∈ (0,1) such that 

  d( )(2 xA , A(x))  ≤  α d(x, A(x)) ,   for all  x ∈ X ; 

 (ii ) the operator A is a closed operator, 

then A is c–weakly Picard operator with  c = (1–α)–1 . 

The next result is a theorem of data dependence of the fixed points set of an operator and it is useful 
in the study of data dependence of the solutions of integral equations (I. A. Rus [67]). 
 
 Theorem 1.4.2. (I. A. Rus [67]) Let (X, d) be a metric space and A, B : X → X  two operators. 
Suppose that 

 (i) A is c–Picard operator ; 

 (ii ) *
Bx  is a fixed point of the operator B, i.e. BB Fx ∈* ; 

 (iii ) there exists η > 0 such that 

  d(A(x), B(x)) ≤ η ,   for all x ∈ X . 

If we denote by *
Ax , the unique fixed point of the operator A, then 

  d( *
Ax , *

Bx ) ≤ ηc . 
 
 

1.4.3  Picard operators on ordered L–spaces 
 
 Let (X,→) be an L–space and  ≤  an order relation on X. If the following implication is true 

 xn  ≤  yn ,   xn → x* ,   yn → y* ,   as  n → ∞     ⇒     x*  ≤  y* , 

then, by definition, (X, →, ≤ ) is an ordered  L–space. The following lemma is true. 
 
 Lemma 1.4.1. (Abstract Gronwall's lemma, [64]) Let (X, →, ≤) be an ordered L-space and A : X → 
X  an operator. Suppose that 

 (i) A is Picard operator ; 

 (ii ) the operator A is increasing. 

If we denote by *Ax  the unique fixed point of the operator A, then 



Chapter 1 
 

18 
 

 (a) x  ≤  A(x)   ⇒   x  ≤  *
Ax  ; 

 (b) x  ≥  A(x)   ⇒   x  ≥  *
Ax . 

 
Gronwall's Lemma 1.4.1 for an ordered metric space (X, d, ≤) is useful to determine the results of the 

chapter 3. 
 From Lemma 1.4.1 we have (see [67]): 
 
 Lemma 1.4.2. (I. A. Rus [67]) Let  (X, →, ≤)  be an ordered L-space and  A : X → X  an increasing 
operator. Then 

 (a) (UF)A ∈ I(A),   (LF)A ∈ I(A); 

 (b) if the restriction of  A to  (UF)AU (LF)A, 
AA LFUFA )()(| U  is Picard operator, then 

  x  ≤ *
Ax  ≤  y ,   for all  x ∈(LF)A  and  y∈ (UF)A . 

 
 In lemmas 1.4.1 and 1.4.2 may be replaced ”(X, →, ≤) an ordered L-space” with ”(X, d, ≤) an 
ordered metric space” and the condition ”A is Picard operator” it may be replaced by a requirement to ensure 
that A is Picard operator in the ordered metric space (X, d, ≤). One thus obtains the following results (see I. 
A. Rus [65], [67]):  
 
 Theorem 1.4.3. (I. A. Rus [65], [67]) Let (X, d, ≤) be an ordered and complete metric space and A : 
X → X an operator such that Ak is contraction for k ∈ N*. If we denote by *

Ax  the unique fixed point of the 

operator A, then 

 (a) x  ≤  A(x)   ⇒   x  ≤  *
Ax  ; 

 (b) x  ≥  A(x)   ⇒   x  ≥  *
Ax . 

 
 Theorem 1.4.4. (I. A. Rus [65], [67]) Let (X, d, ≤) be an ordered and complete metric space. Let  A : 
X → X  be an operator such that for all  0 < a < b < +∞, there exists  L(a,b)∈ (0,1) such that 

 x, y ∈ X ,   a ≤ d(x, y) ≤ b   ⇒   d(A(x), A(y)) ≤ L(a,b)⋅d(x, y) . 

Then 
 (a) x  ≤  A(x)   ⇒   x  ≤  *

Ax  ; 

 (b) x  ≥  A(x)   ⇒   x  ≥  *
Ax , 

where *
Ax  is the unique fixed point of the operator A. 

 
 Theorem 1.4.5. (I. A. Rus [65], [67]) Let  X  be a nonempty set, d and ρ two metrics defined on X,  ≤  
an order relation on X  and  A : X → X  an operator. We suppose that 

 (i) (X, d, ≤)  is an ordered and complete metric space ; 

 (ii ) there exists  c > 0  such that  d(A(x), A(y)) ≤ c⋅ρ(x, y),   for all  x, y∈X ; 

 (iii ) ( ) ( )→→→ dd XXA ,,:  is continuous operator ; 

 (iv) the operator A : (X, ρ) → (X, ρ)  is  an l–contraction. 
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 Then A is a Picard operator on  ( )→dX ,   and if denote by *
Ax  the unique fixed point of the 

operator A,we have: 

 (a) x  ≤  A(x)   ⇒   x  ≤  *
Ax  ; 

 (b) x  ≥  A(x)   ⇒   x  ≥  *
Ax . 

 
 Theorem 1.4.6. (I. A. Rus [65], [67]) Let (X, d, ≤) be an ordered metric space with two metrics 
defined on X  and  A : X → X  an operator. Suppose that 

 (i) A is  α–contraction ; 

 (ii ) the operator A is increasing. 

If denote by *
Ax  the unique fixed point of operator A, then 

 (a) x  ≤  A(x)   ⇒   x  ≤  *
Ax  ; 

 (b) x  ≥  A(x)   ⇒   x  ≥  *
Ax . 

 
The above abstract results have applications in the theory of differential and integral inequalities. 
For Gronwall inequalities proved by classical methods, we mention: D. Bainov and P. Simeonov [5], 

P. R. Beesak [6], A. Constantin [12], S. S. Dragomir [29], V. Laksmikantham and S. Leela [36], D. S. 
Mitrinović, J. E. Pečarić and J. E. Fink [40], B. G. Pachpatte [43], W. Walter [79], M. Zima [80], and for 
concrete Gronwall inequalities, proved using above abstract results we mention: Sz. András [2], A. Buică 
[9], C. Crăciun [14], M. Dobriţoiu [27], N. Lungu and I. A. Rus [37], V. Mureşan [42], R. Precup and E. Kirr 
[50], I. A. Rus [58], [59], [60], [64], [65], [67], [68], M. A. Şerban [77], M. A. Şerban, I. A. Rus and A. 
Petruşel [78]. 
 
 

1.4.4  Weakly Picard operators on ordered L–spaces 
 
 We begin our considerations of these operators with the following lemma given by I. A. Rus in his 
paper [67]. 
 

Lemma 1.4.3. (I. A. Rus [67])  Let  (X, →, ≤)  be an ordered L-spaces and  A : X → X  an operator, 
such that 

 (i) A is weakly Picard operator. 

 (ii ) A is increasing operator. 

Then the operator  A∞  is increasing. 
 
 The following lemma is a comparison abstract result for an ordered L-spaces. 
 
 Lemma 1.4.4. (I. A. Rus [67]) Let (X, →, ≤) be an ordered L-space and the operators A, B, C : X → 
X, such that 

 (i) A  ≤  B  ≤  C ; 

 (ii ) A, B, C  are weakly Picard operators ; 
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 (iii ) the operator  B  is increasing. 

Then 
x  ≤  y  ≤  z     ⇒     A∞(x)  ≤  B∞(y)  ≤  C∞(z) . 

 
 The next result is given by I. A. Rus [65], in the case of an ordered metric space. 
 
 Lemma 1.4.5. (Abstract comparison lemma, [65]) Let  (X, d, ≤)  be an ordered metric space and the 
operators  A, B, C : X → X, such that 

 (i) A  ≤  B  ≤  C ; 

 (ii ) A, B, C  are weakly Picard operators ; 

 (iii ) the operator  B  is increasing . 

Then 
x  ≤  y  ≤  z     ⇒     A∞(x)  ≤  B∞(y)  ≤  C∞(z) . 

 
 In the same paper we find makes the following useful remark. 
 

Remark 1.4.2. Let A, B, C be the operators defined in lemma 1.4.5. Moreover, suppose that  
}{ *

BB xF = ,  i.e. B is Picard operator. Then 

  A∞(x)  ≤  *
Bx   ≤  C∞(x),   for all  x ∈ X. 

But  A∞(X) = FA ,   C∞(X) = FC . Thus, we have 

  FA  ≤  *
Bx   ≤  FC . 

 Now, the following theorem is also an interesting and useful result. 
 
 Theorem 1.4.7. (Sz. András [4]) If  (X,║·║, ≤)  is an ordered normed space, and A:X →X  is an 
increasing and weakly Picard operator, then the following implications are true: 

 (a) If  x ∈ X   and  ∑
−

=

+⋅≤
1

0

1 )(
p

i

i
i xAx α ,  then  x  ≤  A∞(x) ; 

 (b) If  x ∈ X   and  ∑
−

=

+⋅≥
1

0

1 )(
p

i

i
i xAx α ,  then  x  ≥  A∞(x) , 

where the  numbers 1,0,)1,0( −=∈ piiα   satisfies the relation: 

 1
1

0
=∑

−

=

p

i
iα  . 

 
 The above lemmas are useful to study the properties of the solutions of differential and integral 
equations. 
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1.5  Fiber contractions principle 
 
 The theorem of fiber Picard operators is a fixed point theorem for operators defined on cartesian 
product and is useful to prove the differentiability of the solution of a functional-integral equation with 
respect to a parameter. This theorem, given by I. A. Rus in [63], is a generalization of the result given by 
M.W. Hirsch and C.C. Pugh in [31]. 

In the paper [63] I. A. Rus studied the problem of the fiber Picard operators: 
 
Let (X, →) be an L-space and (Y, ρ) a metric space,  B : X → X,  C : X × Y → Y, two operators and  

A : X × Y → X × Y  a triangular operator, such that 

A(x, y) = (B(x), C(x, y)),   x∈X, y∈Y .       (1.8) 

Suppose that 

(i)  B is Picard operator (weakly Picard operator) ; 

(ii )  C(x, ⋅) is Picard operator, for all  x ∈ X . 

 Under what conditions A is Picard operator (weakly Picard operator) ? 
 
and establishes the following theorem: 
 

Theorem 1.5.1. (Fiber Picard operators theorem, I. A. Rus [63]) Let (X, →) be an L-space, (Y, ρ) a 

metric space, B : X → X  and  C : X × Y → Y  two operators and A : X × Y → X × Y, A = (B, C), a triangular 
operator. Suppose that 

(i)  (Y, ρ)  is a complete metric space ; 

(ii )  B : X → X  is weakly Picard operator ; 

(iii )  there exists  α∈ [0,1)  such that  C(x, ⋅)  is an α–contraction,  for all  x∈X ; 

(iv)  if  (x*, y*)∈FA ,  then  C(x, y*)  is continuous in x* . 

Then A is a weakly Picard operator. Moreover, if B is Picard operator, then A is Picard operator 
too. 
 
 Another generalization of the result given by M.W. Hirsch and C.C. Pugh in [31], is the fiber 
generalized contractions theorem , given by I. A. Rus in [61]. 
 

Theorem 1.5.2. (Fiber generalized contractions theorem , I. A. Rus [61]) Let (X,d) be a metric space 

(generalized or not) and (Y,ρ) a complete generalized metric space (ρ(x,y)∈Rm). 
Let  B : X → X  and  C : X × Y → Y  be two operators  and  A : X × Y → X × Y  a continuous 

operator. Suppose that 

(i)  A(x, y) = (B(x), C(x,y)),   for all  x∈X,  y∈Y ; 

(ii )  B : X → X  is a weakly Picard operator ; 

(iii )  there exists a matrix  Q∈Mm×m(R+),   Qn → 0   as   n → ∞,  such that 

ρ(C(x, y1),C(x, y2))  ≤  Q ρ(y1, y2),     for all  x ∈ X,  y1, y2 ∈ Y . 
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Under these conditions A is a weakly Picard operator. In addition, if B is a Picard operator, then A 
is a Picard operator too. 
 
 Theorems 1.5.1 and 1.5.2 are useful to study the differentiability with respect to a parameter, of the 
solutions of integral equations and of systems of integral equations, respectively. Some results in this regard 
were given by J. Sotomayor [72], V. Berinde [8], I. A. Rus [61], [62], [63], [64], [65], [67], M. A. Şerban, I. 
A. Rus and A. Petruşel [78], M. A. Şerban [75], [76], [77], Sz. András [3], [4], M. Dobriţoiu, I. A. Rus and 
M. A. Şerban [25], M. Dobriţoiu [19], [21], [22], [23], [26] and others. 
 Next, we present an application of the fiber contractions principle at the following integral equation 

 )()))((),(,,()( tfdssgxsxstKtx
b

a

+= ∫ ,     t ∈ [α,β] ,     (1.9) 

where α, β∈R,  α ≤ β,  a, b∈[α,β],  K∈C([α,β]×[α,β]×Rm×Rm,Rm), 

f ∈C([α,β],Rm),  g∈C( ],[ βα , ],[ βα ),  x∈C([α,β],Rm) . 

The obtained result is the following theorem published in [19]. 
 

Theorem 1.5.3. (M. Dobriţoiu [19]) Suppose that there exists a matrix Q∈Mm×m(R+) such that 

(i)  [2(β – α)Q]n → 0   as   n → ∞ ; 

(ii )
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for all  t, s∈[α,β],  ui, vi∈Rm , i = 1, 2. 
Then 

(a)  the integral equation (1.9) has a unique solution, x*( ⋅ ,a, b)∈C([α,β],Rm) ; 

(b)  for all  x0∈C([α,β],Rm),  the sequence  (xn)n∈N ,  defined by the relation: 

  ∫ +=+
b

a

nnn tfdsbasgxbasxstKbatx )()),);((),,;(,,(:),;(1  , 

converges uniformly to  x*,  for all t, a, b∈[α,β]  and 
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αβαβ ; 

(c)  the function  x* : [α,β]×[α,β]×[α,β] → Rm,  (t, a, b) a x*(t; a, b)  is continuous; 

(d)  if  K(t,s, ⋅, ⋅)∈C1(Rm×Rm, Rm)  for all t, s∈[α,β],  then  x*(t; ⋅, ⋅)∈C1([α,β]×[α,β], Rm)  for all 

t∈[α,β]. 
 
 Proof. We denote X := C([α,β]3,Rm) and we consider the generalized norm on X, defined by the 
relation (1.7) in the paragraph 1. 
 We consider the operator  B : X → X  defined by the relation: 
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 ∫=
b

a

dsbasgxbasxstKbatxB )),);((),,;(,,(:),;)(( ,   for all  t, a, b∈[α,β]. 

 From the conditions (i), (ii ) and applying the Perov's theorem 1.3.4, it results that the conlusions (a), 
(b) and (c) are fulfilled. 

(d) We prove that there exists 
a

x

∂
∂ *

, 
b

x

∂
∂ *

∈ X. 

If suppose that there exists 
a

x

∂
∂ *

, then from (1.9) it results that 

 +−=
∂

∂ )),);((),,;(,,(),;( **
*

baagxbaaxatK
a

batx  

   +









∂
∂⋅






















∂

∂
+ ∫ a

basx

basx

basgxbasxstKb

a i

j ),;(
),;(

)),);((),,;(,,( *

*

**

 

   ds
a

basgx

basgx

basgxbasxstK

i

j

















∂
∂⋅















∂

∂
+ ),);((

),);((

)),);((),,;(,,( *

*

**

 . 

 This relation leads us to consider the operator  C : X × X → X  defined by the relation: 
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 From the condition (ii ), we obtain that 

 Q
u

wustK
m

jii

j ≤














∂
∂

=1,

),,,(
 and Q

w

wustK
m

jii

j ≤














∂
∂

=1,

),,,(
 ,   (1.11) 

for all  t, s∈[α,β],  u, w∈Rm . 

 From (1.10) and (1.11) it results that 

 2121 )(2),(),( yyQyxCyxC −−≤− αβ ,   for all x, y1, y2∈X . 

 Now, if we consider the operator  A : X × X → X×X,  A=(B, C),  then the conditions of the fiber 
generalized contractions theorem  1.5.2 are satisfied. From this theorem it results that A is a Picard operator, 
and the sequences 
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converge uniformly (with respect to t, a, b∈[α,β])  to  (x*,y*)∈FA,  for all x0, y0∈X . 

 If we take x0 = y0 = 0, then 
a

x
y

∂
∂=

1
1  and it proves by induction that 

a

x
y

n
n

∂
∂= . Thus we obtain 

 *xx uniformlyn  →    as   n → ∞ ,   and 
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x uniformly
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and hence it results that there exists 
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 By a similar reasoning it proves that there exists 
b
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. �  

 
 

1.6  Quadrature formulas 
 
 The chapter 5 gives a method for approximating the solution of the integral equation with modified 
argument (2.1) 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( ,     t∈[a,b] , 

by using the successive approximations method and a quadrature formula. To obtain the terms of the 
successive approximations sequence, must calculate the integrals that appear in the terms of this sequence. 
The calculus of these integrals is most often a very difficult problem and this is the reason of establishing an 
approximate calculation methods of these integrals. This problem is studied in the literature, being the 
subject of chapter "Numerical quadratures" in the Numerical Analysis. 
 For the calculus of the integrals that appear in the terms of the successive approximations sequence 
from the approximating algorithm for the solution of integral equation with modified argument (2.1) the 
following quadrature formulas were used: trapezoids formula, rectangles formula and Simpson's formula (see 
[10] [11], [34], [39], [53], [74]). 
 Next, we present these methods for calculating the approximate value of the integral of a function f. 
 
 



Preliminaries 
 

25 
 

1.6.1  Trapezoids formula 
 

The trapezoids method for approximate integration of a function f consists of approximating the 
function f with a polygonal function, i.e. to approximate the given function f with a polygonal line with 
vertices on the graph. 

Let ],[2 baCf ∈  be a function. A formula of approximate calculus of the integral ∫
b

a

dttf )(  is: 

 [ ] )()()(
2

)( fRbfaf
ab

dttf
b

a

++−=∫  ,       (1.12) 

where R(f) represent the rest of the formula. Due to the geometrical interpretation of the formula (1.12), this 
formula is called the trapezoids formula. Following the delimitation of R(f), the trapezoids formula becomes: 

 [ ] ∫∫
−−−+−=

b

a

b
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dssf
sbas

bfaf
ab

dttf )(''
2

))(()()(
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)(  .    (1.13) 

 To get a better result, it is considered a division ∆ of the interval [a,b] into n equal parts by the points 
bttta n =<<<= ...10  and we apply the trapezoids formula (1.13), to each subinterval [ ]ii tt ,1− . 

Under these conditions we obtain the following trapezoids formula (see [10], [11], [34], [39], [53], 
[74]): 
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i fRfR
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For the rest of the formula (1.14) we have the estimate given by the relation: 

2

3

12
)()(

n

ab
MfR T −≤  ,         (1.15) 

where by M T we denote 

 )(''max
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∈
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 Because the calculation error of the integral ∫
b

a

dttf )(  is less than ε > 0, it is sufficient that the 

number n of subintervals of the equidistant division ∆ of interval [a,b] to verify the relation: 

 
ε12

)( 3ab
Mn T −≥ .         (1.17) 

 Also, in the case of an equidistant division ∆ of interval [a,b], for the rest R(f) of the formula (1.14), 
we have the following estimates (see [7]): 
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if ],[1 baCf ∈  and 'f satisfy a Lipschitz condition on [a,b], with the constant L’ > 0 . 
 
 

1.6.2  Rectangles formula 
 

The rectangles method for approximate integration of a function f consists of approximating the 
function f with a constant function on intervals, i.e. to approximate the graph of function f with a polygonal 
line with sides parallel to the coordinate axes. 

Let ],[1 baCf ∈  be a function, ∆ a division of interval [a,b] by points bttta n =<<<= ...10   and  

)( f∆σ  an integral sum corresponding to this division: 
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If ∆ is a sufficiently fine division, i.e. the norm of division is sufficiently small, then you can 
approximate the integral with the integral sum, i.e. 

 ∑∫
−

=
+ −≈

1

0
1 ))(()(

n

i
iii

b

a

ttfdttf ξ  .        (1.20) 

To simplify the calculations, it is considered that the division ∆ of interval [a,b] is equidistant, i.e. 
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Under these conditions the following two formulas of approximation are obtained (see [11], [34], 
[39], [74]): 

(a) If we consider the intermediary points of the division of interval [a,b] on the left end of partial 
intervals ],[ 1+ii tt , ξi = ti , then we obtain the formula: 
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(b) If we consider the intermediary points of the division of interval [a,b] on the right end of partial 
intervals ],[ 1+ii tt , ξi = ti+1, then we obtain the formula: 
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and each of these two formulas is called the rectangles fomula. 
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For the rest of the formula (1.21) or (1.21'), ∑
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i
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relation: 
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where, by M D we denote 

 )('max
],[

tfM
bat

D

∈
=  .         (1.23) 

 Because the calculation error of the integral ∫
b

a

dttf )(  is less than ε > 0, it is sufficient that the 

number n of subintervals of the equidistant division ∆ of interval [a,b] to verify the relation: 
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 It is noted that to obtain a better approximations, the rectangles method requires a large number of 
points of division of the interval [a,b] (see [11], [34], [39], [74]). 
 
 

1.6.3  Simpson's formula 
 

The approximation method that results using the Simpson's formula, consists in approximation of the 
given function on certain intervals with a second degree polynomial, i.e. to approximate the graph of the 
function on certain intervals with a parable. 

Let ],[4 baCf ∈  be a function. A formula of approximate calculation of the integral ∫
b

a

dttf )(  is: 
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 To get a better result, it is considered a division ∆ of interval [a,b] into n equal parts by the points 
bttta n =<<<= ...10  and we apply the Simpson's formula (1.25) to each subinterval [ ]ii tt ,1− . 

 Under these conditions we obtain the following Simpson's quadrature formula (see [11], [34], [39], 
[73], [74]): 
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with the estimate of the rest ∑
=

=
n

i
i fRfR

1
)()(  given by the relation: 

4

5

2880
)()(
n

ab
MfR S −≤  ,         (1.28) 

where by M S we denote 

 )(max )4(
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tfM
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S

∈
=  .         (1.29) 

 Because the calculation error of the integral ∫
b

a

dttf )(  is less than ε > 0, it is sufficient that the 

number n of subintervals of the equidistant division ∆ of interval [a,b] to verify the relation: 

 4
5

2880
)(
ε

ab
Mn S −≥  .         (1.30) 

 It is noted that to obtain the desired approximation, the Simpson's formula requires generally fewer 
calculations than the previous formulas (see [11], [34], [39], [73], [74]). 
 
 
 1.7  Integral equations, basic results 
 
 An equation in which the unknown function appears under the integral sign is an integral equation. 

In what follows we present several basic results regarding the existence and uniqueness for the 
solution of a Fredholm integral equation and of a Volterra integral equation, respectively. 
 
 
 1.7.1  Fredholm integral equation 
 

The Fredholm integral equation is one of the most well known integral equations. This integral 
equation was studied by Ivar Fredholm. 

Let Ω⊂Rn be a bounded domain. Also, let K : Ω × Ω ×J → R, J⊂ R a closed interval and f : Ω  → R 
be two continuous functions. 

An integral equation of the form 

 )())(,,()( tfdssxstKtx += ∫
Ω

 ,     t∈Ω,       (1.31) 

where the unknown function is x∈C( Ω ) and the functions K and f are given, is called Fredholm integral 
equation. 
 If Ω = (a,b), then the Fredholm integral equation (1.31) is written as: 

 ∫ +=
b

a

tfdssxstKtx )())(,,()(  ,     t∈(a,b),      (1.31') 

where the unknown function is x∈ C[a,b] and the functions K and f are given. 
The function  K  is called the kernel function and the function  f  is called the free term of the integral 

equation. 
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The above two equations are nonlinear Fredholm integral equations. 
In what follows, we present two theorems of existence and uniqueness of the solution of integral 

equation (1.31'), in the space C[a,b] and in the sphere );( rfB ⊂ C[a,b], respectively. These theorems can be 
found in the book [10]. 
 
 Theorem 1.7.1. ([10]) Suppose that 

(i)  K∈C([a,b]×[a,b]×R),  f∈C[a,b]; 

 (ii )  there exists  L > 0,  such that 

  |K(t,s,u) – K(t,s,v)|  ≤  L | u–v | ,   for all t, s∈[a,b],  u, v∈R ; 

 (ii i)  L(b – a)  <  1 .    (contraction condition) 

Under these conditions the Fredholm integral equation (1.31') has a unique solution x*∈C[a,b], 
which can be obtained by the successive approximations method, starting at any element  x0∈C[a,b]. 
Moreover, if xn is the n-th successive approximation, then the following estimation is proved: 

],[10],[ )(1
)(*

baC

nn

baCn xx
abL

abL
xx −⋅

−−
−≤−  .      (1.32) 

 
 Theorem 1.7.2. ([10]) Suppose that 

(i)  K∈C([a,b]×[a,b]×J) ,  J ⊂ R  is a compact interval,  f∈C[a,b]; 

 (ii)  there exists  L > 0,  such that 

  |K(t,s,u) – K(t,s,v)|  ≤  L | u–v | ,   for all t, s∈[a,b],  u, v∈J ; 

 (iii )  L(b – a)  <  1 .   (contraction condition) 

If  r > 0  is a positive real number such that 

x∈ );( rfB    ⇒   x(t)∈ J ⊂ R , 

 and the following condition is fulfilled: 

(iv)  M(b – a)  ≤  r ,   (condition of invariance of the sphere );( rfB ) 

where denote by M  a positive constant, such that 

|K(t,s,u)|  ≤  M,   for all  t, s∈[a,b], u∈J ⊂ R, J is a compact interval,   (1.33) 

then the Fredholm integral equation (1.31') has a unique solution x*∈ ],[);( baCrfB ⊂ , that can be obtained 

by the successive approximations method, starting at any element x0∈ );( rfB . Moreover, if  xn  is the n-th 

successive approximation, then the estimation (1.32) is satisfied. 
 

The proofs of the two theorems above were obtained by applying the Contraction Principle, they can 
be found in [10] and for this reason are omitted. 

 
Remark 1.7.1. In the study of the solution of Fredholm integral equation were used the metric of 

Chebyshev defined by the relation (1.5) and also the norm of Chebyshev defined by the relation (1.6). 
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 1.7.2  Volterra integral equation 
 

The Volterra integral equations were introduced by Vito Volterra and then studied by Traian Lalescu 
in 1908, in his doctoral thesis in 1908, Sur les équations de Volterra, written under the direction of Émile 
Picard. In 1911, Lalescu wrote the first book ever written about integral equations, entitled Introduction to 
the theory of integral equations (in Romanian). 

The Volterra integral equations have application in demography, in epidemics, in the study of 
viscoelastic materials and in insurance mathematics. 

The integral equation of the form 

 ∫ +=
t

a

tfdssxstKtx )())(,,()(  ,     t∈(a,b) ,      (1.34) 

where the unknown function is x∈ C[a,b] and the functions K and f are given, is called Volterra integral 
equation. 

The functions K and f are called the kernel function and the free term of integral equation, 
respectively. 

The equation (1.34) is a nonlinear Volterra integral equation. 
Now, we present two theorems of existence and uniqueness of the solution of integral equation 

(1.34), in the space C[a,b] and in the sphere );( rfB ⊂ C[a,b], respectively. These theorems can be found in 
the book [10]. 
 
 Theorem 1.7.3. ([10]) Suppose that 

(i)  K∈C([a,b]×[a,b]×R),  f∈C[a,b]; 

 (ii )  there exists  L > 0,  such that 

  |K(t,s,u) – K(t,s,v)|  ≤  L | u–v | ,   for all t, s∈[a,b],  u, v∈R . 

Under these conditions the Volterra integral equation (1.34) has a unique solution x*∈C[a,b], which 

can be obtained by the successive approximations method, starting at any element  x0∈C[a,b].  Moreover, if 
xn is the n-th successive approximation, then the following estimation is proved: 

( ) ],[101],[
*

baCn

n

baCn xx
L

L
xx −⋅

−
≤− − ττ

 ,     (1.35) 

where τ  is an arbitrary positive number chosen such that τ > L. 
 
 Theorem 1.7.4. ([10]) Suppose that 

(i)  K∈C([a,b]×[a,b]×J) ,  J ⊂ R  is a compact interval,  f∈C[a,b]; 

 (ii )  there exists  L > 0,  such that 

  |K(t,s,u) – K(t,s,v)|  ≤  L | u–v | ,   for all t, s∈[a,b],  u, v∈J . 

If  r > 0  is a positive real number such that 

x∈ );( rfB    ⇒   x(t)∈ J ⊂ R , 

 and the following condition is fulfilled: 

(iii )  M(b – a)  ≤  r ,   (condition of invariance of the sphere );( rfB ) 
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where denote by M  a positive constant, such that 

|K(t,s,u)|  ≤  M,   for all  t, s∈[a,b], u∈J ⊂ R, J is a compact interval,   (1.36) 

then the Volterra integral equation (1.34) has a unique solution x*∈ ],[);( baCrfB ⊂ , that can be obtained 

by the successive approximations method, starting at any element x0∈ );( rfB . Moreover, if  xn  is the n-th 

successive approximation, then the estimation (1.35) is satisfied. 
 

The proofs of the two theorems above were obtained also, by applying the Contraction Principle, 
they can be found in [10] and for this reason are omitted. 
 

Remark 1.7.2. The existence and uniqueness of the solution of Volterra integral equation was 
studied in the space B[a,b] using the norm of Bielecki defined by: 

 )(
],[ )(max at

btabaB
etff −−

≤≤
= τ  ,   for every  τ > 0,  f ∈C[a,b],    (1.37) 

where by B[a,b] was denoted the space C[a,b] endowed with the metric of Bielecki defined by: 

 )(

],[
)()(max:),( at

bat
etgtfgfd −−

∈
−= τ ,   for every  τ > 0,  f, g∈C[a,b].   (1.38) 

Remark 1.7.3. In a Fredholm integral equation the limits of integration are constant unlike the 
Volterra integral equation. 
 
 

1.8  Mathematical models governed by functional-integral equations 
 

In this paragraph we present two mathematical models governed by functional-integral equations: an 
integral equation in physics and a mathematical model for studying the spread of an infectious disease. 
 
 

1.8.1  An integral equation in physics 
 

In the study of some problems from turbo-reactors industry, in the ’70, a Fredholm integral equation 
with modified argument appears, having the following form: 

 ∫ +=
b

a

tfdsbxaxsxstKtx )())(),(),(,,()(  ,     t∈[a,b] ,     (1.39) 

where K : [a,b]×[a,b]×R3 → R,  f : [a,b] → R . 
 This integral equation is a mathematical model with reference to the turbo-reactors working. 

We have obtained the conditions of existence and uniqueness and of data dependence of the solution, 
and, also, the conditions for approximating the solution of integral equation (1.39) and these results were 
published in papers [1], [15], [16], [17], [18] and [20]. 

A problem which leads to the equation (1.39) is as follows. 

We consider the functional-integral equation 

 ∫ +=
≤≤≤≤

b

a
bssa

tfdsxxsxstKtx )())(max),(min),(,,()( ςς
ςς

 ,     t∈[a,b]    (1.40) 

and note that if we are seeking for increasing solutions, then we obtain the equation (1.39). 
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Starting from the integral equation (1.39) we consider, in addition, a change in argument through a 
continuous function g : [a,b] → [a,b], thus obtaining the following integral equation with modified argument: 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()(  ,     t∈[a,b] ,    (1.41) 

where K : [a,b]×[a,b]×R 4 → R,  f : [a,b] → R,  g : [a,b] → [a,b] . 
The integral equation (1.41) was studied by author, establishing conditions of existence and 

uniqueness, of data dependence and of approximating the solution, and these results were published in papers 
[21], [22], [23], [24], [26] and [27] and will be presented in the following chapters. 

Next, we present the results obtained by author in the study of integral equation (1.39). 
 
 I. Existence and uniqueness of the solution 
 
 Theorem 1.8.1. (M. Ambro [1]) If 

(i)  K∈C([a,b]×[a,b]×R3),  f∈C[a,b]; 

 (ii )  there exists  L > 0,  such that 

  |K(t,s,u1,v1,w1) – K(t,s,u2,v2,w2)|  ≤  L (| u1–u2 | + | v1–v2 | + | w1–w2 |), 

for all  t, s∈[a,b],  u1, u2, v1, v2, w1, w2∈R ; 

 (iii )  3L(b – a)  <  1 ,    (contraction condition) 

then the integral equation (1.39) has a unique solution x*∈C[a,b], which can be obtained by the successive 

approximations method, starting at any element  x0∈C[a,b]. 
 Moreover, if  xn is the n-th successive approximation, then the following estimation is proved: 

],[10],[ )(31
)](3[*

baC

n

baCn xx
abL

abL
xx −⋅

−−
−≤−  .      (1.42) 

 Proof. We consider the operator ],[],[: baCbaCA → , defined by the relation: 

 ∫ +=
b

a

tfdsbxaxsxstKtxA )())(),(),(,,(:))((  ,     t∈[a,b] .     (1.43) 

 The set of the solutions of integral equation (1.39) coincides with the fixed points set of the operator 
A. 
 To apply the Contraction Principle 1.3.1 and to obtain a theorem of existence and uniqueness of the 
solution of integral equation (1.39), the operator A must be contraction. 

We have 

[ ] ≤−=− ∫
b

a

dsbxaxsxstKbxaxsxstKtxAtxA ))(),(),(,,())(),(),(,,())(())(( 22211121  

      ∫ −≤
b

a

dsbxaxsxstKbxaxsxstK ))(),(),(,,())(),(),(,,( 222111  . 

From the condition (ii ) it results that 

[ ]∫ −+−+−≤−
b

a

dsbxbxaxaxsxsxLtxAtxA )()()()()()())(())(( 21212121 , 
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and using the Chebyshev norm in the right hand, we obtain 

≤− ))(())(( 21 txAtxA  

     [ ] =−+−+−⋅−≤
∈

)()()()()()(max)( 212121],[
bxbxaxaxsxsxabL

bas
 

     ],[21)(3
baC

xxabL −⋅−=  . 

Now using the Chebyshev norm in the left hand too, it results that 

],[21],[21 )(3)()(
baCbaC

xxabLxAxA −⋅−≤−  , 

and from the condition (iii ) it results that the operator A is an α–contraction with the coefficient α = 3L(b–a). 
 Now, the conclusion of this theorem is obtained by applying the Contraction Principle 1.3.1 and the 
proof is complete. �  
 

The following theorem contains the conditions of existence and uniqueness of the solution of the 
integral equation (1.39) in the sphere );( rfB ⊂ C[a,b]. 
 
 Theorem 1.8.2. (M. Ambro [1]) Suppose that 

(i)  K∈C([a,b]×[a,b]× J3) ,  J ⊂ R  is a compact interval,  f∈C[a,b]; 

 (ii)  there exists  L > 0,  such that 

  |K(t,s,u1,v1,w1) – K(t,s,u2,v2,w2)|  ≤  L ( | u1–u2 | + | v1–v2 | + | w1–w2 | ) 

  for all  t, s∈[a,b],  u1, u2, v1, v2, w1, w2∈J; 

 (iii )  3L(b – a)  <  1 .   (contraction condition) 

If  r > 0  is a positive real number such that 

x∈ );( rfB    ⇒   x(t)∈ J ⊂ R , 

 and 

(iv)  M(b – a)  ≤  r ,   (condition of invariance of the sphere );( rfB ) 

where denote by M  a positive constant, such that 

|K(t,s,u,v,w)| ≤ M,   for all  t, s∈[a,b], u, v, w∈J⊂ R, J compact interval,   (1.44) 

then the integral equation (1.39) has a unique solution x*∈ ],[);( baCrfB ⊂ , that can be obtained by the 

successive approximations method, starting at any element x0∈ );( rfB . Moreover, if  xn  is the nth 

successive approximation, then the estimation (1.42) is satisfied. 
 
 Proof. We consider the operator ],[);(: baCrfBA → , defined by the relation (1.43). 

The set of the solutions of integral equation (1.39) coincides with the fixed points set of the operator 
A. 
 In order to apply the Contraction Principle 1.3.1, we establish under what conditions the sphere 

);( rfB  is an invariant subset for the operator A. We have: 
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∫∫ ≤=−
b

a

b

a

dsbxaxsxstKdsbxaxsxstKtftxA ))(),(),(,,())(),(),(,,()())((  

and using (1.44) we obtain 

)()())(( abMdsMtftxA
b

a

−=⋅≤− ∫  , 

where according to condition (iv) it results that the sphere ],[);( baCrfB ⊂  is an invariant subset for the 

operator A, i.e. )();( AIrfB ∈ . We can consider now the operator, noted also by A,  A: );( rfB → );( rfB , 

defined by the same relation (1.43), and );( rfB  is a closed subset of the complete metric space C[a,b]. 
By an analogous reasoning to that of the proof of theorem 1.8.1 and using the condition (ii ) it follows 

that the operator A satisfies the Lipschitz condition 

],[21],[21 )(3)()(
baCbaC

xxabLxAxA −⋅−≤−  , 

and according to condition (iii ), it results that the operator A is an α–contraction with the coefficient α = 
3L(b–a). 

The conditions of the Contraction Principle 1.3.1 are fulfilled and therefore it results that the integral 
equation (1.39) has a unique solution x* ∈ );( rfB ⊂ C[a,b], and if xn is the nth successive approximation, 
then the estimation (1.42) is satisfied. 

The proof is complete. �  
 
 II. Data dependence 
 

Using the abstract data dependence theorem 1.3.5 we obtain a result of data dependence of the 
solution of integral equation (1.39) with respect to the functions K and f. 

Now we consider a perturbed integral equation 

 ∫ +=
b

a

thdsbyaysystHty )())(),(),(,,()(  ,     t∈[a,b] ,     (1.45) 

where H : [a,b]×[a,b]×R3 → R,  h : [a,b] → R. 

We have the following data dependence theorem. 
 
 Theorem 1.8.3. (M. Dobriţoiu [20]) Suppose that 

(i) the conditions of theorem 1.8.1 of existence and uniqueness of the solution of integral equation 

(1.39) in the space C[a,b] are satisfied and denote by *
Ax , the unique solution of this equation; 

(ii )  H∈C([a,b]×[a,b]× R3) ,  h∈C[a,b]; 

(iii ) there exists  η1, η2 > 0  such that 

|K(t,s,u,v,w) – H(t,s,u,v,w)|  ≤  η1 ,   for all  t, s∈[a,b], u, v, w∈R 

and 

| f(t) – h(t)|  ≤  η2 ,   for all t∈[a,b] . 

Under these conditions, if  *Bx   is a solution of the perturbed integral equation (1.45), then 
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)(31
)( 21
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abL
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xx

baCBA −−
+−≤− ηη  .      (1.46) 

 
 Proof. Consider the operator ],[],[: baCbaCA →  from the proof of the theorem 1.8.1, defined by 
the relation (1.43). 

To the perturbed equation (1.45) we attach the operator ],[],[: baCbaCB → , defined by the relation: 

 ∫ +=
b

a

thdsbyaysystHtyB )())(),(),(,,(:))(( ,     t∈[a,b] .     (1.47) 

We have 

 =− ))(())(( txBtxA  

≤−−+= ∫∫ )())(),(),(,,()())(),(),(,,( thdsbxaxsxstHtfdsbxaxsxstK
b

a

b

a

 

[ ] ≤−+−≤ ∫ )()())(),(),(,,())(),(),(,,( thtfdsbxaxsxstHbxaxsxstK
b

a

 

)()())(),(),(,,())(),(),(,,( thtfdsbxaxsxstHbxaxsxstK
b

a

−+−≤ ∫  , 

where according to condition (iii ) it results that 

21 )())(())(( ηη +−≤− abtxBtxA ,   for all  t ∈ [a,b] , 

and using the Chebyshev norm in the left side, we obtain 

 21],[ )()()( ηη +−≤− abxBxA
baC

 . 

 Now, by applying the abstract data dependence theorem 1.3.5, the proof is complete. �  
 
 III. Aproximation of the solution 
 

In what follows we present an algorithm of approximating the solution of integral equation (1.39), 
that was published in paper [1]. 

Assume that the conditions of theorem 1.8.2 are satisfied and therefore the integral equation (1.39) 
has a unique solution in the sphere ],[);( baCrfB ⊂ , which we denote by x*. In order to obtain the solution 
x* we apply the successive approximations method and we obtain the following successive approximations 
sequence: 

x0(t) = f (t) 

)())(),(),(,,()( 0001 tfdsbxaxsxstKtx
b

a

+= ∫  

. . . . . 

)())(),(),(,,()( 111 tfdsbxaxsxstKtx
b

a
mmmm += ∫ −−−  
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. . . . . 

Assume that K∈C2([a,b]×[a,b]×J3), where J⊂R is a closed interval and ],[2 baCf ∈ . We will 
approximate the terms of the successive approximations sequence using the trapezoids formula (1.14) with 
the estimation of the rest given by the relation (1.15). 

We consider an equidistant division of interval [a,b] by the points  a = t0 < t1 < . . . < tn = b . In the 
general case for xm(tk) we have: 

[ +−= −−− ))(),(),(,,(
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n
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n

i
mmimik  

NmnkRtf kmk ∈=++ ,,0,)( , ,      (1.48) 

and 
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Since K∈C2([a,b]×[a,b]×J3) it results that there exists the derivative of the function K from the 
expression of Rm,k , and therefore it has to be calculated. So, we have: 

[ ] =−−− s
bxaxsxstK mmmk
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where 
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Now, using the expressions of the derivatives of xm-1(t), it results that 

211 )()( MMabtxm +−≤−  , 
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211 )()(' MMabtxm +−≤−  , 

211 )()(" MMabtx m +−≤−  , 

and we obtain 

[ ] [ ]++−+≤−−− 2111111 )(2
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))(),(),(,,( MMabMM
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bxaxsxstK mmmk  

[ ] [ ] =+−++−+ 211
2

211 )()( MMabMMMabM  
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2112111 )()(3 MMMabMMMabMM =+−++−+=  . 

 It is obvious that 0M  doesn’t depend on m and k, so we have the estimation of the rest: 
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and we obtain a formula for the approximate calculation of integrals of the successive approximations 
sequence. Using the method of successive approximations and the formula (1.48) with the estimation of the 
rest resulted from (1.49), we suggest further on an algorithm in order to solve the integral equation (1.39) 
approximately. To this end, we will calculate approximately the terms of the successive approximations 
sequence and we obtain the following result: 
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and the estimation of the rest 
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The reasoning continues for  m = 3, . . .   and through induction we obtain 
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Since 3L(b–a) < 1, it results that the conditions of the existence and uniqueness theorem 1.8.2 are 
satisfied and we have the estimation: 
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Thus we obtain the sequence ( ) nktx Nmkm ,0,)(~ =∈ , that estimates the successive approximations 

sequence ( ) Nmmx ∈  using an equidistant division of interval [a,b] by the points  a = t0 < t1 < . . . < tn = b, with 
the following error in calculation: 
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Remark 1.8.1. If ))(,,())(),(),(,,( sxstKbxaxsxstK ≡ , then we obtain the existence and uniqueness 

theorems given in [10] and the method of approximation is the one given in [44] and [45]. 
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 Another integral equation of a similar type as the equation (1.39) is the following integral equation: 

 ∫ +⋅=
b

a

tfdsbxaxsxshstKtx )())(),(),(,(),()(  ,     t∈[a,b] ,    (1.52) 

where K : [a,b]×[a,b] → R,  h : [a,b]×R3 → R,  f : [a,b] → R. 
In the study of this equation were established several conditions for existence and uniqueness and for 

data dependence of the solution of integral equation (1.52) and these results were published in paper [28] and 
we present below them. 
 First we present two theorems of existence and uniqueness of the solution of the nonlinear Fredholm 
integral equation (1.52), in the space C[a,b] and in the sphere );( rfB ⊂ C[a,b], respectively. 
 
 Theorem 1.8.4. (M. Dobriţoiu [28]) Suppose that 

(i)  K∈C([a,b]×[a,b]),  h∈C([a,b]×R3),  f∈C[a,b]; 

 (ii )  there exists  α, β, γ > 0,  such that 

  |h(s,u1,u2,u3) – h(s,v1,v2,v3)|  ≤  α (| u1–v1 | + β | u2–v2 | + γ | u3–v3 |), 

       for all  s∈[a,b],  u1, u2, u3, v1, v2, v3∈R ; 

 (iii )  MK⋅(α + β + γ)⋅(b – a) < 1 ,    (contraction condition) 

where we denote by MK is a positive constant such that 

  |K(t,s)|  ≤  MK ,    for all  t, s∈[a,b]. 

Under these conditions the integral equation (1.52) has a unique solution x*∈C[a,b], which can be 

obtained by the successive approximations method, starting at any element  x0∈C[a,b]. 
 Moreover, if  xn is the n-th successive approximation, then the following estimation is fulfilled: 

[ ]
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abM
xx −⋅

−⋅++−
−⋅++

≤−
γβα

γβα
 .    (1.53) 

 
 Theorem 1.8.5. (M. Dobriţoiu [28]) Suppose that 

(i)  K∈C([a,b]×[a,b]),  h∈C([a,b]×J3),  J ⊂ R  is a closed interval,  f∈C[a,b]; 

 (ii )  there exists  α, β, γ > 0,  such that 

  |h(s,u1,u2,u3) – h(s, v1,v2,v3)|  ≤  α (| u1–v1 | + β | u2–v2 | + γ | u3–v3 |), 

       for all  s∈[a,b],  u1, u2, u3, v1, v2, v3∈J, J ⊂ R  is a closed interval; 

 (iii )  MK⋅(α + β + γ)⋅(b – a) < 1 .   (contraction condition) 

If there exists  r > 0  such that 

x∈ );( rfB    ⇒   x(t)∈ J ⊂ R , 

 and the following condition id fulfilled: 

(iv)  MKMh(b – a)  ≤  r ,    (condition of invariance of the sphere );( rfB ) 

where we denote with Mh a positive constant such that, for the restriction h|[a,b]×J
3 , J⊂ R compact, we have: 

|h(s,u,v,w)| ≤ Mh,   for all  s∈[a,b], u, v, w∈J⊂ R,     (1.54) 
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then the integral equation (1.52) has a unique solution  x*∈ ],[);( baCrfB ⊂ , that can be obtained by the 

successive approximations method, starting at any element x0∈ );( rfB . Moreover, if  xn  is the nth 

successive approximation, then the estimation (1.53) is satisfied. 
 
 In order to study the data dependence of the solution of the integral equation (1.52) we consider the 
following perturbed integral equation: 

 ∫ +⋅=
b

a

tgdsbyaysyskstKty )())(),(),(,(),()(  ,     t∈[a,b] ,    (1.55) 

where K : [a,b]×[a,b] → R,  k : [a,b]×R3 → R,  g : [a,b] → R. 
The result presented below is a theorem of data dependence of the solution of integral equation 

(1.52). 
 
 Theorem 1.8.6. (M. Dobriţoiu [28]) Suppose that 

(i) the conditions of theorem 1.8.4 of existence and uniqueness of the solution of integral equation 
(1.52) in the space C[a,b] are satisfied and denote by  x* the unique solution of this equation; 

(ii )  k∈C([a,b]×R3),  g∈C[a,b]; 

(iii ) there exists  η1, η2 > 0  such that 

|h(s,u,v,w) – k(s,u,v,w)|  ≤  η1 ,   for all  s∈[a,b], u, v, w∈R 

and 

| f(t) – g(t)|  ≤  η2 ,   for all  t∈[a,b] . 

Under these conditions, if  y* is a solution of the perturbed integral equation (1.55), then 

)()(1
)( 21**

abM

abM
yx

K

K
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γβα

ηη
 .     (1.56) 

 
The proof of these three theorems above can be found in [28] and for this reason are omitted. 

 
 

1.8.2  A mathematical model for studying the spread of an infectious disease 
 
 In the various problems that arise in connection with the development of populations can occurr 
some phenomena that occur periodically. 
 We consider an isolated population and suppose that: 
 - the population has a constant number of individuals, i.e. it is in the vicinity of a population of stable 
balance type; 
 - the population consists of two disjoint classes: individuals susceptible to infection and infected 
individuals; 
 - infection does not lead to death and does not provide immunity; 
 - infection period (duration of infection) is constant and denote by τ, τ > 0. 

Knowing the number of individuals who become infected at the time t0, is required to determine the 
number of individuals infected at time t. 

Denote by x(t) the number of individuals of population which are infected at time t and let f(t,x(t)) be 
the number of newly infected individuals per unit of time ( f (t, 0) = 0 ). 
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Under these conditions the following non-linear integral equation is an important mathematical 
model for studying the spread of an infectious disease with a periodical contact rate that varies seasonally: 

∫
−

=
t

t

dssxsftx
τ

))(,()(  ,     t∈R.        (1.57) 

Also, the integral equation (1.57) can be interpreted in the terms of population growth. Consider a 
single species population and assume that: 

- x(t) represents the number of individuals present in this single species population at time t (they 
assumed that the population is uniformly distributed in a given geographical area) ; 

- f(t,x(t)) is the number of the new births per unit of time ; 
- τ  is the lifetime ; it is assumed that each individual lives to the age τ (τ > 0) exactly, and then dies. 

Under these conditions the equation (1.57) is the mathematical model of the growth of a single 
species population when the birth rate varies seasonally. 

The mathematical model of the spread of an infectious disease, was studied by giving the conditions 
of existence and uniqueness of positive, non-trivial and periodic solutions of period ω > 0, and highlighting 
some interesting properties of the solutions. Note the results obtained by K.L. Cooke and J.L. Kaplan [13], 
D. Guo and V. Lakshmikantham [30], I. A. Rus [53], [56], R. Precup [47], [48], [49], R. Precup and E. Kirr 
[50], C. Iancu [32], [33], I. A. Rus, M. A. Şerban and D. Trif [71]. 

We present below some results on positive, non-trivial and ω–periodic solution of integral equation 
(1.57), given by K.L. Cooke and J.L. Kaplan [13], I. A. Rus [56] and R. Precup [47]. 
 
 I. Existence and uniqueness of the solution 
 
 Theorem 1.8.7. (K.L. Cooke, J.L. Kaplan [13]) Suppose that: 

(i)  f∈C(R×R+)  and  f (t, 0) = 0,   for all  t∈R ; 

(ii )  there exists  ω > 0, such that 

f(t+ω, u) = f(t, u),   for all  t∈R  and  u∈R+ ; 

(iii )  there exists  M > 0, such that 

0  ≤  f (t,u)  ≤  M,   for all  t∈R  and  u∈R+ ; 

(iv)  there exists  x1 > 0, such that 

u

f

∂
∂   there exists and is continuous,  for  t∈R,  0 ≤ u ≤ x1 

 and satisfies the condition 

  0)0,(inf
),0[

>=
∂
∂

+∞∈
αt

u

f
t

 . 

If  ατ > 1, then the integral equation (1.57) has a non-trivial and ω-periodic solution. 
 

This result was improved by I. A. Rus in [56], obtaining the following result of existence and 
uniqueness of an ω-periodic solution of integral equation (1.57). 

 Let  0 < m < M   and   0 < α < β . 

Theorem 1.8.8. (I. A. Rus [56]) Suppose that: 
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(i)  f∈C(R ×[α,β]); 

(ii )  there exists ω > 0, such that 

f(t+ω,u) = f(t,u),   for all  t∈R  and  u∈[α,β]; 

(iii )  m ≤ f(t,u) ≤ M,   for all  t∈R  and  u∈[α,β]; 

(iv)  α ≤ mτ ,  β ≥ Mτ ; 

 (v)  there exists L such that 

| f(t,u) – f(t,v) |  ≤  L(t)⋅| u – v |,   for all  t∈R  and  u, v∈[α,β]; 

(vi) ∫
−

<≤
t

t

qdssL
τ

1)(  ,   for all  t∈R . 

 Under these conditions the integral equation (1.57) has a unique ω–periodic solution in C(R,[α,β]) 
space. 
 
 II. Data dependence 
 

In paper [56] I. A. Rus gives a result, presented below, of continuous dependence with respect to the 
function f, of an ω - periodic solution of integral equation (1.57). 

Consider the perturbed integral equation 

∫
−

=
t

t

dssysgty
τ

))(,()(  ,     t∈R ,        (1.58) 

where g : R ×[α,β] → R . Denote by Xω the set 

 { }RttxtxRCxX ∈=+∈= ),()(/]),[,( ωβαω  

and let d be a metric on Xω , defined by the relation: 

)()(max),(
),0[

tytxyxd
t

−=
∈ ω

 ,   for all  x, y∈Xω. 

The following theorem is true. 

 Theorem 1.8.9. (I. A. Rus [56]) Suppose that: 

(i) the conditions of theorem 1.8.8 of existence and uniqueness of an ω – periodic solution of integral 

equation (1.57) are satisfied and denote by x* the unique ω – periodic solution of this equation; 

(ii )  the function  g∈C(R×[α,β]) is periodic, of period ω , i.e. 

g(t+ω,u) = g(t,u),   for all  t∈R  and  u∈[α,β] 

and 

m ≤ g(t,u) ≤ M,   for all  t∈R  and  u∈[α,β]; 

(iii )  there exists  η > 0  such that 

| f(t, u) – g(t, u)|  ≤  η ,   for all  t∈R  and  u∈[α,β]; 

Under these conditions, if  y*  is a solution of equation (1.58), then 
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q
yxd

−
≤

1
),( ** ητ  .        (1.59) 

 
 When the number of infected individuals, ф(t)  for t∈[–τ,0], is known, i.e. 

 x(t) = ф(t) for  t∈[–τ ,0] ,        (1.60) 

then can be studied the existence of the positive and continuous solutions of the integral equation (1.57) 
([47]). 
 Suppose that  ф(t)  is a positive continuous function on interval [–τ ,0] and satisfies 

 ∫
−

≡=
0

))(,()0(
τ

φφ dsssfb  .        (1.61) 

 Then the problem (1.57)+(1.60) is equivalent with the following initial value problem: 
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     (1.62) 

An important result is the following theorem. 

 Theorem 1.8.10. (R. Precup [47]) If : 

(i)  f(t,x) is non-negative and continuous for  t ∈ [–τ ,T]  and  x ≥ 0 ; 

(ii )  ф(t) is continuous, ф(t) ≥ a > 0  for  t ∈ [–τ ,0]  and satisfies the condition (1.61); 

(iii )  there exists an integrable function g such that 

  f(t,x) ≥ g(t)  for  t ∈ [–τ ,T]  and  x  ≥ a 
and 

  ∫
−

≥
t

t

adssg
τ

)(   for  t ∈ [0, T] ; 

(iv) there exists a positive function h(x), such that 
)(

1
xh

 is locally integrable on (a,+∞) 

  f(t,x) ≤ h(x)   for  t∈[0,T]  and  x ≥ a 

and 

  ∫
∞

<
b

dx
xh

T
)(

1  , 

then the integral equation (1.57) has at least one continuous solution  x, and  x(t) ≥ a, for t∈[–τ,T], that 
satisfies the condition (1.60). 
 

If the condition (iv) of theorem 1.8.10 is replaced by the following more restrictive condition ([47]): 

(iv’)  there exists  L > 0  such that 

| f(t,x) – f(t,y)|  ≤  L|x – y|,   for all  t∈[–τ ,T]  and  x, y > a , 
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then the following theorem is true. 
 
 Theorem 1.8.11. (R. Precup [47]) If the conditions (i), (ii ), (iii ) of theorem 1.8.10 and the condition 

(iv’) are satisfied, then the integral equation (1.57) has a unique continuous solution x,  x(t) ≥ a,  for t ∈ [–
τ,T], that satisfies the condition (1.60). 
 
 III. Aproximation of the solution 
 
 Knowing that the integral equation (1.57) admits a unique solution one can study its approximate 
solution by numerical methods. 

Assume that the conditions of theorems 1.8.10 and.1.8.11 are satisfied and therefore the integral 
equation (1.57) has a unique continuous solution on interval [–τ,T], denoted by φ, solution that can be 
obtained by the successive approximations method. We have the sequence of successive approximations: 

 φ(t) = ф(t)   for  t∈[–τ, 0) 

φ0(t) = ∫
−

≡=
0

))(,()0(
τ

φφ dsssfb  

∫
−
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t

t

dsssft
τ

ϕϕ ))(,()( 01          (1.63) 

. . . . . 

∫
−

−=
t

t
mm dsssft

τ
ϕϕ ))(,()( 1  

. . . . . ,   for  t∈[0,T]. 

 The study of this algorithm of approximating the solution by using the trapezoids method for 
calculating the integrals from the terms of successive approximations sequence was made by C. Iancu in 
[32], [33]. Also, in [33], C. Iancu gives another method for approximating the solution of integral equation 
(1.57), using the spline functions method. 
 I. A. Rus, M. A. Şerban and D. Trif published in [71] an interesting study of the equation (1.57) from 
biomathematics, proving that the sequence of successive approximations generated by the steps method 
converges to the solution of integral equation (1.57). 
 Using the Picard operators technique, I. A. Rus, M. A. Şerban and M. Dobriţoiu studied the existence 
and uniqueness, and upper and lower solutions, data dependence and differentiability with respect to a 
parameter of the solution of integral equation (1.57). The results of this study are published in paper [25] and 
are presented in chapter 6. 
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2  Existence and uniqueness of the solution 
 
 
 

Several of the basic treatises which have the integral equations like theme, are the following: T. 
Lalescu [21], I. G. Petrovskii [26], K. Yosida [59], [60], Gh. Marinescu [22], A. Haimovici [19], C. 
Corduneanu [7], [8], Gh. Coman, I. Rus, G. Pavel and I. A. Rus [6], W. Walter [58], D. Guo, V. 
Lakshmikantham and X. Liu [17], W. Hackbusch [18], D. V. Ionescu [20], Şt. Mirică [23], V. Mureşan [24], 
[25], A. D. Polyanin and A. V. Manzhirov [28], R. Precup [30], [35], I. A. Rus [39], [40], [43], [48], M. A. 
Şerban [55], Sz. András [5]. 
 The existence and uniqueness of the solutions of some particular integral equations were studied in 
many papers, of which we mention several: R. Ramalho [36], C. A. Stuart [52], B. Rzepecki [51], I. A. Rus 
[38], [41], [42], [44], [45], [46], [47], [49], I. A. Rus, S. Mureşan and V. Mureşan [50], R. Precup [29], [31], 
[32], [34], R. Precup and E. Kirr [33], D. O’Regan and A. Petruşel [37], M. Albu [1], A. Petruşel [27], Sz. 
András [3], [4], M. A. Şerban [53], [54], [56], M. A. Şerban, I. A. Rus and A. Petruşel [57], M. Dobriţoiu, I. 
A. Rus and M. A. Şerban [15], M. Dobriţoiu (Ambro) [2], [9], [10], [11], [12], [13], [14], [16]. 

In this chapter we will present a study of existence and uniqueness of the solution of integral 
equation with modified argument 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( ,     t∈[a,b] ,    (2.1) 

in the space C([a,b],B) and in the sphere );( rfB ⊂C([a,b],B), where (B,+,R,|·|) is a Banach space, in the 
general case, and in two particular cases for B, namely: B=Rm and B=l2(R). 

This chapter has five paragraphs. In the paragraphs 1, 2 and 3 one gives the conditions of existence 
and uniqueness of the solution of the integral equation with modified argument (2.1) in the space C([a,b],B) 
and in the sphere );( rfB ⊂C([a,b],B), in the general case, and in the particular cases which were mentioned 
above. To determine these results, the following basic theorems were useful: the Contraction Principle 1.3.1 
and the Perov’s theorem 1.3.4. 

The paragraph 4 contains three examples, namely: two integral equations with modified argument 
and one system of integral equations with modified argument, and for each of these, one uses the results 
obtained and presented in the previous paragraphs in order to establish the conditions of existence and 
uniqueness of the solution. 
 In the fifth paragraph, one studies the existence and uniqueness of the solution of an integral 
equation with modified argument, which is a generalization of the equation (2.1), namely: 

 )()|)),((),(,,()( tfdsxsgxsxstKtx += ∫
Ω

Ω∂ ,     t∈ Ω  , 

where Ω⊂ Rm is a bounded domain, mmmm RRCRRK →Ω∂×××Ω×Ω ),(: , mRf →Ω:  and Ω→Ω:g . 
The results presented in this chapter were obtained by the author and published in the papers [13] 

and [16]. We present them below. 
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2.1  The general case 
 

A. Existence and uniqueness of the solution in the space C([a,b],B) 
 
 Let (B,+,R,|·|) be a Banach space. Consider the integral equation (2.1) and suppose that the following 
conditions are met: 

(a1)  K∈C([a,b]×[a,b]×B4, B) ; 

(a2)  f∈C([a,b],B) ; 

(a3)  g∈C([a,b], [a,b]) . 

 The following theorem is true. 
 

Theorem 2.1.1. Suppose that the conditions (a1)–(a3) are satisfied. In addition, suppose that: 

(a4)  there exists  LK > 0  such that 

  K(t, s, u1, u2, u3, u4) – K(t, s, v1, v2, v3, v4)  ≤ 

≤  LK (u1–v1+u2–v2)+u3–v3)+u4–v4)), 

for all  t, s∈[a,b],  ui, vi∈B , 4,1=i  ; 

 (a5) 1)(4 <− abLK .    (contraction condition) 

 Under these conditions, it results that the integral equation with modified argument (2.1) has a 

unique solution x*∈C([a,b],B), that can be obtained by the successive approximations method, starting at 

any element  x0∈C([a,b],B). 
 Moreover, if  xn is the n-th successive approximation, then the following estimation is true: 

 ),(
)(41

)(4),( 10
* xxd

abL

abL
xxd

K

nn
K

n

n −−
−≤  .       (2.2) 

 
 Proof. On the space C([a,b],B), we consider the metric of Chebyshev, denoted by d and defined in 
chapter 1, by the relation (1.5). 
 Also, we consider the operator A : C([a,b],B) →C([a,b],B), defined by the relation: 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtxA )())(),()),((),(,,(:))(( ,     t∈[a,b].    (2.3) 

 The set of the solutions of integral equation (2.1) in the space C([a,b],B) coincides with the fixed 
points set of the operator A, i.e. with FA . 
 From the conditions (a1)–(a4) we have 

=− ))(())(( tyAtxA  

≤−= ∫∫
b

a

b

a

dsbyaysgysystKdsbxaxsgxsxstK ))(),()),((),(,,())(),()),((),(,,(  

≤−≤ ∫ dsbyaysgysystKbxaxsgxsxstK
b

a

))(),()),((),(,,())(),()),((),(,,(  
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[ ] ≤−+−+−+−⋅≤ ∫ dsbybxayaxsgysgxsysxL
b

a
K )()()()())(())(()()(  

 ),()(4),(4 yxdabLdsyxdL K

b

a
K −=≤ ∫ , t∈[a,b] . 

Therefore, with respect to the metric of Cebyshev, the operator A satisfies the Lipschitz condition 
with the constant  )(4 abLK −  and we have: 

 ( ) ),()(4)(),( yxdabLyAxAd K −≤ ,   for all  x, y∈C([a,b],B),    (2.4) 

and from the condition (a5) it results that the operator A is an α–contraction with the coefficient α = 
)(4 abLK − . 

The conditions of the Contraction Principle 1.3.1. being satisfied, it results that the integral equation 
(2.1) has a unique solution x*∈C([a,b],B), that can be obtained by the successive approximations method, 
starting at any element x0∈C([a,b],B). 

If we denote by  xn  the n-th successive approximation, then the estimation (2.2) is true and the proof 
is complete. �  

 
B. Existence and uniqueness of the solution in the sphere );( rfB ⊂ C([a,b],B) 

 
In order to study the existence and uniqueness of the solution of integral equation (2.1) in the sphere 

);( rfB ⊂ C([a,b],B), we consider that the conditions (a2) and (a3) are met and we replace the condition (a1) 
by the following condition: 

(a1’)  K ∈ C([a,b]×[a,b]×J4, B) , J ⊂ B compact . 

In addition, we denote by MK a positive constant, such that for the restriction 4],[],[| Jbaba
K ×× ,  J ⊂ B 

compact, we have: 

|K(t,s,u1,u2,u3,u4) |  ≤  MK ,   for all  t, s∈[a,b],  u1,u2,u3,u4∈J .    (2.5) 

The following theorem is true. 
 

Theorem 2.1.2. Suppose that the conditions (a1’), (a2) and (a3) are met. In addition, suppose that 

(a4’)  there exists  LK > 0  such that 

  K(t,s,u1,u2,u3,u4) – K(t,s,v1,v2,v3,v4)  ≤ 

≤  LK (u1–v1+u2–v2)+u3–v3)+u4–v4)), 

for all   t, s∈[a,b],  ui, vi∈J, 4,1=i  ; 

 (a5) 1)(4 <− abLK .    (contraction condition) 

If  r > 0  is a positive number such that 

x∈ );( rfB    ⇒   x(t)∈ J ⊂ B , 
and 

(a6)  MK (b – a) ≤ r ,    (condition of invariance of the sphere );( rfB ) 
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then the integral equation (2.1) has a unique solution  x*∈ );( rfB ⊂ (C[a,b],B), that can be obtained by the 

successive approximations method, starting at any element x0∈ );( rfB ⊂ (C[a,b],B), and if we denote by xn 

the n-th successive approximation, then the estimation (2.2) is satisfied. 
 
 Proof. We attach to the integral equation (2.1) the operator A : );( rfB → (C[a,b],B), defined by the 
relation (2.3). 

Also, we suppose that there exists at least one positive number r with the property above: 

x∈ );( rfB    ⇒   x(t)∈ J ⊂ B , 
In order to apply the Contraction Principle 1.3.1 we establish the condition of invariance of the 

sphere );( rfB  for the operator A. Thus, we have: 

≤=− ∫
b

a

dsbxaxsgxsxstKtftxA ))(),()),((),(,,()())((  

∫≤
b

a

dsbxaxsgxsxstK ))(),()),((),(,,(  , 

and using (2.5) the following inequality is obtained 

 )()())(( abMtftxA K −≤− ,   for all  t∈[a,b] , 

and now, from the condition (a6) it results that the sphere );( rfB  is an invariant subset for the operator A, 

i.e. );( rfB ∈ I(A). Now, we have the operator A : );( rfB  → );( rfB , also denoted by A  and defined by 

the same relation (2.3); the sphere );( rfB  is a closed subset of Banach space (C[a,b],B). 

The set of the solutions of integral equation (2.1) in the sphere );( rfB ⊂ C([a,b],B) coincides with 
the fixed points set of the operator A. 

By an analogous reasoning to that of the proof of theorem 2.1.1 and using the condition (a4’) it 
follows that, with respect to the metric of Chebyshev, the operator A satisfies the following Lipschitz 
condition: 

( ) ),()(4)(),( yxdabLyAxAd K −≤ ,   for all  x, y∈ );( rfB  

and according to the condition (a5), it results that the operator A is an α–contraction with the coefficient α = 
4LK(b–a). 

The conditions of the Contraction Principle 1.3.1. being satisfied, it results that the integral equation 
(2.1) has a unique solution  x*∈ );( rfB ⊂ C([a,b],B), that can be obtained by the successive approximations 

method, starting at any element x0∈ );( rfB ⊂(C[a,b],B). 
If  xn  is the n-th successive approximation, then the estimation (2.2) is satisfied and the theorem is 

proved. �  
 
 

2.2  The case  B = Rm 
 

In the particular case B = Rm  we have the following system of Fredholm integral equations with 
modified argument 
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 ∫ +=
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( ,     t∈[a,b] ,    (2.6) 

where x : [a,b]→Rm,  K : [a,b]×[a,b]×Rm×Rm×Rm×Rm
→Rm,  g : [a,b]→[a,b],  f : [a,b]→Rm, which has the 

form: 

 


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




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b
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tfdsbxaxsgxsxstKtx

)())(),()),((),(,,()(

.................................................................

)())(),()),((),(,,()(

)())(),()),((),(,,()(

222

111

    , t∈[a,b]  .   (2.6’) 

 In order to give some conditions of existence and uniqueness of the solution of the system (2.6) in 
the space C([a,b],Rm) and in the sphere );( rfB ⊂ C([a,b],Rm) respectively, we will apply the theorems 2.1.1, 
2.1.2 and the Perov’s theorem 1.3.4. 
 Now, in the particular case B = Rm, applying the theorem 2.1.1 we obtain the following theorem of 
existence and uniqueness of the solution of the system (2.6) in the space C([a,b],Rm). 
 

Theorem 2.2.1. Suppose that 

(b1)  K ∈ C([a,b]×[a,b]×Rm ×Rm ×Rm ×Rm, Rm) ; 

(b2)  f ∈ C([a,b],Rm) ; 

(b3)  g ∈ C([a,b], [a,b]) . 

(b4)  there exists  L > 0 , such that 

≤− ),,,,,(),,,,,( 43214321 vvvvstKuuuustK ii  

( )mmmm RRRR
vuvuvuvuL 44332211 −+−+−+−≤  

  for all  t, s∈[a,b],  u1, u2, u3, u4, v1, v2, v3, v4∈Rm , mi ,1= ; 

(b5)  4 L(b – a ) < 1 . 

Under these conditions, it results that the system of integral equations (2.6) has a unique solution 

x*∈C([a,b],Rm), that can be obtained by the successive approximations method, starting at any element 

x0∈C([a,b],Rm). If  x0 = (x01, x02, . . . , x0m)  is the starting function and xk = (xk1, xk2, . . . , xkm) is the k-th 
successive approximation, then the following estimation is satisfied: 

 ( )
[ ]

( )mm RbaC

k

RbaCk xx
abL

abL
xx ],,[10],,[

*

)(41
)(4 −⋅

−−
−≤−  .    (2.7) 

 
 Remark 2.2.1. If we consider one of the orms presented in chapter 1: the Euclidean norm 

E
⋅ , the 

Minkowski's norm 
M

⋅ , or the norm of Chebyshev 
C

⋅ , defined on the space Rm, then in the theorem 2.2.1 

is amended accordingly the assumptions (b4) and (b5) and the estimate (2.7) as follows: 

a) Euclidean norm 
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(b41)  there exists  L > 0 , such that 

≤− ),,,,,(),,,,,( 43214321 vvvvstKuuuustK ii  
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 for all  t, s∈[a,b],  u1, u2, u3, u4, v1, v2, v3, v4∈Rm , mi ,1= ; 

(b51)  1)(4 <− abLm  

and 

 ( )
[ ]

( )mm RbaC

k

RbaCk xx
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*

)(41
)(4 −⋅

−−
−≤−  .    (2.71) 

b) Minkowski's norm 

(b42)  there exists  L > 0 , such that 

≤− ),,,,,(),,,,,( 43214321 vvvvstKuuuustK ii  
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  for all  t, s∈[a,b],  u1, u2, u3, u4, v1, v2, v3, v4∈Rm , mi ,1= ; 

(b52)  4 mL(b – a ) < 1 

and 
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c) Chebyshev's norm 

(b43)  there exists  L > 0 , such that 

≤−
≤≤

),,,,,(),,,,,(max 432143211
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  for all  t, s∈[a,b],  u1, u2, u3, u4, v1, v2, v3, v4∈Rm , mi ,1= ; 

(b53)  4 L(b – a ) < 1 
and 
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In what follows, using the Perov’s theorem 1.3.4, we establish another result of existence and 
uniqueness of the solution of the system (2.6) in the space C([a,b],Rm). 

In order to apply the Perov’s theorem 1.3.4, we consider the vectorial norm on the space C([a,b],Rm) 
presented in chapter 1 and defined by the relation (1.7): 



Existence and uniqueness of the solution 
 

55 
 

  
















=

Cm

C

C

x

x

x ...:
1

 ,   for all 
















=

mx

x

x ...
1

∈C([a,b],Rm) , 

where )(max
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txx k
batCk ∈

= , mk ,1=  . 

Thus, we obtain a complete generalized metric space. In addition, suppose that the function K 
satisfies the generalized Lipschitz condition with respect to the last four arguments: 

(b6)  there exists  Q ∈ Mm×m(R+)  such that 

≤−
C

vvvvstKuuuustK ),,,,,(),,,,,( 43214321  

( )
CCCC

vuvuvuvuQ 44332211 −+−+−+−⋅≤  

for all  t, s∈[a,b],  ui, vi∈Rm , 4,1=i  , 

where we denote by ( )mwww ,...,1=  the norm of an element w∈Rm . 

Now, applying the Perov’s theorem 1.3.4, we obtain the following result. 
 

Theorem 2.2.2. Suppose that the conditions (b1)–(b3) and (b6) are satisfied. In addition, suppose that: 

(b7)  [4(b – a)Q]n → 0   as   n → ∞ . 

Then the system of integral equations (2.6) has a unique solution x*∈C([a,b],Rm), that can be 

obtained by the successive approximations method, starting at any element )],,([0
mRbaCx ∈ . If xn is the n-

th successive approximation, then the following estimation is satisfied: 

 [ ] 10
1* )(4])(4[ xxQabIQabxx m

n
n −⋅−−⋅−≤− −  .    (2.8) 

 
 Proof. We consider the operator A : C([a,b],Rm) → C([a,b],Rm), defined by the relation: 
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   (2.9’) 

 From the conditions (b1), (b2) and (b3) we deduce that the operator A is properly defined. 
One observes that the set of the solutions of the system (2.6) in the space C([a,b],Rm) coincides with 

the set of the fixed points of the operator A, defined above. 
Next, check the conditions of the Perov’s theorem 1.3.4. 
We have the difference: 
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of which under the conditions (b6) one obtains the estimate: 

 ( ) ( )
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

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mRbaC

m yxQabyAxA
RbaC ],,[

4)()( ],,[  

and we deduce that the operator A satisfies a generalized Lipschitz condition, with the matrix 4(b–
a)Q∈Mm×m(R+), and from the condition (b7) it results that this operator is a contraction. 
 The conditions of the Perov’s theorem 1.3.4 being satisfied, it results that the system of integral 
equations with modified argument (2.6) has a unique solution in the space C([a,b],Rm) and the theorem is 
proved. �  
 

Now, in order to give conditions of existence and uniqueness of the solution of the system of integral 
equations (2.6) in the sphere );( rfB ⊂ C([a,b],Rm), 

 { })(,|)],,([);( 1 +∈≤−∈= RMrrfxRbaCxrfB mC
m ⊂ C([a,b],Rm) , 

we apply the theorem 2.1.2 in the particular case B = Rm and we obtain the following result. 

Theorem 2.2.3. Suppose that 

(b1’)  K ∈ C([a,b]×[a,b]×J4, Rm), J ⊂ Rm compact ; 

(b2)  f ∈ C([a,b],Rm) ; 

(b3)  g ∈ C([a,b], [a,b]) ; 

(b4’)  there exists  L > 0 , such that 

≤− ),,,,,(),,,,,( 43214321 vvvvstKuuuustK ii  

( )mmmm RRRR
vuvuvuvuL 44332211 −+−+−+−≤  

  for all  t, s∈[a,b],  u1, u2, u3, u4, v1, v2, v3, v4∈J ⊂ Rm , mi ,1= ; 

(b5)  4 L(b – a ) < 1 . 

In addition, suppose that there exists at least one positive number r, such that 
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x∈ );( rfB    ⇒   x(t)∈ J ⊂ Rm , 

and the following condition is satisfied: 

(b8)  M (b – a) ≤ r    (condition of invariance of the sphere );( rfB ), 

where we denote by M a positive constant, such that for the restriction 4],[],[| Jbaba
K ×× , J⊂Rm compact, we 

have 

|K(t,s,u1,u2,u3,u4)|  ≤  M,   for all  t,s∈[a,b],  u1,u2,u3,u4∈J ⊂ Rm .    (2.10) 

 Then the system of the integral equations (2.6) has a unique solution x*∈ );( rfB ⊂ C([a,b],Rm), that 

can be obtained by the successive approximations method, starting at any element of );( rfB ⊂ C([a,b],Rm). 
If x0 is the starting function and xk is the k-th successive approximation, then the estimate (2.7) is true. 
 
 Applying the Perov’s theorem 1.3.4 we obtain another result of existence and uniqueness of the 
solution of the system of integral equations (2.6) in the sphere );( rfB ⊂ C([a,b],Rm) which is presented 
below. 
 

Theorem 2.2.4. Suppose that the conditions (b1’), (b2), (b3) and (b7) are satisfied. In addition, 
suppose that 

(b6’)  there exists  Q ∈ Mm×m(R+)  such that 

≤−
C

vvvvstKuuuustK ),,,,,(),,,,,( 43214321  

( )
CCCC

vuvuvuvuQ 44332211 −+−+−+−⋅≤  

  for all  t, s ∈ [a,b],  ui, vi∈J⊂ Rm, 4,1=i  . 

If  r ∈ Mm×1(R+)  such that 

x∈ );( rfB    ⇒   x(t)∈ J ⊂ Rm , 

and the following condition is satisfied: 

(b8’)  MK (b – a) ≤ r    (condition of invariance of the sphere );( rfB ), 

where we denote by 
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M ...

1

∈Mm×1(R+)  a matrix with positive constants as elements, such that for the 

restriction 4],[],[| Jbaba
K ×× , J ⊂ Rm compact, we have: 

KC MuuuustK ≤),,,,,( 4321 ,   for all  t,s∈[a,b], u1,u2,u3,u4∈J⊂ Rm.   (2.11) 

 Then the system of integral equations (2.6) has a unique solution x*∈ );( rfB ⊂C([a,b],Rm), that can 

be obtained by the successive approximations method, starting at any element );(0 rfBx ∈ , and if the n-th 

successive approximation is xn, then the estimate (2.8) is satisfied. 
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 Proof. We consider the operator A : );( rfB →C([a,b],Rm), defined by the relation (2.9) and we 

establish under what conditions the sphere );( rfB ⊂C([a,b],Rm) is an invariant subset for the operator A. We 
have: 

≤=− ∫
C

b

a
C

dsbxaxsgxsxstKtftxA ))(),()),((),(,,()())((  

   ∫≤
b

a
C

dsbxaxsgxsxstK ))(),()),((),(,,(  

and using the relation (2.11) it results 

 )()())(( abMtftxA KC
−≤− ,   for all  t∈[a,b] , 

 Now, from the condition (b8’) it results that the sphere );( rfB  is an invariant subset for the operator 

A, i.e. );( rfB ∈I(A) and we have the operator  A : );( rfB → );( rfB , denoted also by A and defined by the 

same relation (2.9), where );( rfB  is a closed subset of the Banach space (C[a,b],Rm). 

The set of the solutions of the system of inttegral equations (2.6) in the sphere );( rfB ⊂ (C[a,b],Rm) 
coincides with the fixed points set of the operator A, defined by the relation (2.9). 

By an analogous reasoning to that of the proof of theorem 2.2.2 and using the conditions (b6’) and 
(b7) it results that the operator A is a contraction. Therefore, applying the Perov’s theorem 1.3.4, it results the 
conclusion of this theorem and the proof is complete. �  
 
 
 2.3  The case  B = l 2(R) 
 

In the particular case B = l2(R) we consider the Fredholm integral equation with modified argument 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( ,     t∈[a,b] ,    (2.12) 

where  x : [a,b] →l2(R),  K : [a,b]×[a,b]×l2(R)×l2(R)×l2(R)×l2(R) → l2(R),  g : [a,b] →[a,b]  and  f : [a,b] → 
l2(R),  which has the form: 
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 ,     t∈[a,b]   (2.12’) 

and we apply the theorems 2.1.1 and 2.1.2 to give some conditions of existence and uniqueness of the 
solution of integral equation (2.12) in the space C([a,b],l2(R)) and in the sphere );( rfB ⊂ C([a,b], l2(R)). 
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 Applying the theorem 2.1.1 in the particular case B = l2(R), we obtain the following theorem of 
existence and uniqueness of the solution of integral equation (2.12) in the space C([a,b],l2(R)). 
 

Theorem 2.3.1. Suppose that: 

(c1)  K ∈ C([a,b]×[a,b]×l2(R)×l2(R)×l2(R)×l2(R), l2(R)) ; 

(c2)  f ∈ C([a,b], l2(R)) ; 

(c3)  g ∈ C([a,b], [a,b]) ; 

(c4)  there exists  0>KL ,  such that 

≤− )(43214321 2),,,,,(),,,,,(
Rl

vvvvstKuuuustK  

( )
)(44)(33)(22)(11 2222 RlRlRlRlK vuvuvuvuL −+−+−+−≤  

for all  t, s∈[a,b],  uj, vj∈l2(R) , 4,1=j  ; 

(c5)  1)(4 <− abLK  . 

 Under these conditions, it results that the integral equation with modified argument (2.12) has a 

unique solution  x*∈C([a,b],l2(R)), that can be obtained by the successive approximations method starting at 

any element x0∈C([a,b],l2(R)). Moreover, if xn is the n-th successive approximation, then the following 
estimate is met: 
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In order to give the conditions of existence and uniqueness of the solution of integral equation (2.12) 

in the sphere );( rfB ⊂ C([a,b],l2(R)), 

 { }0,|))(],,([);( )(
2

2 >≤−∈= rrfxRlbaCxrfB
Rl

⊂ C([a,b],l2(R)) , 

we apply the theorem 2.1.2 in the particular case B = l2(R) and we obtain: 
 

Theorem 2.3.2. Suppose that: 

(c1’)  K ∈ C([a,b]×[a,b] × J4, l2(R)) , J ⊂ l2(R) compact ; 

(c2)  f ∈ C([a,b], l2(R)) ; 

(c3)  g ∈ C([a,b], [a,b]) ; 

(c4’)  there exists  0>KL ,  such that 

≤− )(43214321 2),,,,,(),,,,,(
Rl

vvvvstKuuuustK  

( )
)(44)(33)(22)(11 2222 RlRlRlRlK vuvuvuvuL −+−+−+−≤  

for all  t, s∈[a,b],  uj, vj∈J, 4,1=j  ; 

(c5)  1)(4 <− abLK  . 
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If  r   is a positive constant, such that 

x∈ );( rfB    ⇒   x(t)∈ J ⊂ l2(R) , 

and the following condition is fulfilled: 

(c6)  MK (b – a) ≤ r    (condition of invariance of the sphere );( rfB ), 

where we denote by  KM  a positive constant, such that for the restriction  4],[],[
|

Jbaba
K

××
,  J⊂ l2(R) 

compact, we have: 

KRl
MuuuustK ≤)(4321 2),,,,,( ,   for all  t,s∈[a,b],  u1,u2,u3,u4∈J,   (2.14) 

then the integral equation with modified argument (2.12) has a unique solution x*∈ );( rfB ⊂ C([a,b],l2(R)), 

that can be obtained by the successive approximations method, starting at any element  x0∈ );( rfB ⊂ 
C([a,b],l2(R)). Moreover, if  xn is the n-th successive approximation, then the estimate (2.13) is satisfied. 
 
 
 2.4  Examples 
 

We consider some examples of integral equations with modified argument and systems of integral 
equations with modified argument and using the results that were obtained in the previous paragraphs, we 
will establish some conditions for existence and uniqueness of the solution. 
 
 I. Integral equations with modified argument 
 
 Example 2.4.1. We consider the integral equation with modified argument 
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where K ∈ C([0,1]×[0,1]×R4),  
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+= , 

f ∈ C[0,1],   f(t) = 1 ,  g ∈C([0,1],[0,1]),  g(s) = s/2  and  x∈ C[0,1]. 

 We check the conditions of the theorem 2.1.1 of existence and uniqueness of the solution of equation 
(2.15) in the space C[0,1]. 
 To study the existence and uniqueness of the solution of integral equation (2.15) in the space C[0,1], 
we attach to this equation the operator A : C[0,1] → C[0,1] defined by the relation: 
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 The set of the solutions of integral equation (2.15) in the space C[0,1] coincides with the fixed points 
set of the operator A, i.e. with FA . 

We have: 

 =− ),,,,,(),,,,,( 43214321 vvvvstKuuuustK  
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   for all  t, s∈[0,1],  ui, vi∈R, 4,1=i  , 

hence, the function K satisfies the Lipschitz condition with the constant 
3
1  relative to the third and the fourth 

argument, and with the constant 
9
1  relative to the fifth and the sixth argument. 

 From the estimation of the difference: 
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and using the Chebyshev norm, one obtains 
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hence, it results that the operator A is a contraction with the coefficient 1
9
8 < . 

 The conditions of the theorem 2.1.1 being satisfied, it results that the integral equation (2.15) has a 
unique solution x*∈C[0,1], that can be obtained by the successive approximations method, starting at any 
element x0∈ C[0,1] and if the n-th successive approximation is xn , then the following estimate is satisfied: 
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9
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* xxdxxd
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n −≤  . 

 Next we determine the conditions of existence and uniqueness of the solution of integral equation 
(2.15) in the sphere );1( rB  

},1|]1,0[{);1( ]1,0[ +∈≤−∈= RrrxCxrB
C

 

from the space C[0,1]. 
We consider the integral equation (2.15) where K ∈ C([0,1]×[0,1]×J4), J ⊂ R is compact,  f∈C[0,1]  

and  g ∈C([0,1],[0,1]) and we check the conditions of theorem 2.1.2 of existence and uniqueness of the 
solution of equation (2.15) in the sphere );1( rB ⊂ C[0,1]. 

We attach to the integral equation (2.15) the operator A : );1( rB →C[0,1], defined by the relation 
(2.16), where r is a positive real number which meets the following condition: 
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x∈ );1( rB    ⇒   x(t)∈ J ⊂ R 

and we show that there exists at least one number r > 0 with this property. Thus we have: 

 ]1,0[,1)(]1,0[,1)();1( ∈+≤⇒∈≤−⇒∈ trtxtrtxrBx  

and therefore 
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.       (2.17) 

In what follows, we determine the conditions which ensure that the sphere );1( rB  is an invariant 
subset for the operator A. We have: 
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 Also, for the function K we have 
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So, we have 
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and using the Chebyshev norm we obtain 
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where according to (2.17) we deduce that 
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9
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C
 

and the condition of invariance of the sphere );1( rB ⊂ C[0,1]  is  rr ≤+ )1(
9
8 . 

Therefore, it results that if  r ≥ 8, then the sphere );1( rB  is an invariant subset for the operator A, i.e. 

);1( rB ∈I(A). 

Now, we consider the operator A : );1( rB  → );1( rB , denoted also by A and defined by the same 

relation (2.16); );1( rB  is a closed subset of the Banach space C[0,1]. 

The set of the solutions of integral equation (2.15), in the sphere );1( rB , coincides with the fixed 
points set of the operator A such defined. 

By an analogous reasoning to that of the existence and uniqueness of the solution of integral  
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equation (2.15) in the space C[0,1], it results that the operator A is a contraction with the coefficient 1
9
8 < . 

 The conditions of the theorem 2.1.2 being satisfied, it results that the integral equation (2.15) has a 
unique solution x*∈ );1( rB ⊂ C[0,1], that can be obtained by the successive approximations method, starting 

at any element x0 ∈ );1( rB ⊂ C[0,1], and if xn is the n-th successive approximation, then the following 
estimate is satisfied: 
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 Example 2.4.2. We consider the integral equation with modified argument 
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where K ∈ C([0,1]×[0,1]×R4),  
57

cossin),,,,,( 4321
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+++= , 

f ∈ C[0,1],   f(t) = cost ,  g ∈C([0,1],[0,1]),  g(s) = s/2,  x∈ C[0,1] 

and we check the conditions of the theorem 2.1.2 of existence and uniqueness of the solution of integral 
equation (2.18) in the space C[0,1]. 
 To study the existence and uniqueness of the solution integral equation (2.18) in the space C[0,1], we 
attach to this equation the operator A : C[0,1] → C[0,1], defined by the relation: 
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The set of the solutions of integral equation (2.18), in the space C[0,1], coincides with the fixed 
points set of the operator A, i.e. with FA . 

We have: 
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for all  t, s∈[0,1],  ui, vi∈R, 4,1=i  , and it results that the function K satisfies the condition of Lipschitz with 

the constant 
7
1  relative to the third and the fourth argument, and with the constant 

5
1  relative to the fifth and 

the sixth argument. 
 From the estimation of the difference: 
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and using the Chebyshev norm, one obtains 
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hence, it results that the operator A is a contraction with the coefficient 1
35
24 < . 

 The conditions of the theorem 2.1.1 being satisfied, it results that the integral equation (2.18) has a 
unique solution x*∈C[0,1], that can be obtained by the successive approximations method, starting at any 
element x0∈ C[0,1], and if the n-th successive approximation is xn , then the following estimate is satisfied: 

 ),(
1135

24),( 101
* xxdxxd

n

n

n ⋅
≤ −  . 

 Next we determine the conditions of existence and uniqueness of the solution of integral equation 
(2.18) in the sphere );(cos rtB , 

},cos|]1,0[{);(cos ]1,0[ +∈≤−∈= RrrtxCxrtB
C

 

from the space C[0,1]. 
We consider the integral equation (2.18), where K∈C([0,1]×[0,1]×J4), J ⊂ R is compact,  f∈C[0,1]  

and  g ∈C([0,1],[0,1]) and we check the conditions of the theorem 2.1.2 of existence and uniqueness of the 
solution of integral equation (2.18) in the sphere );(cos rtB ⊂ C[0,1]. 

We attach to the integral equation (2.18) the operator A : );(cos rtB →C[0,1], defined by the relation 
(2.19), where r is a positive real number which meets the condition: 

x∈ );(cos rtB    ⇒   x(t)∈ J ⊂ R , 

and show that there exists at least one number r > 0 with this property. Thus we have: 

 ]1,0[,1)(]1,0[,cos)();(cos ∈+≤⇒∈≤−⇒∈ trtxtrttxrtBx  

and therefore 
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1);(cos ]1,0[ +≤⇒∈ rxrtBx
C

.       (2.20) 

In what follows, we determine the conditions which ensure that the sphere );(cos rtB  is an invariant 
subset for the operator A. We have: 
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 Also, for the function K we have: 
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for all  t, s∈[0,1],  ui, vi∈J, 4,1=i . So, we have: 
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and using the Chebyshev norm we obtain 
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where according to (2.20) we deduce that 

)1(
35
24cos)( ]1,0[ +≤− rtxA

C
 

and the condition of invariance of the sphere );(cos rtB ⊂ C[0,1]  is  rr ≤+ )1(
35
24 . 

Therefore, it results that if  
11
24≥r ,  then the sphere );(cos rtB  is an invariant subset for the operator 

A, i.e. );(cos rtB ∈I(A). 

Now, we consider the operator A : );(cos rtB  → );(cos rtB , which we denote also by A and is 

defined by the same relation (2.19); );(cos rtB  is a closed subset of the Banach space C[0,1]. 

The set of the solutions of integral equation (2.18), in the sphere );(cos rtB ⊂C[0,1], coincides with 
the set of the fixed points of the operator A such defined. 

By an analogous reasoning to that of the existence and uniqueness of the solution of integral 

equation (2.18) in the space C[0,1], it results that the operator A is a contraction with the coefficient 1
35
24 < . 

 The conditions of the theorem 2.1.2 being satisfied, it results that the integral equation (2.18) has a 
unique solution x*∈ );(cos rtB ⊂ C[0,1], that can be obtained by the successive approximations method, 

starting at any element x0 ∈ );(cos rtB ⊂ C[0,1], and if xn is the n-th successive approximation, then the  
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following estimate is satisfied: 

 ),(
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 II. System of integral equations with modified argument 
 

Example 2.4.3. We consider the system of integral equations with modified argument 
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where K∈C([0,1]×[0,1]×R2×R2×R2×R2,R2), 
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f ∈C([0,1],R2),   f (t) = (f1(t), f2(t)),   12)(1 += ttf ,   ttf sin)(2 = , 

g ∈C([0,1],[0,1]),   g(s) = s/2   and   x∈C([0,1], R2), 

and we check the conditions of the theorem 2.2.2 of existence and uniqueness of the solution of the system of 
integral equations (2.21) in the space C([0,1],R2). 
 In order to study the existence and uniqueness of the solution of the system of integral equations 
(2.21) in the space C([0,1],R2), we attach to this system the operator A:C([0,1],R2)→C([0,1],R2) defined by 
the relation: 
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 The set of the solutions of the system of integral equations (2.21), in the space C([0,1],R2), coincides 
with the the fixed points set of the operator A, defined by the relation (2.22). Thus, we have: 
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for all  t, s∈[0,1],  ui, vi∈R2, 4,1=i  , 

and it results that the function K satisfies a generalized Lipschitz condition with respect to the last four 
arguments, with the matrix 
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
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Q ,   Q∈M2×2(R+) 

and therefore, it results that the condition (b6) of the theorem 2.2.2 is met. 
From the estimation of the difference: 
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and using the relation (2.23) and the generalized Chebyshev norm, one obtains 
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hence, the operator A satisfies a generalized Lipschitz condition with respect to the last four arguments, with 

the matrix 
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
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
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, which converges to zero according to theorem 1.3.3. Therefore, the condition (b7) 

of the theorem 2.2.2 is met, i.e. the operator A is a generalized contraction. 
 The conditions of the theorem 2.2.2 being satisfied, it results that the system of integral equations 
with modified argument (2.21) has a unique solution x*∈C([0,1],R2), that can be obtained by the method of 
successive approximations, starting any element x0∈C([0,1], R2), and if xn is the n-th successive 
approximation, then the following estimation is true: 
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 Next, we determine the conditions of existence and uniqueness of the solution of the system of 
integral equations (2.21) in the sphere );( rfB , 
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from the space C([0,1],R2). 
We consider the system of integral equations (2.21), where K∈C([0,1]×[0,1]×J4,R2), J⊂R2 compact, 

f∈C([0,1],R2) and g ∈C([0,1],[0,1]). 
 Now, we check the conditions of the theorem 2.2.4 of existence and uniqueness of the solution of the 
system of integral equations (2.21) in the sphere );( rfB ⊂ C([0,1],R2). 

We attach to the system of integral equations (2.21), the operator A: );( rfB →C([0,1],R2), defined 

by the relation (2.22), where r ∈ 2
+R , satisfies the condition: 

x∈ );( rfB    ⇒   x(t)∈ J ⊂ R2 , 

and we show that there exists at least one r with this property. We have: 
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In what follows, we determine the conditions which ensure that the sphere );( rfB ⊂ C([0,1],R2) is 
an invariant subset for the operator A. 

We have: 
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 Also, for the function K we have 
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for all  t, s∈[0,1],  ui, vi∈J, 4,1=i . 
So, we have 
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and using the generalized Chebyshev norm, one obtains 
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hence, according to (2.24) we deduce that 
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and now, it results the following condition of invariance of the sphere );( rfB ⊂C([0,1],R2): 
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Therefore, if 
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then the sphere );( rfB ⊂C([0,1],R2) is an invariant subset for the operator A, i.e. );( rfB ∈I(A). 

Now, we consider the operator A : );( rfB → );( rfB , which we denote also by A and is defined by 

the same relation (2.22); the sphere );( rfB  is a closed subset of the Banach space (C[0,1],R2). 

The set of the solutions of the system of integral equations (2.21), in the sphere );( rfB ⊂C([0,1],R2), 
coincides with the fixed points set of the operator A such defined. 

By an analogous reasoning to that of the existence and uniqueness of the solution of the system of 
integral equations (2.21) in the space C([0,1],R2), it results that the operator A is a generalized contraction. 
 The conditions of the theorem 2.2.4 being satisfied, it results that the system of integral equations 
(2.21) has a unique solution x*∈ );( rfB ⊂ C([0,1],R2), that can be obtained by the successive approximations 

method, starting at any element x0∈ );( rfB ⊂C([0,1],R2), and if xn is the n-th successive approximation, then 
the following estimate is satisfied: 
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 2.5  Generalization 
 
 We consider the integral equation with modified argument 

 )()|)),((),(,,()( tfdsxsgxsxstKtx += ∫
Ω

Ω∂ ,     t ∈ Ω  ,     (2.25) 

where Ω ⊂ Rm is a bounded domain,  K : Ω × Ω ×Rm×Rm×C(∂Ω,Rm) → Rm,  f : Ω → Rm and Ω→Ω:g . 
This equation is a generalization of the integral equation with modified argument (2.1) and we intend 

to apply the Contraction Principle 1.3.1 and the Perov's theorem 1.3.4, to obtain the existence and 
uniqueness theorems of the solution in the space C( Ω ,Rm) and in the sphere );( rfB ⊂ C( Ω ,Rm). In 
establishing of these results will be useful also, the results given by I.A. Rus in the paper [39]. 
 Let Ω  ⊂ Rm, be a bounded domain. 
 To establish the existence and uniqueness theorems of the solution of equation (2.25) in the space 
C( Ω ,Rm) we reduce the problem of determining these solutions to a fixed point problem. 
 To this end we consider the operator A : C( Ω ,Rm) → C( Ω ,Rm), defined by the relation: 

 )()|)),((),(,,())(( tfdsxsgxsxstKtxA += ∫
Ω

Ω∂  .      (2.26) 

 Observe that the set of the solutions of integral equation (2.25), in the space C( Ω ,Rm), coincides 
with the fixed points set of the operator A defined by the relation (2.26). 
 Applying the Contraction Principle 1.3.1 for the operator A, we obtain the following theorem of 
existence and uniqueness: 
 

Theorem 2.5.1. Suppose that 

 (i)  K ∈C( Ω × Ω ×Rm×Rm×C( Ω∂ ,Rm), Rm),  f ∈C( Ω ,Rm),  ),( ΩΩ∈ Cg ; 

 (ii )  there exists  L > 0 , such that 

≤− ),,,,(),,,,( 321321 vvvstKuuustK ii  

  ( )
),(332211 mmm RCRR

vuvuvuL Ω∂−+−+−≤  

  for all  t, s∈ Ω ,  u1, u2, v1, v2∈Rm ,  u3, v3∈C(∂Ω,Rm), mi ,1= ; 

 (iii )  3·L·mes(Ω)  <  1 . 

Under these conditions, it results that the integral equation (2.25) has a unique solution x*∈ 

C( Ω ,Rm), that can be obtained by the successive approximations method, starting at any element from 
C( Ω ,Rm). Moreover, if x0 is the starting function and xk is the k-th successive approximation, then the 
following estimation is satisfied: 

 ( )
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RCk xx
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Proof. Using the condition (i) we deduce that the operator A is properly defined. 
We check the conditions of the Contraction Principle 1.3.1. First, we show that the operator A is a 

contraction. 
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According to condition (ii ) we have: 

[ ] ≤−≤− ∫
Ω

Ω∂Ω∂ dsysgysystKxsgxsxstKtyAtxA )|)),((),(,,()|)),((),(,,())(())((  

        ( )mRC
yxmesL ,)(3 Ω−⋅Ω⋅⋅≤  

and using the generalized Chebyshev norm, it results that 

 ( ) ( )mm RCRC
yxmesLyAxA ,, )(3)()( ΩΩ −⋅Ω⋅⋅≤−  . 

Therefore, the operator A satisfies the Lipschitz condition with the constant 3·L·mes(Ω). The 
condition (iii ) allows us to apply the Contraction Principle 1.3.1 and so the proof is complete. �  
 

Theorem 2.5.2. Suppose that the following conditions are met: 

 (i)  K ∈C( Ω × Ω ×(J1× . . . ×Jm)×(J1× . . . ×Jm)×C( Ω∂ ,Rm), Rm),  f ∈C( Ω ,Rm), ),( ΩΩ∈ Cg , 
     where  J1 , . . . , Jm ⊂ R  are closed and finite intervals ; 

 (ii )  there exists  L > 0 , such that 

≤− ),,,,(),,,,( 321321 vvvstKuuustK ii ( )
),(332211 mmm RCRR

vuvuvuL Ω∂−+−+−  

  for all  t, s∈ Ω ,  u1,u2,v1,v2∈J1× . . . ×Jm,  u3,v3∈C(∂Ω,Rm), mi ,1= ; 

 (iii )  3·L·mes(Ω)  <  1 . 

If  r  is a positive number such that 

x∈ );( rfB    ⇒   x(t)∈ J1× . . . ×Jm ,      (2.28) 

and the following condition is met: 

 (iv)  MK mes(Ω)  ≤  r ,    (condition of invariance of the sphere );( rfB ), 

where we denote by  MK  a positive constant, such that the function K verifies the inequality: 

Ki MwvustK ≤),,,,(  ,    for all  t, s∈ Ω ,  u, v∈J1× . . . ×Jm,  w∈C(∂Ω,Rm),  (2.29) 

then the integral equation (2.25) has a unique solution x*∈ );( rfB ⊂ C( Ω ,Rm), that can be obtained by the 

successive approximations method, starting at any element from );( rfB , and if  x0  is the starting function 

and  xk  is the k-th successive approximation, then the estimation (2.27) is satisfied. 
 

Proof. According to the condition (i) we deduce that the operator A: );( rfB →C( Ω ,Rm) defined by 
the relation (2.26) is properly defined, and from the condition (iv) and using the relation (2.29) it results that 

( ) );();( rfBrfBA ⊂ , i.e. );( rfB ∈I(A). Now, we will consider the operator A : );( rfB  → );( rfB , also 

denoted by A and defined by the same relation (2.26); the sphere );( rfB  is a closed subset of the Banach 

space C( Ω ,Rm). 
The set of the solutions of integral equation (2.25), in the sphere );( rfB ⊂C( Ω ,Rm), coincides with  
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the fixed points set of the operator A such defined. 
Using the conditions (ii ) and (iii ) we deduce that the operator A: );( rfB → );( rfB , defined by the 

relation (2.26), satisfies the contraction condition with the coefficient 3·L·mes(Ω). 
Now, applying the Contraction Principle 1.3.1, it results the conclusion of theorem and the proof is 

complete. �  
 
To ensure the conditions for applying the Perov's theorem 1.3.4, we consider the generalized 

Chebyshev norm on the space C( Ω ,Rm), defined in chapter 1, by the relation (1.7) 
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and such, we obtain a complete generalized Banach space. 

 Applying the Perov’s fixed point theorem 1.3.4, we obtain: 
 

Theorem 2.5.3. Such that 

 (i)  K ∈C( Ω × Ω ×Rm×Rm×C( Ω∂ ,Rm), Rm),  f ∈C( Ω ,Rm), ),( ΩΩ∈ Cg ; 

(ii )  there exists  Q ∈ Mm×m(R+)  such that 

  ≤−
C

vvvstKuuustK ),,,,(),,,,( 321321 ( )
),(332211 mRCCC

vuvuvuQ Ω∂−+−+−  

for all  t, s∈ Ω ,  u1, u2, v1, v2∈Rm,  u3, v3∈C(∂Ω,Rm) ; 

 (iii )  3·mes(Ω)·Q  is a matrix which converges to null matrix. 

Under these condition, it results that the integral equation (2.25) has a unique solution  x*∈ 

C(Ω ,Rm), that can be obtained by the successive approximations method, starting at any element from 
C(Ω ,Rm). Moreover, if  x0  is the starting element and xk is the k-th successive approximation, then the 
following estimation is true: 

( ) [ ] ( )mm RCm
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RCk xxQmesIQmesxx ,10
1

,
* )(3])(3[ Ω

−

Ω
−⋅⋅Ω⋅−⋅⋅Ω⋅≤−   (2.30) 

 
 Proof. We consider the operator  A: C(Ω ,Rm) → C( Ω ,Rm), defined by the relation (2.26). 
 From the condition (i) we deduce that the operator A is properly defined. 

Note that the set of the solutions of equation (2.25), in the space C(Ω ,Rm), coincides with the fixed 
points set of the operator A, defined above. 

We check the conditions of the Perov's theorem 1.3.4. We show that the operator A is a contraction. 
According to condition (ii ), the function K satisfies a generalized Lipschitz condition with respect to the last 
three arguments, with a matrix Q ∈Mm×m(R+) and therefore we have: 
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and according to the Chebyshev norm on C( Ω ,Rm), defined in chapter 1, by the relation (1.7), the following 
estimate is obtained: 

 ( ) ( )mm RCRC
yxQmesyAxA ,, )(3)()( ΩΩ −⋅⋅Ω⋅≤−  . 

Hence we deduce that the operator A satisfies a generalized Lipschitz condition with respect to the 
last three arguments, with the matrix 3·mes(Ω)·Q ∈Mm×m(R+). From the condition (iii ) it results that the 
operator A is a generalized contraction. 
 Now, the conditions of the Perov's theorem 1.3.4 being satisfied, it results that the integral equation 
with modified argument (2.25) has a unique solution in the space C( Ω ,Rm) and the proof is complete. �  
 

Theorem 2.5.4. Suppose that the following conditions are met: 

 (i)  K ∈C( Ω × Ω ×(J1× . . . ×Jm)×(J1× . . . ×Jm)×C( Ω∂ ,Rm), Rm),  f ∈C( Ω ,Rm), 
    ),( ΩΩ∈ Cg ,  where  J1 , . . . , Jm ⊂ R  are closed and finite intervals ; 

(ii )  there exists  Q ∈ Mm×m(R+)  such that 

≤−
C

vvvstKuuustK ),,,,(),,,,( 321321 ( )
),(332211 mRCCC

vuvuvuQ Ω∂−+−+−  

  for all  t, s ∈ Ω ,  u1, u2, v1, v2∈Rm ,  u3, v3∈C(∂Ω,Rm) ; 

 (iii )  3·mes(Ω)·Q  is a matrix which converges to the null matrix. 

If  r ∈ Mm×1(R+)  is a matrix such that 

x∈ );( rfB    ⇒   x(t)∈ J1× . . . ×Jm ,      (2.31) 

and the following condition is met: 

(iv)  mes(Ω)·MK   ≤  r  (condition of invariance of the sphere );( rfB ) , 

where we denote by 
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∈Mm×1(R+) a matrix with positive constants as elements, such that the 

function K verifies the inequality: 
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KC MwvustK ≤),,,,(  ,   for all  t, s∈ Ω ,  u, v∈J1 × . . . ×Jm,  w∈C(∂Ω,Rm) ,  (2.32) 

then the integral equation (2.25) has a unique solution x*∈ );( rfB ⊂ C( Ω ,Rm), that can be obtained by the 

successive approximations method starting at any element from );( rfB . Moreover, if  x0 is the starting 

element and xk is the k-th successive approximation, then the estimation (2.30) is satisfied. 
 

Proof. We consider the operator A: );( rfB → C( Ω ,Rm) defined by the relation (2.26). Using the 
condition (i) we deduce that the operator A is properly defined. 

The condition (iv) together with the relation (2.29) assures us that the sphere );( rfB ⊂ C( Ω ,Rm) is 

an invariant subset for the operator A, i.e. );( rfB ∈I(A). Now, we consider the operator A : );( rfB  → 

);( rfB , also, denoted by A and defined by the same relation (2.26); );( rfB  is a closed subset of the Banach 

space C( Ω ,Rm). 
The set of the solutions of integral equation (2.25), in the sphere );( rfB ⊂ C( Ω ,Rm), coincides with 

the fixed points set of the operator A such defined. 
From the conditions (ii ) and (iii ) we deduce that the operator A : );( rfB  → );( rfB , defined by the 

relation (2.26), is a contraction with the coefficient 3·L·mes(Ω). 
The conditions of the Contraction Principle 1.3.1 being satisfied, it results that the integral equation 

(2.25) has a unique solution  x*∈ );( rfB ⊂ C( Ω ,Rm), and the proof is complete. �  
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3  Gronwall lemmas and comparison theorems 
 
 
 

The integral inequalities have been studied using both classical theory and the abstract Gronwall's 
lemma. 

From the basic treatises which have as their object of study the integral inequalities based on the 
classical theory, we mention: D. Bainov and P. Simeonov [3], D. Guo, V. Lakshmikantham and X. Liu [13], 
V. Lakshmikantham and S. Leela [14], D. S. Mitrinović, J. E. Pečarić and A. M. Fink [16], B. G. Pachpatte 
[19], R. Precup [21], J. Schröder [36], W. Walter [40] and from the basic treatises, having the integral 
inequalities like theme, obtained using the abstract Gronwall's lemma, we mention: Sz. András [2], Gh. 
Coman, I. Rus, G. Pavel and I. A. Rus [6], S. S. Dragomir [12], V. Mureşan [18], I. A. Rus [22], [23], [27], 
[32], M. A. Şerban [37]. 

Also, we mention some of the articles that contain Gronwall type integral inequalities: Sz. András 
[1], P. R. Beesak [4], A. Buică [5], A. Constantin [7], C. Crăciun [8], N. Lungu and I. A. Rus [15], I. A. Rus 
[24], [25], [26], [28], [29], [30], [31], [33], [34], [35], V. Mureşan [17], A. Petruşel and I. A. Rus [20], M. A. 
Şerban [38], M. A. Şerban, I. A. Rus and A. Petruşel [39], M. Dobriţoiu [9], [11], M. Dobriţoiu, I. A. Rus 
and M. A. Şerban [10], M. Zima [41]. 

In this chapter, divided into three paragraphs, we use the Picard operators technique for integral 
equations, the abstract Gronwall's lemma 1.4.1 and the abstract comparison lemma 1.4.5 to establish some 
comparison theorems and integral inequalities concerning the solution of the integral equation with modified 
argument (2.1). These results are given in the first two paragraphs of this chapter. 

Note that in establishing these integral inequalities and comparison theorems, some results from the 
following treatises, were useful: Gh. Coman, I. Rus, G. Pavel and I. A. Rus [6], I. A. Rus [22], [27], [32], M. 
A. Şerban [37], Sz. András [2]. Also, the results given by I. A.Rus in the paper [33] were usefull. 

In the third paragraph three applications of the theorems 3.1.1, 3.1.2 and 3.2.2, established in the first 
two paragraphs, are given. 
 The results presented in this chapter have been obtained by the author, and published in [9] and [11]. 
We present them below. 
 
 3.1  Gronwall lemmas 
 

Let (B,+,R,|·|) be an ordered Banach space. We consider the integral equation with modified 
argument (2.1) 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()(  

where  K : [a,b]×[a,b]× B4 → B,  f : [a,b] → B,  g : [a,b] → [a,b]. 
 
 Theorem 3.1.1. Suppose that the following conditions are met: 

(i) K∈C([a,b]×[a,b]×B4, B),  f∈C([a,b],B),  g∈C([a,b], [a,b]); 

(ii ) K(t, s, ⋅, ⋅, ⋅, ⋅)  is increasing for all t, s∈[a,b] ; 
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(iii ) there exists  LK > 0  such that 

  K(t, s, u1, u2, u3, u4) – K(t, s, v1, v2, v3, v4)  ≤ 

≤  LK (u1–v1+u2–v2)+u3–v3)+u4–v4)), 

for all  t, s∈[a,b],  ui, vi∈B , 4,1=i  ; 

(iv)  4Lk (b – a) < 1 

and let  x*∈C([a,b],B)  be the unique solution of the integral equation with modified argument (2.1). Under 
these conditions it results that: 

(a) if x∈C([a,b],B) is a lower-solution of the integral equation (2.1), then x ≤ x*. 

(b) if x∈C([a,b],B) is an upper-solution of the integral equation (2.1), then x ≥ x*. 
 
 Proof. We consider the operator A : C([a,b],B) → C([a,b],B) defined by the relation (2.3) 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtxA )())(),()),((),(,,(:))(( ,     t∈[a,b]. 

The conditions of the theorem 2.1.1 being satisfied (hypothesis (i), (iii ) and (iv)), it results that the 
integral equation (2.1) has a unique solution in the space C([a,b],B), that we denote by x*. 

From the condition (ii ) it results that the operator A is increasing. 
Now, we apply the abstract Gronwall's lemma 1.4.1 and it results that the following two 

implications are true: 

x ≤ A(x)     ⇒     x ≤ x* 

x ≥ A(x)     ⇒     x ≥ x* 

or explicitly 

x ≤ A(x)     ⇒     ∫ +≤
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( **** ,     t∈[a,b] 

x ≥ A(x)     ⇒     ∫ +≥
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( **** ,     t∈[a,b]. 

and the proof is complete. �  
 

Remark 3.1.1. The theorem 3.1.1 remains true in the particular cases  B = R,  B = Rm  and  B = l2(R), 
if we replace the conditions (i), (iii ) and (iv) with certain conditions that ensure the existence and uniqueness 
of the solution of the integral equation with modified argument (2.1) in the spaces C[a,b], C([a,b],Rm) and 
C([a,b],l2(R)) respectively. We present these results in the cases B = Rm  and  B = l2(R). 

 
In the particular case B = Rm , for the system of integral equations with modified argument (2.6) 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( ,     t∈[a,b] , 

or 
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∫

∫

∫
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a
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b

a
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tfdsbxaxsgxsxstKtx

tfdsbxaxsgxsxstKtx

)())(),()),((),(,,()(

.................................................................

)())(),()),((),(,,()(

)())(),()),((),(,,()(

222

111

   ,     t∈[a,b] , 

where  x : [a,b] → Rm,  K : [a,b]×[a,b]×Rm×Rm×Rm×Rm →Rm,  g : [a,b] → [a,b]  and  f : [a,b] → Rm,  we 
have: 
 
 Theorem 3.1.2. Suppose that the following conditions are met: 

(i’ ) K∈C([a,b]×[a,b]×Rm×Rm×Rm×Rm, Rm),  f∈C([a,b], Rm),  g∈C([a,b], [a,b]); 

(ii ) K(t, s, ⋅, ⋅, ⋅, ⋅)  is increasing  for all t, s∈[a,b] ; 

(iii’ )  there exists  Q∈Mm×m(R+)  such that 

≤−
C

vvvvstKuuuustK ),,,,,(),,,,,( 43214321  

( )
CCCC

vuvuvuvuQ 44332211 −+−+−+−⋅≤  

 for all  t, s∈[a,b],  ui, vi∈Rm , 4,1=i  ; 

(iv’ )  [4(b – a)Q]n → 0   as   n → ∞ 

and let  x*∈C([a,b],Rm)  be the unique solution of the system of integral equations with modified argument 
(2.6). 

Under these conditions it results that: 

(a)  if x∈C([a,b],Rm) is a lower solution of the system of integral equations (2.6), then  x ≤ x*, i.e. 

     ∫ +≤
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( **** . 

(b)  if x∈C([a,b],Rm) is an upper solution of the system of integral equations (2.6), then  x ≥ x*, i.e. 

     ∫ +≥
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( **** . 

 
In the particular case B = l2(R), for the Fredholm integral equation with modified argument (2.12) (or 

(2.12’)) 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( ,     t∈[a,b] , 

or 
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tfdsbxaxsgxsxstKtx

tfdsbxaxsgxsxstKtx

   ,     t∈[a,b] , 

where  x : [a,b] →l2(R),  K : [a,b]×[a,b]×l2(R)×l2(R)×l2(R)×l2(R) → l2(R),  g : [a,b]→[a,b]  and  f : [a,b] → 
l2(R),  we have: 

 Theorem 3.1.3. Suppose that the following conditions are met: 

(i’ )  K∈C([a,b]×[a,b]×l2(R)×l2(R)×l2(R)×l2(R), l2(R)),  f∈C([a,b],l2(R)),  g∈C([a,b],[a,b]); 

(ii ) K(t, s, ⋅, ⋅, ⋅, ⋅)  is increasing  for all t, s∈[a,b] ; 

(iii’ ) there exists  0>KL ,  such that 

≤− )(43214321 2),,,,,(),,,,,(
Rl

vvvvstKuuuustK  

( )
)(44)(33)(22)(11 2222 RlRlRlRlK vuvuvuvuL −+−+−+−≤  

for all  t, s∈[a,b],  uj, vj∈l2(R), 4,1=j  ; 

(iv’ )  1)(4 <− abLK  

and let  x*∈C([a,b],l2(R))  be the unique solution of the integral equation with modified argument (2.12). 
Under these conditions it results that: 

(a) if  x∈C([a,b],l2(R)) is a lower-solution of the integral equation (2.12), then x ≤ x*. 

(b) if  x∈C([a,b],l2(R)) is an upper-solution of the integral equation (2.12), then x ≥ x*. 
 

Next, we apply the theorem 1.4.7, given by Sz. András in [2], to the operator defined by using the 
integral equation (2.1) and we establish an integral inequality. 

To ensure the conditions for the applicability of theorem 1.4.7 (Sz. András [2]), we assume that the 
functions  K : [a,b]×[a,b]× J4→ R+,  J ⊂ R  is a compact interval,  f : [a,b] → R+ and g : [a,b]→[a,b], are 
continuous. 

Then we obtain the following theorem. 
 
 Theorem 3.1.4. If the following conditions are met: 

(i) K∈C([a,b]×[a,b]×J4, R+), J⊂R is a compact interval, f∈C([a,b],R+), g∈C([a,b],[a,b]); 

(ii )  MK (b – a) ≤ r,  where MK is a positive constant, such that for the restriction 4],[],[
|

Jbaba
K

××
,  J ⊂ 

R  compact interval, we have: 

|K(t,s,u1,u2,u3,u4)|  ≤  MK ,   for all t,s∈[a,b],  u1,u2,u3,u4∈J;   (3.1) 
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(iii )  there exists  LK > 0  such that 

  K(t, s, u1, u2, u3, u4) – K(t, s, v1, v2, v3, v4)  ≤ 

≤  LK (u1–v1+u2–v2)+u3–v3)+u4–v4)), 

for all  t, s∈[a,b],  ui, vi∈J, 4,1=i  ; 

 (iv)  1)(4 <− abLK  , 

then the following inequality 

 
],[)()(

baCf xxAMrtx −++≤ β  ,   t∈[a,b],  β ∈(0,1) , 

implies 

 x(t)  ≤  x*(t),   for all  t∈[a,b] , 

where  x* is the unique solution of the integral equation (2.1) ), in the sphere );( rfB ⊂ C[a,b], and Mf  is a 

positive constant such that 

 fMtf ≤)( ,   t∈[a,b] .         (3.2) 

 
Proof. We consider the operator  A : );( rfB → );( rfB , );( rfB ⊂ C[a,b],  defined by the relation: 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtxA )())(),()),((),(,,(:))(( ,     t∈[a,b] . 

 From the conditions (i), (ii ), (iii ), (iv) and since the functions  K  and  f are positive, it results that the 
operator A is an increasing Picard operator and we have: 

=+−=+ ))(())(()1())(())(( 22 txAtxAtxAtxA βββα  

[ ] [ ] =−+=−+= ))(()))((())(())(())(())(( 2 txAtxAAtxAtxAtxAtxA ββ  

  ∫ ++=
b

a

tfdsbxaxsgxsxstK )())(),()),((),(,,(  

  



−++ ∫

b

a

tfdsbxAaxAsgxAsxAstK )()))((),)(()),()((),)((,,(β  

=



−− ∫

b

a

tfdsbxaxsgxsxstK )())(),()),((),(,,(  

++= ∫ )())(),()),((),(,,( tfdsbxaxsgxsxstK
b

a

 

[ ] ≤−+ ∫ dsbxaxsgxsxstKbxAaxAsgxAsxAstK
b

a

))(),()),((),(,,()))((),)(()),()((),)((,,(β  

∫ ++≤
b

a

tfdsbxaxsgxsxstK )())(),()),((),(,,(  
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≤−+ ∫ dsbxaxsgxsxstKbxAaxAsgxAsxAstK
b

a

))(),()),((),(,,()))((),)(()),()((),)((,,(β  

where  α, β ∈(0,1)  and  α + β = 1. According to relations  (3.1), (3.2) and to condition (iii ) it results that 

(∫ +−++−≤+
b

a
KfK sxsxALMabMtxAtxA )())(()())(())(( 2 ββα  

)dsbxbxAaxaxAsgxsgxA )())(()())(())(())()(( −+−+−+ . 

 From the condition (ii ) of invariance of the sphere );( rfB ⊂ C[a,b] and using the Chebyshev norm 
in the right side, we obtain: 

],[
2 )()(4))(())((

baCKf xxAabLMrtxAtxA −−++≤+ ββα  , 

and according to condition (iv) of contraction of the operator A, it results that 

],[
2 )())(())((

baCf xxAMrtxAtxA −++≤+ ββα  . 

Now, applying the theorem 1.4.7 (Sz. Andras [2]) it results that  x(t) ≤ x*(t), for any t∈[a,b] and the 
proof is complete. �  
 
 
 3.2  Comparison theorems 
 
 Consider the integral equation with modified argument (2.1) corresponding to functions  Ki  and  fi ,  
i = 1, 2 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( 11 ,     t∈[a,b]    (3.3) 

and 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( 22 ,     t∈[a,b] ,    (3.4) 

where  K1 , K2 : [a,b]×[a,b]× B4→ B,  f1, f2 : [a,b] → B,  g : [a,b] → [a,b]. 
 
 Theorem 3.2.1. If the following conditions are met: 

(i)  Ki ∈C([a,b]×[a,b]×B4, B),  fi ∈C([a,b],B),  i = 1, 2  and  g∈C([a,b], [a,b]); 

(ii )  u1 ≤ v1 ,  u2 ≤ v2 ,  u3 ≤ v3 ,  u4 ≤ v4   ⇒   K1(t,s,u1,u2,u3,u4)  ≤  K2(t,s,v1,v2,v3,v4); 

(iii )  there exists  Li > 0 ,  i = 1,2  such that 

  Ki (t, s, u1, u2, u3, u4) – Ki (t, s, v1, v2, v3, v4)  ≤ 

≤  Li (u1 – v1+u2 – v2+u3 – v3+u4 – v4) , 

for all  t, s∈[a,b],  uj, vj∈B , 4,1=j  ; 

(iv)  4Li (b – a) < 1 ,   i = 1, 2 
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and denote by  x*, *x  respectively, the unique solution of the integral equation (3.3), and (3.4) respectively, 
then the following inequality is true: 

  )(* tx   ≤  )(* tx ,   for all t∈[a,b] . 
 
 Proof. We consider the operators  Ai : C([a,b],B) → C([a,b],B), i = 1,2, defined by the relations: 

 ∫ +=
b

a
iii tfdsbxaxsgxsxstKtxA )())(),()),((),(,,(:))(( ,     t∈[a,b],  i = 1,2 

and the functions  x0  and  0x ∈ C([a,b],B),  x0(t) ≤ )(0 tx , for any t∈[a,b]. 
 The successive approximations sequences corresponding to the operators A1 and A2 will be 

  xn+1 = A1(xn) ,     )(21 nn xAx =+ ,  for  n ∈ N. 

From the conditions (i), (iii ) and (iv) it results that the sequences Nnnx ∈)(  and Nnnx ∈)(  respectively, 

converge to x* and to *x  respectively, and from the condition (ii ) it results that the following inequality is 
true: 

  )(txn  ≤ )(txn ,   for all t∈[a,b]  and  n ∈ N. 

 The inequality from the conclusion of the theorem is obtained when n → ∞. 
The proof is complete. �  
 
 Now, we consider the integral equation with modified argument (2.1), corresponding to the functions  
Ki  and  fi ,  i = 1, 2, 3 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( 11 ,     t∈[a,b] ,    (3.5) 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( 22 ,     t∈[a,b] ,    (3.6) 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( 33 ,     t∈[a,b] .    (3.7) 

 
 Theorem 3.2.2. Suppose that the functions Ki,  fi, i = 1, 2, 3 and g satisfy the following conditions: 

(i)  Ki ∈C([a,b]×[a,b]×B4, B),  fi ∈C([a,b],B),  i = 1, 2, 3  and  g∈C([a,b], [a,b]) ; 

(ii )  K2(t, s, ⋅, ⋅, ⋅, ⋅)  is increasing for all t, s∈[a,b] ; 

(iii )  K1  ≤  K2  ≤  K3   and   f1  ≤  f2  ≤  f3 ; 

(iv)  there exists  Li > 0 ,  i = 1, 2, 3  such that 

  Ki(t, s, u1, u2, u3, u4) – Ki(t, s, v1, v2, v3, v4)  ≤ 

≤  Li (u1 – v1+u2 – v2)+u3 – v3)+u4 – v4)) , 

for all  t, s∈[a,b],  uj, vj∈B, 4,1=j  ; 

(v)  4Li (b – a) < 1 ,   i = 1, 2, 3 . 
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If we denote by *1x , *
2x  and *

3x  respectively, the unique solution of the integral equation (3.5), (3.6) 
and (3.7) respectively, then 

  *
1x   ≤  *

2x   ≤  *
3x  . 

 
 Proof. We consider the operators  Ai : C([a,b],B) → C([a,b],B),  i = 1, 2, 3, defined by the relations: 

 ∫ +=
b

a
iii tfdsbxaxsgxsxstKtxA )())(),()),((),(,,(:))(( ,     t∈[a,b],  i = 1, 2, 3. 

From the conditions (i) (iv) and (v) it results that the operators Ai are αi–contractions with the 
coefficients αi =4Li·(b–a), i=1, 2, 3 and therefore they are Picard operators. According to the Contraction 
Principle 1.3.1, it results that every of the integral equations (3.5), (3.6) and (3.7) has a unique solution in the 
space C([a,b],B) and we denote these solutions by *

ix ,  i = 1, 2, 3. 
 From the conditions (ii ) it results that A2 is an increasing operator, and from the condition (iii ) it 
results that  A1 ≤ A2 ≤ A3 . 
 The conditions of the abstract comparison lemma 1.4.5 being satisfied, it results that the following 
implication is true: 

 321 xxx ≤≤  ⇒ )()()( 332211 xAxAxA ∞∞∞ ≤≤  , 

and A1 , A2 , A3 are Picard operators and according to the remark 1.4.2 we obtain 

 *
3

*
2

*
1 xxx ≤≤  

and the proof is complete. �  
 
 
 3.3  Examples 
 
 In this paragraph we give three examples: two integral equations with modified argument and a 
system of integral equations with modified argument, and we will verify the conditions of some Gronwall 
type lemmas and comparison theorems respectively, of the first two paragraphs. 
 
 Example 3.3.1. We consider the integral equation with modified argument (the case B =R) 

60
17

14
13)1(

5
1)0(

7
1

2
1

5
)(

7
)(

1

0
−+








++







 ++= ∫ tdsxx
s

x
s

sx
t

tx ,     ]1,0[∈t    (3.8) 

where K ∈ C([0,1]×[0,1]×R4),  43214321 5
1

7
1

57
),,,,,( uuu

s
u

t
uuuustK +++=  , 

f ∈ C[0,1],  f(t) = 
60
17

14
13 −t ,  g ∈C([0,1],[0,1]) ,  g(s) = 

2
1+s   and  x∈ C[0,1]. 

The solution of this integral equation is  x*(t) = t ,  t∈[0,1]. 
 We attach to this equation, the operator A : C[0,1] → C[0,1], defined by the relation: 
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60
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13)1(

5
1)0(

7
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7
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−+







++




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

 ++= ∫ tdsxx
s

x
s

sx
t

txA , ]1,0[∈t .  (3.9) 

The set of the solutions of integral equation (3.8), in the space C[0,1], coincides with the fixed points 
set of the operator A, defined above. 

Since the function K satisfies the Lipschitz condition with the constant 
7
1  relative to the third and the 

fifth argument respectively, and with the constant 
5
1  relative to the fourth and the sixth argument 

respectively, it results that the operator A is a contraction with the coefficient 
35
24=α  and therefore A is a 

Picard operator. 
According to theorem 2.1.1, in the particular case B=R, it results that the integral equation (3.8) has a 

unique solution x*∈C[0,1]. This solution is x*(t) = t,  t∈[0,1]. 
Since the function K(t, s, ⋅, ⋅, ⋅, ⋅) is increasing for any  t, s∈[a,b], it results that the conditions of the 

theorem 3.1.1 are met (the case B=R) and the following integral inequalities are true: 
- if  x ∈C[0,1] is a lower-solution of the integral equation (3.8), then 
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
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 ++≤ ∫ tdsxx
s

x
s

sx
t

tx  ,     ]1,0[∈t ; 

- if  x ∈C[0,1] is an upper-solution of the integral equation (3.8), then 
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 Example 3.3.2. We consider the system of integral equations with modified argument (the case B = 
R2) 
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   (3.10) 

where K∈C([0,1]×[0,1]×R2×R2×R2×R2, R2), 

( )),,,,,(,),,,,,(),,,,,( 43212432114321 uuuustKuuuustKuuuustK = , 

4131211143211 5
1

5
1

15
12

15
2),,,,,( uuu

t
u

t
uuuustK +++++=  , 

4232221243212 7
1

7
1

21
12

21
2),,,,,( uuu

t
u

t
uuuustK +++++=  , 

f∈C([0,1], R2),  f (t) = (f1(t), f2(t)),  12)(1 += ttf ,  ttf =)(2 , 
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g∈C([0,1],[0,1]),  g(s) = s/2  and  x∈C([0,1],R2). 

We attach to this system of integral equations the operator A : C([0,1],R2) → C([0,1],R2), defined by 
the relation: 
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   (3.11) 

The set of the solutions of the system of integral equations (3.10), in the space C([0,1],R2), coincides 
with the fixed points set of the operator A, i.e. with FA . 

The operator A satisfies a generalized Lipschitz condition with the matrix 









=

7/40
05/4

Q ,  Q ∈ M2×2(R+), 

which according to theorem 1.3.3, converges to zero and therefore, it results that the operator A is a 
generalized contraction with the matrix Q. 

Now, the conditions of the theorem 2.2.2 being satisfied it results that the system of integral 
equations (3.10) has a unique solution x*∈ C([0,1],R2). 

Since the function K(t,s,·,·,·,·) is increasing for any t, s∈[0,1], it results that the conditions of the 
theorem 3.1.2 are met and the following integral inequalities are true: 

– if x ∈C([0,1],R2) is a lower solution of the system of integral equations (3.10), then 
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– if x ∈C([0,1],R2) is an upper-solution of the system of integral equations (3.10), then 
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Example 3.3.3. We consider the integral equations with modified argument (the case B =R) 
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where K1 , K2 , K3 ∈ C([0,1]×[0,1]×R4), 
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f1 , f2 , f3 ∈ C[0,1],     f1(t) = 
5
1

32
27 +t  ,     f2(t) = 

28
33

24
17 +t  ,     f3(t) = 

144
179+t  , 

g ∈C([0,1],[0,1]),   g(s) = 
2

1+s    and   x∈ C[0,1]. 

The solutions of the integral equations (3.12), (3.13) and (3.14) respectively, are ttx =)(*
1 , 

1)(*
2 += ttx  and 2)(*

3 += ttx  respectively, for t ∈[0,1]. 
 We attach to these integral equations, the operators A1 , A2 , A3 : C[0,1] → C[0,1], defined by the 
relations: 
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The function K1 satisfies the Lipschitz condition with the constant 
8
1  relative to the third and the 

fourth argument respectively, and with the constant 
5
1  relative to the fifth and the sixth argument 

respectively, and therefore the operator A1 is a contraction with the coefficient 
20
13

1 =α . 

The function K2 satisfies the Lipschitz condition with the constant 
6
1  relative to the third and the 

fourth argument respectively, and with the constant 
7
1  relative to the fifth and the sixth argument 
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respectively, and therefore the operator A2 is a contraction with the coefficient 
21
13

2 =α . 

The function K3 satisfies the Lipschitz condition with the constant 
4
1  relative to the third and the 

fourth argument respectively, and with the constant 
9
1  relative to the fifth and the sixth argument 

respectively, and therefore the operator A3 is a contraction with the coefficient 
18
13

3 =α . 

Therefore, A1 , A2 , A3 are Picard operators. According to theorem 2.1.1, in the particular case B = R, 
it results that the integral equations (3.12), (3.13) and (3.14) have the unique solutions *

1x , *
2x  and 

*
3x ∈C[0,1] respectively, and therefore the solutions of these equations are 

ttx =)(*
1 ,   1)(*

2 += ttx    and   2)(*
3 += ttx  respectively,  t ∈[0,1]. 

Since the function K2(t, s, ⋅, ⋅, ⋅, ⋅)  is increasing for any  t, s∈[0,1], it results that A2 is an increasing 
operator. 

Also, between the functions  K1 , K2 , K3  and  f1 , f2 , f3  respectively, there are the relations 

K1  ≤  K2  ≤  K3     and     f1  ≤  f2  ≤  f3  respectively. 

 Since the conditions of the theorem 3.2.2. are met, it results that 

  *
1x   ≤  *

2x   ≤  *
3x  , 

what is observed, also, in 

  t  ≤  t + 1  ≤  t + 2 ,   for all t∈[0,1] . 
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4  Data dependence 
 
 
 

The data dependence was studied both by direct methods and abstract methods. We mention several 
of the basic treatises which have the data dependence like theme, studied by direct methods: D. V. Ionescu 
[13], Gh. Marinescu [15], C. Corduneanu [4], A. Haimovici [12], Șt. Mirică [16], and by abstract methods: P. 
Pavel and I. A. Rus [19], V. Mureşan [17], [18], I. A. Rus [22], [25], [32], I. A. Rus, A. Petruşel and G. 
Petruşel [34], M. A. Şerban [40], V. Berinde [3], Sz. András [2]. 

We mention, also, several of the articles which contain the data dependence results: I. A. Rus [23], 
[24], [26], [27], [29], [30], [31], [33], [35], [37], I. A. Rus and S. Mureşan [28], I. A. Rus, S. Mureşan and V. 
Mureşan [36], R. Precup [21], R. Precup and E. Kirr [20], E. Kirr [14], M. Dobriţoiu, I. A. Rus and M. A. 
Şerban [10], M. A. Şerban [39], [41], M. A. Şerban, I. A. Rus and A. Petruşel [42], J. Sotomayor [38], Sz. 
András [1], M. Dobriţoiu [5], [6]. 

In this chapter, divided into four paragraphs, we study the data dependence of the solution of the 
integral equation (2.1) and the differentiability of the solution of this equation with respect to a and b and 
with respect to a parameter, respectively. 

In the first three paragraphs theorems of the data dependence of the solution and theorems of the 
differentiability of the solution with respect to a parameter, are given. It also gives a theorem of data 
dependence of the solution of the system of integral equations with modified argument (2.6). For establishing 
of these results were useful the following theorems: the abstract data dependence theorem 1.3.5 and some of 
the results of I. A. Rus in the papers [29], [31], [33] and [35]. 

In the paragraph 4 three examples are treated, two integral equations with modified argument and a 
system of integral equations with modified argument; the first two examples are applications of the theorems 
4.1.1 and 4.1.3 respectively, and the third example is an application of the theorem 4.2.1. 

The results presented in this chapter were obtained by the author and they were published in the 
papers [7], [8], [9] and [11]. 
 
 

4.1  Continuous data dependence 
 
 A. Data dependence of the solution of the integral equation with modified argument 
 

Consider the integral equation with modified argument (2.1) 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( ,     t∈[a,b] , 

and the perturbed integral equation 

 )())(),()),((),(,,()( thdsbyaysgysystHty
b

a

+= ∫ ,     t∈[a,b] ,    (4.1) 

where  K, H : [a,b]×[a,b]×B4 →B,  f, h : [a,b] →B,  g : [a,b] → [a,b],  and  (B,+,R,|·|) is a Banach space. 
We have the following theorem of continuous data dependence of the solution of integral equation 

(2.1). 
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Theorem 4.1.1. Suppose that 

(i)  the conditions of the theorem 2.1.1 of existence and uniqueness of the solution of the 

     integral equation (2.1) in the space C([a,b],B) are fulfilled and we denote by x*∈C([a,b],B) 
     the unique solution of this equation; 

(ii )  H∈C([a,b]×[a,b]×B4,B)  and  h∈C([a,b],B); 

(iii )  there exists  η1, η2 > 0  such that 

  K(t,s, u1,u2,u3,u4) – H(t,s,u1, u2,u3, u4) ≤ η1, 

for all  t, s∈[a,b], u1, u2, u3, u4∈B 

and 

f(t) – h(t) ≤ η2,   for all  t∈[a,b] . 

 Under these conditions, if  y*∈C([a,b],B) is a solution of the integral equation (4.1), then the 
following estimate is true: 

)(41
)( 21

)],,[(
**

abL

ab
yx

K
BbaC −−

+−≤− ηη  .       (4.2) 

 
 Proof. We consider the operator from the proof of theorem 2.1.1, A: C([a,b],B) → C([a,b],B), 
attached to integral equation (2.1) and defined by the relation (2.3): 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtxA )())(),()),((),(,,(:))(( ,     t∈[a,b] . 

Now we attach to the perturbed integral equation (4.1) the operator D: C([a,b],B) → C([a,b],B), 
defined by the relation: 

)())(),()),((),(,,(:))(( thdsbyaysgysystHtyD
b

a

+= ∫ ,     t∈[a,b] .   (4.3) 

Using the condition (ii ) and the condition (a3) from the theorem 2.1.1, we deduce that the operator D 
is correctly defined. 

The set of the solutions of the perturbed integral equation (4.1), in the space C([a,b],B), coincides 
with the fixed points set of the operator D defined by the relation (4.3). We have: 

 −+=− ∫ )())(),()),((),(,,())(())(( tfdsbxaxsgxsxstKtxDtxA
b

a

 

  ≤−− ∫ )())(),()),((),(,,( thdsbxaxsgxsxstH
b

a

 

  [ ] +−≤ ∫ dsbxaxsgxsxstHbxaxsgxsxstK
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  +−≤ ∫
b

a

dsbxaxsgxsxstHbxaxsgxsxstK ))(),()),((),(,,())(),()),((),(,,(  

)()( thtf −+  , 

and according to condition (iii ) it results that: 

21 )())(())(( ηη +−≤− abtxDtxA ,   for all  t∈[a,b]. 

Now, using the Chebyshev norm we obtain: 

 21)],,[( )()()( ηη +−≤− abxDxA BbaC  .      (4.4) 

We apply the abstract theorem of data dependence 1.3.5, and it results the estimate (4.2). The proof 
is complete. �  
 

Next we consider the perturbed integral equation: 

)())(),()),((),(,,()( tfdsbyaysgysystHty
b

a

+= ∫ ,     t∈[a,b] ,    (4.5) 

where  H : [a,b]×[a,b]×J4 →B,  f : [a,b] → B,  g : [a,b] → [a,b],  (B,+,R,|·|) is a Banach space and J ⊂ B is 
compact. 

We denote by MH a positive constant such that for the restriction 4],[],[| Jbaba
H ×× , J ⊂ B compact, 

we have: 

|H(t,s,u1,u2,u3,u4)|  ≤  MH ,   for all t, s ∈ [a,b],  u1, u2, u3, u4∈J.    (4.6) 
 

Theorem 4.1.2. Suppose that 

(i)  the conditions of the theorem 2.1.2 of existence and uniqueness of the solution of the 

     integral equation (2.1) in the sphere );( rfB ⊂ C([a,b],B) are fulfilled and we denote by 

     x*∈ );( rfB  the unique solution of this equation ; 

(ii ) H∈C([a,b]×[a,b]×J4, B), J ⊂ B compact ; 

(iii )  MH (b – a) ≤ r ; 

(iv)  there exists  η > 0  such that 

  K(t,s, u1,u2,u3, u4) – H(t,s, u1,u2, u3,u4) ≤ η , 

for all t, s ∈ [a,b], u1, u2, u3, u4∈J . 

 Under these conditions, if  y*∈ );( rfB ⊂ (C[a,b],B)  is a solution of the integral equation (4.5), then 
the following estimate is true: 
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 Proof. We consider the operator from the proof of theorem 2.1.2,  A: );( rfB  → );( rfB , attached to 
integral equation (2.1) and defined by the relation (2.3): 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtxA )())(),()),((),(,,(:))(( ,     t∈[a,b]. 

We attach to the perturbed integral equation (4.5) the operator D: );( rfB  → C([a,b],B), defined by 
the relation: 

)())(),()),((),(,,(:))(( tfdsbyaysgysystHtyD
b

a

+= ∫ ,     t∈[a,b] .   (4.8) 

Using the condition (iii ) it results that the sphere );( rfB  is an invariant subset for the operator D, 

i.e. );( rfB ∈I(D), and now, we can consider the operator, also denoted by D, D : );( rfB  → );( rfB and 
defined by the same relation (4.8). 

Using the condition (ii ) and the conditions (a2) and (a3) from the theorem 2.1.2, we deduce that the 
operator D is correctly defined. 

The set of the solutions of the perturbed integral equation (4.5), in the sphere );( rfB ⊂ C([a,b],B), 
coincides with the fixed points set of the operator D defined by the relation (4.8). We have: 

 −+=− ∫ )())(),()),((),(,,())(())(( tfdsbxaxsgxsxstKtxDtxA
b

a

 

  =−− ∫
b

a

tfdsbxaxsgxsxstH )())(),()),((),(,,(  

 [ ] ≤−= ∫ dsbxaxsgxsxstHbxaxsgxsxstK
b

a

))(),()),((),(,,())(),()),((),(,,(  

  ∫ −≤
b

a

dsbxaxsgxsxstHbxaxsgxsxstK ))(),()),((),(,,())(),()),((),(,,(  , 

and according to condition (iv) we deduce that: 

)())(())(( abtxDtxA −≤− η ,   for all  t∈[a,b] 

 Using the Chebyshev norm we obtain: 

 )()()( abxDxA C −≤− η  .        (4.9) 

We apply the abstract theorem of data dependence 1.3.5, and it results the estimate (4.7). �  
 
 B. Data dependence of the solution of a system of integral equations with modified argument 
 
 In the particular case B = Rm, we consider the system of integral equations with modified argument 
(2.6) or (2.6’): 
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   ,     t∈[a,b] , 

where K : [a,b]×[a,b]×Rm×Rm×Rm×Rm → Rm,  f : [a,b] → Rm ,  g : [a,b] → [a,b] . 
To study the dependence of the solution of the system of integral equations (2.6) with respect to the 

functions K  and  f, we consider the perturbed system: 

 ∫ +=
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a

thdsbyaysgysystHty )())(),()),((),(,,()( ,     t∈[a,b]    (4.10) 

or 
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   ,     t∈[a,b]   (4.10’) 

where H : [a,b]×[a,b]×Rm×Rm×Rm×Rm → Rm ,  h : [a,b] → Rm ,  g : [a,b] → [a,b]. 
We have the following theorem of continuous data dependence for the solution of of the system of 

integral equations (2.6). 
 

Theorem 4.1.3. Suppose that 

(i)  the conditions of theorem 2.2.2 of existence and uniqueness of the solution of the system 
     of integral equations (2.6) in the space C([a,b],Rm) are fulfilled and we denote by 

      x*∈C([a,b],Rm) the unique solution of this system ; 

(ii )  H ∈ C([a,b]×[a,b]×Rm×Rm×Rm×Rm, Rm)  and  h ∈ C([a,b],Rm) ; 

(iii )  there exists  T1, T2 ∈ Mm×1(R+)  such that 

  143214321 ),,,,,(),,,,,( TuuuustHuuuustK
C

≤−  , 

for all  t, s∈[a,b],  u1, u2, u3, u4∈Rm 

and 
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  2)()( Tthtf
C

≤−  ,   for all  t∈[a,b] . 

 Under these conditions, if  y*∈C([a,b],Rm) is a solution of the system of integral equations (4.10), 
then the following estimate is true: 

 ( )[ ] [ ]21
1** )(4 TTabQabIyx mC

+−−−≤− −  .     (4.11) 

 
 Proof. We consider the operator from the proof of theorem 2.2.2, A : C([a,b],Rm) → C([a,b],Rm), 
attached to the system (2.6), defined by the relation (2.9) (or (2.9’)): 
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Also, we consider the operator D : C([a,b],Rm) → C([a,b],Rm), attached to the perturbed system 
(4.10), defined by the relation: 

∫ +=
b

a

thdsbyaysgysystHtyD )())(),()),((),(,,())(( ,     t∈[a,b].    (4.12) 

 Using the condition (ii ) and the condition (b3) from the theorem 2.2.2, we deduce that the operator D 
is correctly defined. The set of the solutions of the perturbed system (4.10), in the space C([a,b],Rm), 
coincides with the fixed points set of the operator D, defined by the relation (4.12). We have: 
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Since the function K satisfies a generalized Lipschitz condition with respect to the last four 
arguments, with the matrix Q (condition (b6) of the theorem 2.2.2, from the chapter 2) and according to 
condition (iii ) and to generalized norm, given in chapter 1, by the relation (1.7), we obtain: 

 ( ) ( ) 21
**** 4 TTabyxQabyx

CC
+−+−−≤−  , 

and now it results the estimate (4.11). The proof is complete. �  
 
 

4.2  The differentiability of the solution with respect to a and b 
 

We consider the Fredholm-type integral equation with modified argument (2.1) 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( ,     t∈[α, β]    (4.13) 

where α, β ∈ R,  α ≤ β,  a, b ∈ [α,β]  and  K∈C([α,β]×[α,β]×Rm×Rm×Rm×Rm, Rm),  f∈C([α,β],Rm), 

g∈C[α,β],   a ≤ g(s) ≤ b,   s∈[a,b]  and  x∈C([α,β],Rm) . 

We have: 
 

Theorem 4.2.1. Suppose that there exists a matrix Q∈Mm×m(R+) such that: 

(i)  [4(β – α)Q]n → 0   as   n → ∞ ; 
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for all  t, s∈[α,β],  ui, vi∈Rm , 4,1=i . 
Then 

(a)  the integral equation (4.13) has a unique solution, x*( ⋅ ,a, b)∈C([α,β],Rm) ; 
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(b)  for all  x0∈C([α,β],Rm),  the sequence  (xn)n∈N ,  defined by the relation: 

  ∫ +=+
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converges uniformly to x*, for all t, a, b∈[α,β]   and 
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(c)  the function  x*:[α,β]×[α,β]×[α,β] →Rm,  (t, a, b)a x*(t; a, b) is continuous; 

(d)  if  K(t,s, ⋅, ⋅, ⋅, ⋅) ∈ C1(Rm ×Rm ×Rm ×Rm, Rm)  for all t, s∈[α,β], then  

x*(t; ⋅, ⋅)∈C1([α,β]×[α,β],Rm)   for all t∈[α,β] . 
 
 Proof. Denote  X := C([α,β]3,Rm). We consider on X  the generalized norm defined in the chapter 1 
by the relation (1.7): 
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∈ C([a,b],Rm) , 

where )(max
],[

txx k
batCk ∈

= , mk ,1=  . 

 Also, we consider the operator  B : X → X  defined by the relation: 

 ∫=
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dsbabxbaaxbasgxbasxstKbatxB )),;(),,;(),,);((),,;(,,(:),;)((  ,   (4.14) 

for all  t, a, b∈[α,β]. 
 Using the conditions (i), (ii )  and applying the Perov’s theorem 1.3.4, it results that the conclusions 
(a), (b) and (c) are fulfilled. 

(d) We prove that there exists 
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If we assume that there exists 
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, then from (4.13) it results that: 
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 This relation leads us to consider the operator  C : X × X → X  defined by the relation: 
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 Using the condition (ii ) we obtain: 
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for all t, s∈[α, β],  u1, u2, u3, u4∈Rm . 
 Using (4.15) and (4.16) it results that: 

 2121 )(4),(),( yyQyxCyxC −⋅−≤− αβ  ,  for all x, y1, y2∈X . 

 Now, if we consider the operator A : X × X → X × X ,  A = (B, C) then we observe that the conditions 
of the fiber generalized contractions theorem  1.5.2 are fulfilled and therefore it results that A is a Picard 
operator and the sequence ( )),;(),,;( 11 batybatx nn ++ , defined by the relations: 
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converges uniformly (with respect to t, a, b∈[α,β])  to  (x*,y*)∈FA, for all  (x0,y0)∈X×X . 

 If we take x0 = y0 = 0, then 
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1  and we prove through induction that 
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have: 

 *xx uniformlyn  →  as   n → ∞ 
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and it results that there exists 
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4.3  The differentiability of the solution with respect to a parameter 
 

In what follows we apply the fiber generalized contractions theorem  1.5.2, to study the 
differentiability with respect to a parameter of the solution of the Fredholm-type integral equation with 
modified argument: 

∫ +=
b

a

tfdsbxaxsgxsxstKtx )());(),()),((),(,,()( λ ,     t∈[a,b]    (4.17) 

where K ∈ C([a,b]×[a,b]×Rm×Rm×Rm×Rm×J, Rm),  J ⊂ R  is a compact interval and 

f ∈ C([a,b],Rm),  g ∈ C([a,b], [a,b])  and  x ∈ C([a,b],Rm) . 

The following theorem of differentiability of the solution is true. 
 

Theorem 4.3.1. Suppose that there exists a matrix Q∈Mm×m(R+) such that: 

(i)  [4(b – a)Q]n → 0   as   n → ∞ ; 
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for all  t, s∈[a, b],  ui, vi∈Rm , 4,1=i . 

Then 

(a) for all λ∈J, the integral equation (4.17) has a unique solution, x*( ⋅ ,λ) ∈C([a,b], Rm); 

(b)  for all x0∈C([a,b]×J, Rm),  the sequence (xn)n∈N ,  defined by the relation: 
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(c)  the function x*:[a,b]×J → Rm,  (t; λ)a x*(t; λ)  is continuous ; 

(d)  if  K(t,s, ⋅, ⋅, ⋅, ⋅, ⋅) ∈ C1(Rm×Rm×Rm×Rm×J, Rm)   for all  t, s∈[a,b], 

      then  x*(t; ⋅) ∈ C1(J, Rm)  for all t∈[a,b] . 
 
 Proof. Denote X := C([a,b]×J,Rm). We consider the generalized norm on X, defined in the chapter 1 
by the relation (1.7). 
 Also, we consider the operator  B : X → X  defined by the relation: 
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for all  t∈[a,b],  λ∈J. 
 From conditions (i), (ii ) and applying the Perov’s theorem 1.3.4, it results that the conclusions (a), 
(b) and (c) are fulfilled. 

(d) We prove that there exists 
λ∂

∂ *x   and  
λ∂

∂ *x ∈X . 

We assume that there exists 
λ∂

∂ *x . Then using (4.17) we obtain: 

+









∂
∂







⋅















∂
∂

=
∂

∂
∫

=
λ

λ
λ

λλλλλ
λ

λ );(
);(

));;(),;(),);((),;(,,();( *

1,
*

***** sx

sx

bxaxsgxsxstKtx b

a

m

jii

j  



Chapter 4 
 

102 
 

  +









∂
∂⋅















∂
∂

+
=

λ
λ

λ
λλλλλ ));((

));((
));;(),;(),);((),;(,,( *

1,
*

****
sgx

sgx

bxaxsgxsxstK
m

jii

j  

+









∂
∂⋅















∂
∂

+
=

λ
λ

λ
λλλλλ );(

);(
));;(),;(),);((),;(,,( *

1,
*

****
ax

ax

bxaxsgxsxstK
m

jii

j  

+









∂
∂⋅















∂
∂

+
=

λ
λ

λ
λλλλλ );(

);(
));;(),;(),);((),;(,,( *

1,
*

****
bx

bx

bxaxsgxsxstK
m

jii

j  

ds
bxaxsgxsxstK

m

i

j






















∂
∂

+
=1

**** ));;(),;(),);((),;(,,(
λ

λλλλλ
 .   (4.19) 

 This relation leads us to consider the operator  C : X × X → X  defined by the relation: 
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for all  x, y ∈ X. 
 From condition (ii ) we obtain: 
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            (4.21) 
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for all  t, s∈[a, b],  u1, u2, u3, u4∈Rm . 
 From (4.20) and (4.21) it results that 

 2121 )(4),(),( yyQabyxCyxC −⋅−≤−  ,   for all  x, y1, y2∈X . 
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 Now, if we consider the operator A: X×X → X×X, A=(B,C), A(x,y) = (B(x),C(x,y)), then we observe 
that the conditions of the fiber generalized contractions theorem  1.5.2 are fulfilled and therefore it results 
that A is a Picard operator and the sequences: 

)),((:),(1 λλ txBtx nn =+  

)),(),,((),(1 λλλ tytxCty nnn =+ , 

converge uniformly (with respect to t∈[a,b] and λ ∈J) to (x*,y*)∈FA, for all (x0,y0)∈X×X. 

 If we take x0∈X,  y0∈X, such that 
λ∂

∂=
0

0 x
y , then we prove by induction that 

λ∂
∂=

n
n x

y . Thus, we 

have: 
 *xx uniformn  →  când   n → ∞ 

 *y
x uniform

n

 →
∂
∂

λ
 când   n → ∞ . 

Using the Weierstrass’s theorem it results that there exists 
λ∂

∂ *x  (x* is differentiable with respect to 

λ)  and  *
*

y
x =

∂
∂

λ
. �  

 
 

4.4  Examples 
 
 Example 4.4.1. We consider the integral equation with modified argument: 

         1cos2
5

)1()0(
7

))2/(cos())(sin()(
1

0

++






 +
++= ∫ tds

xxsxsx
tx ,   ]1,0[∈t    (4.22) 

where K∈C([0,1]×[0,1]×R4),  
57

)cos()sin(
),,,,,( 4321

4321
uuuu

uuuustK
+

+
+

= , 

f ∈C[0,1],  f(t) = 2cost + 1,  g∈C([0,1],[0,1]),  g(s) = s/2,  and  x∈C[0,1] 

and the perturbed integral equation: 

         tdst
yysysy

ty cos2
5

)1()0(
7

))2/(cos())(sin()(
1

0

+






 −−
+

++= ∫ , ]1,0[∈t    (4.23) 

where H∈C([0,1]×[0,1]×R4),  2
57

)cos()sin(
),,,,,( 4321

4321 −−
+

+
+

= t
vvvv

vvvvstH , 

h∈C[0,1],  h(t) = cost ,  g∈C([0,1],[0,1]),  g(s) = s/2,  and  y∈C[0,1]. 

 The operator A : C[0,1] → C[0,1], attached to equation (4.22) and defined by the relation: 

         1cos2
5

)1()0(
7

))2/(cos())(sin())((
1

0

++






 +
++= ∫ tds

xxsxsx
txA , ]1,0[∈t    (4.24) 

is an α-contraction with the coefficient 
35
24=α  . 
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Since the conditions of theorem  2.1.1 of existence and uniqueness of the solution in the space C[0,1] 
are fulfilled (chapter 2, paragraph 2.4, example 2.4.1, II), it results that the integral equation (4.22) has a 
unique solution x*∈C[0,1]. 
 We have: 

 32),,,,,(),,,,,( 43214321 ≤+=− tuuuustHuuuustK ,   for all t,s∈[0,1] 

and 

21cos)()( ≤+=− tthtf ,   for all t∈[0,1] . 

 The conditions of theorem 4.1.1 are fulfilled and therefore, if y*∈C[0,1] is a solution of the integral 
equation (4.23), then the following estimate is true: 

11
175

35
241

2)01(3
]1,0[

** =
−

+−⋅
≤−

C
yx  . 

 
 Example 4.4.2. În what follows we consider the system of integral equations with modified 
argument: 
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   , t∈[0,1],  (4.25) 

where K ∈ C([0,1]×[0,1]×R2×R2×R2×R2, R2), 

( )),,,,,(,),,,,,(),,,,,( 43212432114321 uuuustKuuuustKuuuustK = , 
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4232221243212 7
1

7
1

21
12
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2),,,,,( uuu

t
u

t
uuuustK +++++=  , 

f ∈C([0,1],R2),   f (t) = (f1(t), f2(t)),   12)(1 += ttf ,   ttf sin)(2 = , 

g∈C([0,1],[0,1]),   g(s) = s/2   and   x∈C([0,1],R2) 

and the perturbed system of integral equations with modified argument: 
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where H ∈ C([0,1]×[0,1]×R2×R2×R2×R2, R2), 

( )),,,,,(,),,,,,(),,,,,( 43212432114321 vvvvstHvvvvstHvvvvstH = , 
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3
5
1
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3),,,,,( 4131211143211 −+++++= vvv

s
v

s
vvvvstH  , 

1
7
1

7
1

21
32
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3),,,,,( 4232221243212 −+++++= vvv

s
v

s
vvvvstH  , 

h∈C([0,1],R2),   h(t) = (h1(t), h2(t)),   12)(1 −= tth ,   tth cos)(2 = , 

g∈C([0,1],[0,1]),   g(s) = s/2,   and   x∈C([0,1], R2) . 

 The operator A : C([0,1],R2) → C([0,1],R2),  A(x)(t)=(A1(x)(t),A2(x)(t)),  attached  to system (4.25) 
and defined by the relation: 
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 ,   t∈[0,1], (4.27) 

satisfies a generalized Lipschitz condition with the matrix Q = 








7/10
05/1

 and according to theorem 1.3.3 

it results that the matrix 4(1– 0)Q = 








7/40
05/4

 converges to zero. So, the operator A is a contraction with 

the matrix 








7/40
05/4

. 

The conditions of theorem 2.2.2 of existence and uniqueness of the solution of a system of integral 
equations, being satisfied, it results that the system of integral equations with modified argument (4.25) has a 
unique solution x*∈C([0,1],R2) and the following estimates are true: 
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and 
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thtf ,   for all  t∈[0,1] . 

 Under these conditions, if  y*∈C([0,1], R2) is a solution of the system of integral equations (4.25), 
then according to theorem 4.1.3, the following estimate is true: 
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 Example 4.4.3.  We consider the system of Fredholm-type integral equations: 
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where t, a, b∈[0,1],   K∈C([0,1]×[0,1]×R2×R2×R2×R2, R2), 

( )),,,,,(,),,,,,(),,,,,( 43212432114321 uuuustKuuuustKuuuustK = , 
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8
1
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2
1),,,,,( u

t
u

t
uu

st
uuuuustK

+++++++= , 

f ∈C([0,1],R2),   f (t) = (f1(t), f2(t)),   ttf cos1)(1 −= ,   ttf sin)(2 = , 

g∈C([0,1],[0,1]),   g(s) = s/2   and   x∈C([0,1],R2) 

and applying the theorem 4.2.1 we will study the differentiability of the solution of this system with respect 
to a and b. 
 From the condition (ii ) of the theorem 4.2.1, we have: 
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According to theorem 1.3.3, it results that the matrix 
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
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
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05/4

)()(4 abQab  ,   0 < b – a < 1,   Q∈M2×2(R+) 

converges to zero. 
Hence, the conditions of theorem 4.2.1 being satisfied, it results that: 

– the system of integral equations (4.28) has a unique solution x*(⋅ , a, b)  in the space C([0,1],R2); 
– for all  x0∈ C([0,1],R2),  the sequence  (xn)n∈N ,  defined by the relation: 
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converges uniformly to  x*,  for all  t, a, b ∈[0,1],  and 

















−

−
⋅








⋅







≤

















−

−

C

C
n

C

n

C

n

xx

xx

xx

xx

0
2

1
2

0
1

1
1

*
22

*
11

2/12
05/4

220
05

 

– the function  x* : [0,1]×[0,1]×[0,1] → R2),  (t; a, b) → x*(t; a, b)  is continuous; 

– if K(t,s, ⋅, ⋅, ⋅, ⋅) ∈ C1(R2×R2×R2×R2, R2)  for all ]1,0[, ∈st , then 

x*(t; ⋅, ⋅) ∈ C1([0,1]×[0,1], R2)  for all ]1,0[∈t . 
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5  Numerical analysis of the Fredholm integral equation 
    with modified argument (2.1) 

 
 
 
 The study of an integral equation represents the development of a fixed point theory, which contains 
the results on existence and uniqueness of the solution, the integral inequalities, the theorems of comparison, 
the theorems of data dependence of the solution and an algorithm of approximation of the solution. 
 The numerical analysis of an integral equation consists in establishment of a method for 
approximating the solution of this equation. 
 The references used to establish a method for approximating the solution of the integral equation 
(2.1) includes treatises of numerical analysis of integral equations (W. Hackbusch [10]), treatises which have 
chapters with this subject of study (Gh. Coman, I. Rus, G. Pavel and I. A. Rus [3], D. D. Stancu, Gh. Coman, 
O. Agratini and R. Trîmbiţaş [21], D. D. Stancu, Gh. Coman, P. Blaga [22]), papers with this subject of study 
(M. Ambro [1], G. Pavel [15], C. Iancu [11], R. Precup [17], M. Dobriţoiu [5], [6], [7], [8] and [9]) and other 
results which are used in this book on this topic (D.V. Ionescu [13], Gh. Coman [4], P. Cerone and S. S. 
Dragomir [2], C. Iancu [12], Gh. Marinescu [14], A. D. Polyanin and A. V. Manzhirov [16], I. A. Rus [18], 
[19], I. A. Rus, M. A. Şerban and D. Trif [20]). 
 In this chapter, divided into five paragraphs, a procedure for approximating the solution of the 
integral equation with modified argument (2.1) is given. For this, we assume that the conditions of one of the 
theorems of existence and uniqueness, established in chapter 2, are fulfilled. 
 The first paragraph contains the problem statement, specifying the conditions under which the 
method for approximating the solution of the integral equation with modified argument (2.1) is given. 
 In the following three paragraphs, the successive approximations method is used to determine a 
method for approximating the solution, and for the approximate calculation of the integrals that arise in the 
terms of the successive approximations sequence is used the trapezoids formula, the rectangle formula and 
the Simpson’s quadrature formula, respectively. 
 In the paragraph 5 we use the results presented in the first four paragraphs, to establish a method for 
approximating the solution of the integral equation with modified argument that has been considered as 
example. 
 The results presented in this chapter were published in the paper [9]. 
 
 
 5.1  The statement of the problem 
 

To establish the procedure for approximating the solution of the integral equation with the argument 
modified (2.1) were used the results given by Gh Coman, I. Rus, G. Pavel and I. A. Rus [3], D.V. Ionescu 
[13], I. A. Rus [19] and Gheorghe Marinescu [14]. 

We suppose that the integral equation with modified argument (2.1): 

 ∫ +=
b

a

tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( ,     t∈[a,b] , 
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has a unique solution in the sphere ],[);( baCrfB ⊂ . Hence, in the particular case B = R, the conditions of 
the theorem 2.1.2 are fulfilled, i.e.: 

 (h1) K∈C([a,b]×[a,b]×J4), J ⊂ R compact ; 

(h2) f∈C[a,b] ; 

(h3) g∈C([a,b],[a,b]) ; 

(h4) MK (b – a) ≤ r   (condition of invariance of the sphere );( rfB ), 

where we denote by MK a positive constant such that for the restriction 4],[],[| Jbaba
K ×× , J ⊂ R compact, we 

have: 

|K(t,s,u1,u2,u3, u4)| ≤ MK ,  for all t, s∈[a,b],  u1, u2, u3, u4∈J ;    (5.1) 

(h5) there exists  LK > 0  such that 

  K(t,s,u1,u2,u3,u4) – K(t,s,v1,v2,v3,v4) ≤ 

        ≤ LK (u1 – v1+u2 – v2)+u3 – v3)+u4 – v4)), 

for all  t, s∈[a,b],  ui, vi∈J, 4,1=i  ; 

(h6) 1)(4 <− abLK .   (contraction condition) 

 We denote this solution by x*∈ ],[);( baCrfB ⊂ . According to theorem 2.1.2 (B = R) this solution 

can be obtained by the successive approximations method, starting at any element x0∈ ],[);( baCrfB ⊂ . 
Moreover, if xn is the n-th successive approximation, then the following estimation is true: 

 01
*

)(41
)(4

xx
abL

abL
xx

K

nn
K

n

n −
−−

−≤−  .       (5.2) 

Therefore, for the determination of x* we apply the successive approximations method. 
The sequence of the successive approximations is: 

],[);(),()( 00 baCRfBxtftx ⊂∈=  

)())(),()),((),(,,()( 00001 tfdsbxaxsgxsxstKtx
b

a

+= ∫  

)())(),()),((),(,,()( 11112 tfdsbxaxsgxsxstKtx
b

a

+= ∫      (5.3) 

. . . . . 

)())(),()),((),(,,()( 1111 tfdsbxaxsgxsxstKtx
b

a
mmmmm += ∫ −−−−  

. . . . . 

To get a better result, it is considered an equidistant division ∆ of the interval [a,b] through the points 
bttta n =<<<= ...10  and the successive approximations sequence will be: 
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)()(0 kk tftx =  

))(())((0 sgfsgx =  

)()(0 afax =  

)()(0 bfbx =  

∫ +=
b

a
kkk tfdsbfafsgfsfstKtx )())(),()),((),(,,()(1  

∫ +=
b

a

sgfdsbfafsgfsfssgKsgx ))(())(),()),((),(,),(())((1  

∫ +=
b

a

afdsbfafsgfsfsaKax )())(),()),((),(,,()(1  

∫ +=
b

a

bfdsbfafsgfsfsbKbx )())(),()),((),(,,()(1      (5.3’) 

. . . . . 

∫ += −−−−−

b

a
kmmmmkkm tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( 22221  

∫ += −−−−−

b

a
mmmmm sgfdsbxaxsgxsxssgKsgx ))(())(),()),((),(,),(())(( 22221  

∫ += −−−−−

b

a
mmmmm afdsbxaxsgxsxsaKax )())(),()),((),(,,()( 22221  

∫ += −−−−−

b

a
mmmmm bfdsbxaxsgxsxsbKbx )())(),()),((),(,,()( 22221  

∫ += −−−−

b

a
kmmmmkkm tfdsbxaxsgxsxstKtx )())(),()),((),(,,()( 1111  

∫ += −−−−

b

a
mmmmm sgfdsbxaxsgxsxssgKsgx ))(())(),()),((),(,),(())(( 1111  

∫ += −−−−

b

a
mmmmm afdsbxaxsgxsxsaKax )())(),()),((),(,,()( 1111  

∫ += −−−−

b

a
mmmmm bfdsbxaxsgxsxsbKbx )())(),()),((),(,,()( 1111  

. . . . . 

In the following three paragraphs we present the method for approximating the solution of integral 
equation (2.1), obtained by applying the successive approximations method and using, also, the trapezoids 
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formula, the rectangles formula and the Simpson's formula for the approximate calculation of the integrals 
that appear in the terms of the successive approximations sequence. 
 
 
 5.2  The approximation of the solution using the trapezoids formula 
 

We suppose that the following conditions are fulfilled: 

(h11) ( )42 ],[],[ JbabaCK ××∈ ,  J ⊂ R  is closed interval ; 

(h12) ],[2 baCf ∈ ; 

(h13) ( )],[],,[2 babaCg∈  

and using the trapezoids formula (1.14) for the approximate calculation of the integrals that appear in the 
terms of the successive approximations sequence (5.3’), with the estimate of the rest given by (1.15), we will 
approximate the terms of this sequence. 
 In the general case for xm(tk) we obtain: 

[ +−= −−−− ))(),()),((),(,,(
2

)( 1111 bxaxagxaxatK
n

ab
tx mmmmkkm

    (5.4) 

++ ∑
−

=
−−−−

1

1
1111 ))(),()),((),(,,(2

n

i
mmimimik bxaxtgxtxttK  

] NmnkRtfbxaxbgxbxbtK T
kmkmmmmk ∈=+++ −−−− ,,0,)())(),()),((),(,,( ,1111  

with the estimate of the rest: 

 [ ]
s
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n
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R mmmmk
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T
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"
))(),()),((),(,,(max

12
)(

1111],[2

3

, −−−−∈
⋅−≤  . 

According to condition (h11) it results that there exists the derivative of the function K from the 
estimate of the rest RT

m,k and it has the following expression: 
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where 

∫ +
∂

∂
= −−−−

−

b

a

mmmm
m tfds

t

bxaxsgxsxstK
tx )('

))(),()),((),(,,(
)(' 2222

1  



Numerical analysis of the Fredholm integral 
equation with modified argument (2.1) 

113 
 

)("
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)(" 2
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= ∫
−−−−

− . 

Denote 

 
654321
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max αααααα

α

α uuuust

uuuustK
M
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T

∂∂∂∂∂∂
∂

=
∈
≤

,     654321 ααααααα +++++=  , 

)(max )(

],[
22 tfM

bat

T α

α
∈
≤

=     and    )(max )(

],[
23 tgM

bat

T α

α
∈
≤

=  . 

 Now, using the expressions of the derivatives of xm-1(t), it results that 

2,1,)()( 21
)(
1 =+−≤− αα TT

m MMabtx  , 

and for the derivative of the function K from the expression of the rest RT
m,k we obtain: 

[ ] ≤−−−− s
bxaxsgxsxstK mmmmk

"
))(),()),((),(,,( 1111  

[ ] ( ) ( ) [ ]{ } TTTTTTTT MMabMMMMabMM 0
2

21
2

33211 )(143)(1 =+−⋅+++⋅+−+≤ . 

 It is obvious that TM 0  doesn’t depend on m and k, so we have the estimation of the rest: 

2),,,,,,(,
12

)(
002

3

0, ≤=−⋅≤ αααα gDgfDfKDKMM
n

ab
MR TTTT

km    (5.5) 

and thus we obtain a formula for the approximate calculation of the integrals that appear in the terms of the 
successive approximations sequence (5.3’). Using the successive approximations method and the formula 
(5.4) with the estimation of the rest resulted from (5.5), we suggest further on an algorithm in order to solve 
the integral equation (2.1) approximately. To this end, we will calculate approximately the terms of the 
successive approximations sequence. Thus we have: 

x0(tk) = f (tk) 

=+= ∫
b

a
kkk tfdsbfafsgfsfstKtx )())(),()),((),(,,()(1  

          [ ++−= ∑
−
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1
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i
iiikk bfaftgftfttKbfafagfafatK

n

ab  

          ] =+++ T
kkk RtfbfafbgfbfbtK ,1)())(),()),((),(,,(  

          nkRtx T
kk ,0,~)(~

,11 =+=  
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and the following estimate of the rest: 
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The reasoning continues for  m = 3, . . .   and through induction we obtain: 

[ +−= −−−− ))(~),(~)),((~),(~,,(
2

)( 1111 bxaxagxaxatK
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tx mmmmkkm  

            ++ ∑
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with the estimate of the rest: 

[ ] nkLabM
n

ab
txtxR m

K
mmT

kmkm
T

km ,0,1...)(4
12

)()(~)(~ 111
02

3

, =++−⋅⋅−≤−= −−− , 

that according to the contraction condition (h6), is 

[ ]
T

K

T
km M

abLn

ab
R 02

3

, )(4112
)(~ ⋅

−−
−≤ .       (5.6) 

Thus, using an equidistant division of the interval [a,b] through the points a = t0 < t1 < . . . < tn = b, 
we obtain the sequence ( ) Nmkm tx ∈)(~ , nk ,0= , that estimates the successive approximations sequence 

( ) Nmkm tx ∈)( , nk ,0=  with the following error in calculation: 

 [ ]
T

K
kmkm M

abLn

ab
txtx 02

3

)(4112
)()(~)( ⋅

−−
−≤−  .      (5.7) 

 Now, using the estimates (5.2) and (5.7) it is obtain the following result. 
 
 Theorem 5.2.1. Suppose that, in the particular case B = R, the conditions of the theorem 2.1.2 are 
fulfilled. In addition, we assume that the exact solution x* of the integral equation (2.1) is approximated by 

the sequence ( ) Nmkm tx ∈)(~ , nk ,0= , on the nodes tk , nk ,0= , of the equidistant division ∆ of the interval 

[a,b], using the successive approximations method (5.3) and the trapezoids method (1.14)+(1.15). 
 Under these conditions, the error of approximation is given by the evaluation: 
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 5.3  The approximation of the solution using the rectangles formula  
 

Suppose that the following conditions are fulfilled: 

(h21) ( )41 ],[],[ JbabaCK ××∈ ,   J ⊂ R  is closed interval ; 

(h22) ],[1 baCf ∈ ; 

(h23) ( )],[],,[1 babaCg∈  

and we will approximate the terms of the successive approximations sequence (5.3’) using the rectangles 
formula (1.21) with the rest given by (1.22), considering the intermediary points of the division of the 
interval [a,b] on the left end of the partial intervals ξI = ti . 
 In the general case for xm(tk) we obtain: 

[ +−= −−−− ))(),()),((),(,,()( 1111 bxaxagxaxatK
n

ab
tx mmmmkkm     (5.9) 
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According to condition (h21), it results that there exists the derivative of the function K from the 
estimate of the rest D

kmR , and it has the following expression: 
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In what follows, we use the expressions of the derivatives of xm-1(t) given in the previous paragraph 
and we note down: 
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to obtain 
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and for the derivative of the function K from the expression of the rest D
kmR ,  it results that: 
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 It is clear that DM 0  doesn’t depend on m and k, so we have the estimation of the rest: 

n
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MR DD
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)( −⋅≤ , 1),,,,,,(00 == αααα gDgfDfKDKMM DD    (5.10) 

and thus we obtain a formula for the approximate calculation of the integrals that appear in the successive 
approximations sequence (5.3’). Using the successive approximations method and the formula (5.9) with the 
estimation of the rest resulted from (5.10), we suggest further on an algorithm in order to solve the integral 
equation (2.1) approximately. 
 To this end, we will calculate approximately the terms of the successive approximations sequence. 
So, we have: 

x0(tk) = f(tk) 

=+= ∫
b

a
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The reasoning continues for  m = 3, . . .   and through induction we obtain: 
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with the estimate of the rest: 
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that according to the contraction condition (h6) is 
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Thus, using an equidistant division of the interval [a,b] through the points a = t0 < t1 < . . . < tn = b, 
we obtain the sequence ( ) Nmkm tx ∈)(~ , nk ,0= , that estimates the successive approximations sequence 

( ) Nmkm tx ∈)( , nk ,0=  with the following error in calculation: 
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 Now, using the estimates (5.2) and (5.12) it is obtain the following result. 
 
 Theorem 5.3.1. Suppose that the conditions of the theorem 2.1.2 are fulfilled (B = R). In addition, we 
assume that the exact solution x* of the integral equation (2.1) is approximated by the sequence 
( ) Nmkm tx ∈)(~ , nk ,0=  on the nodes tk , nk ,0= , of the equidistant division ∆ of the interval [a,b], using the 

successive approximations method (5.3) and the rectangles method (1.21)+(1.22). Under these conditions, 
the error of approximation is given by the evaluation: 
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 5.4  The approximation of the solution using the Simpson's formula 
 

Suppose that the following conditions are fulfilled: 

(h31) ( )44 ],[],[ JbabaCK ××∈ ,   J ⊂ R  is closed interval ; 

(h32) ],[4 baCf ∈ ; 

(h33) ( )],[],,[4 babaCg∈  

and using the Simpson's formula (1.27) for the approximate calculation of the integrals that appear in the 
terms of the successive approximations sequence (5.3’), with the estimate of the rest given by (1.28), we will 
approximate the terms of this sequence. 
 In general case for xm(tk) we obtain: 
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with the estimate of the rest: 
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and according to condition  (h31) it results that there exists the derivative of the function K from this estimate 
and it has the expression: 
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and thus we obtain a formula for the approximate calculation of the integrals that appear in the successive 
approximations sequence (5.3’). 

Using the method of successive approximations and the formula (5.14) with the estimation of the rest 
resulted from (5.15), we suggest further on an algorithm in order to solve the integral equation (2.1) 
approximately. To this end, we will calculate approximately the terms of the successive approximations 
sequence. Thus we have: 
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and according to contraction condition (h6) it results the following estimate of the rest: 
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Thus, using an equidistant division of the interval [a,b] through the points a = t0 < t1 < . . . < tn = b, 
we obtain the sequence ( ) Nmkm tx ∈)(~ , nk ,0= , that estimates the successive approximations sequence 

( ) Nmkm tx ∈)( , nk ,0=  with the following error in calculation: 
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 Now, using the estimates (5.2) and (5.17) it results the error of approximation and we obtain the 
following theorem. 
 
 Theorem 5.4.1. Suppose that the conditions of the theorem 2.1.2 (B = R) are fulfilled. Moreover, 

assume that the exact solution x* of the integral equation (2.1) is approximated on the nodes tk , nk ,0= , of 

the equidistant division ∆ of the interval [a,b] by the sequence ( ) Nmkm tx ∈)(~ , nk ,0=  using the successive 

approximations method (5.3) and the Simpson's formula (1.27)+(1.28). Under these conditions, the error of 
approximation is given by the evaluation: 
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5.5  Example 
 
 We consider the integral equation with modified argument: 
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where K ∈C([0,1]×[0,1]×R4),   
57

)cos()sin(
),,,,,( 4321
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+
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= , 

f ∈C[0,1],   f(t) = cost , 

g ∈C([0,1],[0,1]),   g(s) = s/2   and   x∈ C[0,1] . 
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 The existence and uniqueness of the solution of this integral equation was studied in the paragraph 
2.4 from the chapter 2. The conditions of theorems 2.1.1 and 2.1.2 are fulfilled and therefore we establish 
under what conditions the integral equation (5.19) has a unique solution in the space C[0,1] and in the sphere 

);(cos rtB ⊂ C[0,1], respectively. 
We consider the case when the conditions of theorem 2.1.2 are fulfilled. So the integral equation 

(5.19) has a unique solution x* in the sphere );(cos rtB ⊂ C[0,1]. From the contraction condition  4LK(b–a) = 

4LK = 
35
24  < 1, it results that 

35
6=KL . 

To determine  x* we apply the successive approximations method, starting at any element x0 
∈ );(cos rtB ⊂ C[0,1], and if xn is the n-th successive approximation, then the following estimation is true: 
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 . 

To calculate the integrals that appear in the terms of the successive approximations sequence, there 
have been used the following quadrature formulas: the trapezoids formula, the rectangles formula and the 
Simpson’s formula. 

Now, we have the sequence of successive approximations: 
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Also, to get a better approximation of the solution, it was considered an equidistant division of the 
interval [0,1] through the following points 0 = t0 < t1 < . . . < tn = 1 and now, the successive approximations 
sequence will be: 
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Next we present the method for approximating the solution of integral equation (5.19), obtained by 
the successive approximations method (5.20), combined with the trapezoids formula, the rectangles formula 
and the Simpson's formula, respectively. 
 
 A. The approximation of the solution using the trapezoids formula 
 

We observe that the conditions (h11), (h12) and (h13) are fulfilled. Using the quadrature formula of the 
trapezoids (1.14) to calculate the integrals that appear in the terms of the successive approximations 
sequence (5.20’), with the estimate of the rest given by (1.15), we will approximate the terms of this 
sequence. In general case for xm(tk) we have: 
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and we obtain a formula for the approximate calculus of the integrals that appear in the terms of the 
successive approximations sequence. 
 Using the method of successive approximations and the formula (5.21) with the estimate of the rest 
resulted from (5.22), we suggest further on an algorithm in order to solve the integral equation (5.19) 
approximately. To this end, we will calculate approximately the terms of the successive approximations 
sequence and we will obtain: 
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Hence, we have the following estimate of the rest: 
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and thus, we obtain the sequence ( ) Nmkm tx ∈)(~ , nk ,0= , that approximate the successive approximations 

sequence ( ) Nmkm tx ∈)( , nk ,0=  on the nodes tk , nk ,0= , with the error: 
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 Now, using the successive approximations method (5.20) combined with the trapezoids method 
(1.14)+(1.15) and the theorem 5.2.1, it results that the error of approximation of the exact solution  x* of the 
integral equation (5.19) through the sequence ( ) Nmkm tx ∈)(~ , nk ,0= , on the nodes of an equidistant division 
of the interval [0,1], is given by the evaluation: 
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 B. The approximation of the solution using the rectangles formula 
 

We observe that the conditions (h21), (h22) and (h23) are fulfilled. We will approximate the terms of 
the successive approximations sequence (5.20’) using the rectangles formula (1.21) with the estimate of the 
rest given by (1.22), considering the intermediary points of the division of the interval [0,1] on the left end of 
the partial intervals ξI = ti . 
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It is observed  that DM 0  doesn’t depend on m and k. Hence, we have the estimate of the rest: 
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and we obtain a formula for the approximate calculus of the integrals that appear in the terms of the 
successive approximations sequence. 

 Using the successive approximations method and the formula (5.26) with the estimate of the rest 
resulted from (5.27), we suggest further on an algorithm in order to solve the integral equation (5.19) 
approximately. To this end, we will calculate approximately the terms of the successive approximations 
sequence and we will obtain: 
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The reasoning continues for  m = 3, . . .   and through induction we obtain: 
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and thus, we obtain the sequence ( ) Nmkm tx ∈)(~ , nk ,0= , that approximate the successive approximations 

sequence ( ) Nmkm tx ∈)( , nk ,0=  on the nodes tk , nk ,0= , with the error: 
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 Now, using the successive approximations method (5.20) combined with the rectangles method 
(1.21)+(1.22) and the theorem 5.3.1, it results that the error of approximation of the exact solution x* of the 
integral equation (5.19) by the sequence ( ) Nmkm tx ∈)(~ , nk ,0= , on the nodes of an equidistant division of the 
interval [0,1], is given by the evaluation: 
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 C. The approximation of the solution using the Simpson's formula 
 

We observe that the conditions (h31), (h32) şi (h33) are fulfilled. Using the Simpson's quadrature 
formula (1.27) to calculate the integrals that appear in the terms of the successive approximations sequence 
(5.20’), with the estimate of the rest given by (1.28), we will approximate the terms of this sequence. 

In the general case for xm(tk) we have: 
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Using the expression of the derivative of the function K from the estimate of the rest S
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and we obtain a formula for the approximate calculus of the integrals that appear in the terms of the 
successive approximations sequence. 
 Using the successive approximations method and the formula (5.31) with the estimate of the rest 
resulted from (5.32), we obtain an algorithm which solve the integral equation (5.19) approximately. To this 
end, we will calculate approximately the terms of the successive approximations sequence and we will 
obtain: 
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Hence, we have the following estimate of the rest: 
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and thus, we obtain the sequence ( ) Nmkm tx ∈)(~ , nk ,0= , that approximate the successive approximations 

sequence ( ) Nmkm tx ∈)( , nk ,0=  on the nodes tk , nk ,0= , with the error: 

 4
140013948023,0)(~)(
n

txtx kmkm ≤− .       (5.34) 

 Now, using the successive approximations method (5.20) combined with the Simpson's formula 
(1.27)+(1.28) and the theorem 5.4.1, it results that the error of approximation of the exact solution x* of the 
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integral equation (5.19) by the sequence ( ) Nmkm tx ∈)(~ , nk ,0= , on the nodes of an equidistant division of the 
interval [0,1], is given by the evaluation: 

4011
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 D. Conclusions 
 
 The integral equation with modified argument (5.19), considered in this example: 
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has a unique solution in the space C[0,1], and in the sphere );(cos rtB ⊂ C[0,1] respectively (chapter 2, 
paragraph 2.4). 

It was considered the case when the conditions of the theorem 2.1.2, for B = R, are fulfilled, i.e. the 
integral equation (5.19) has a unique solution x* in the sphere );(cos rtB ⊂ C[0,1]. 

The solution x* was determined using the method of successive approximations starting from the 
element ttx cos)(0 = , ]1,0[);(cos0 CrtBx ⊂∈ , and for the approximate calculation of the integrals that 
appear in the terms of the sequence of successive approximations, the trapezoids formula, the rectangles 
formula and the Simpson's formula, respectively, were used. 

It is observed that the functions K and  f  fulfill the conditions: 

- (h11), (h12) and (h13), necessary to apply the trapezoids formula; 

- (h21), (h22) and (h23), necessary to apply the rectangles formula, 

and respectively 

- (h31), (h32) and (h33), necessary to apply the Simpson's formula. 

Also, to get a better approximation of the solution, an equidistant division of the interval [0,1] 
through the points 0 = t0 < t1 < . . . < tn = 1 was considered. 

The approximate value of the integral that arise in the general term of the successive approximations 
sequence: 
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was calculated as it follows: 

a) when we use the trapezoids formula, we have the relation: 
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b) when we use the rectangles formula, we have the relation: 
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c) when we use the Simpson's formula, we have the relation: 
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Thus, using an equidistant division of the interval [0,1] through the points a = t0 < t1 < . . . < tn = b, 
we obtain the sequence ( ) Nmkm tx ∈)(~ , nk ,0= , that estimates the successive approximations sequence 

( ) Nmkm tx ∈)( , nk ,0=  with the following error in calculation: 

a) when we use the trapezoids formula, the error is: 

  2
10676113247,0)(~)(
n

txtx kmkm ⋅≤−  

b) when we use the rectangles formula, the error is: 

n
txtx kmkm

124369669861,0)(~)( ⋅≤−  

c) when we use the Simpson's formula, the error is: 

  4
140013948023,0)(~)(
n

txtx kmkm ≤−  . 

The calculus of the approximate value of the integral from the expression of the general term of the 
successive aproximations sequence using the trapezoids formula, the rectangles formula and the Simpson's 
formula respectively, was performed with a software developed in MATLAB. The results that was obtained 
using this software product are given in appendices. 

Knowing the number of sub-intervals with equal length, contained in the interval [0,1], the 
approximate solution of the integral equation (5.19) was determined in the following two situations: 

- when we know the error and respectively 

- when we know the number of iterations. 

 Thus, for a division of the interval [0,1] in 100 equal parts and an error er ≤ 10–10, the following 
results have been obtained: 

a) Using the trapezoids formula, the approximate solution of the integral equation is: 

 17207228946770,0cos)( +≈ ttx  (appendix 1a) 

and it was obtained after 18 iterations, with a requested error. 

b) Using the rectangles formula, the approximate solution of the integral equation is: 

 75697228113856,0cos)( +≈ ttx  (appendix 2a) 

and it was obtained after 18 iterations, with a requested error. 

c) Using the Simpson's formula, the approximate solution of the integral equation is: 

 79567228947013,0cos)( +≈ ttx  (appendix 3a) 

and it was obtained after 18 iterations, with a requested error. 
 Finally, for a division of the interval [0,1] in 100 equal parts and after 20 iterations, the following 
approximate solutions of the integral equation were obtained: 

a) Using the trapezoids formula, the approximate solution of the integral equation is: 

 41547228946770,0cos)( +≈ ttx  (appendix 1b) 

and it was obtained after 20 iterations, with the error er = 5.008105041781619e-012 . 
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b) Using the rectangles formula, the approximate solution of the integral equation is: 

 99537228113856,0cos)( +≈ ttx  (appendix 2b) 

and it was obtained after 20 iterations, with the error er = 4.898970118460966e-012 . 

c) Using the Simpson's formula, the approximate solution of the integral equation is: 

 03907228947014,0cos)( +≈ ttx  (appendix 3b) 

and it was obtained after 20 iterations, with the error er = 5.007882997176694e-012 . 
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6  An integral equation from the theory of epidemics 
 
 
 
 In the study of certain problems of the dynamics of population, with phenomena that occur 
periodically, often occurs the following nonlinear integral equation: 

 ∫
−

=
t

t

dssxsftx
τ

))(,()( ,     t∈R,        (6.1) 

where the function  f ∈C(R×R+) satisfies the condition of periodicity with respect to t (ω > 0),  f(t+ω,x) = 
f(t,x), for each  t∈R,  x∈R+  and  τ > 0  is a parameter. 
 According to presentation in paper [12], this equation can be described in the terms of epidemics, 
when the number of members of the population is constant, and also in the terms of one population increase, 
when the birth rate varies periodically (chapter 1, paragraph 1.8.2). 
 Therefore, the integral equation (6.1) can be used as a mathematical model, important for the study 
of the spreading of an infectious disease, which has a periodic contact rate and which varies seasonally. In 
this situation, x(t) is a continuous quantity, which represents the number of members of the population that 
were infected at a certain moment, t, function f(t,x(t)) represents the number of the individuals new infected 
per unit of time ( f (t, 0) = 0 ), and τ  is the length of time in which an individual remains infectious. 
 K. L. Cooke and J. L. Kaplan have proposed this integral equation as a mathematical model of 
epidemics and of population increase, respectively. This model has been intensely studied, and the conditions 
of existence and uniqueness of the non-trivial positive and periodic solutions with period ω > 0 were 
obtained, emphasizing some of the interesting properties of the solutions. 

Among those who studied this equation one can mention K. L.Cooke and J. L.Kaplan [3], D. Guo 
and V. Lakshmikantham [5], R. Torrejón [20], R. Precup [9], [10], [11], E. Kirr [7], [8], A. Cañada and A. 
Zertiti [1], [2], R. Precup and E. Kirr [12], I. A. Rus [13], [14], [15], [16], I. A. Rus and C. Iancu [17], C. 
Iancu [6], M. Dobriţoiu, I. A. Rus and M. A. Şerban [4], I. A. Rus, M. A. Şerban and D. Trif [19]. 
 In what follows, we present the results obtained by I. A Rus, M. A. Şerban and M. Dobriţoiu in a 
study of the integral equation (6.1), using the Picard operators technique, and published in paper [4]. This 
study contains the results regarding to existence and uniqueness of the solution, lower-solutions and upper-
solutions of the integral equation (6.1), the results regarding to the data dependence of the solution and the 
differentiability of the solution with respect to a parameter. 
 
 
 6.1  The existence and uniqueness of the solution in a subset of the space C(R,I) 
 

In order to study the existence and uniqueness of the solution in a subset of the space C(R, I) we 
consider the nonlinear integral equation (6.1) under the following conditions: 

 (e1)  I, J ⊂ R  are compact intervals  and  f∈C(R×I, J); 

 (e2)  f(t, ·) : I → J   is  Lf – Lipschitz  for each t∈R; 

 (e3)  Lf ·τ  < 1; 
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 (e4) there exists U ⊂ C(R,I) such that U∈Icl(A), where the operator A is defined by the relation: 

 ∫
−

=
t

t

dssxsftxA
τ

))(,(:))(( ,   t ∈ R .       (6.2) 

The following theorem of existence and uniqueness is true. 
 
Theorem 6.1.1. (M. Dobriţoiu, I. A. Rus and M. A. Şerban [4]) Under the conditions (e1)–(e4), the 

integral equation (6.1) has a unique solution in U. 
 

Proof. We consider the Banach space (C(R,I), 
C

⋅ ) endowed with the supremum norm 

 )(sup txx
Rt

C
∈

= , 

and the operator A defined by the relation (6.2). 
From the condition (e4) it results that A(U) ⊂ U , so one can consider the operator A : U → U, 

defined by the relation (6.2). The solutions set of the integral equation (6.1) coincides with the fixed point set 
of the operator A. 

From the condition (e2) we have: 

 ( ) ≤−=− ∫
−

t

t

dssxsfsxsftxAtxA
τ

))(,())(,())(())(( 2121  

         ∫∫
−−

−≤−≤
t

t
f

t

t

dssxsxLdssxsfsxsf
ττ

)()())(,())(,( 2121  

and using the supremum norm, we obtain: 

 
CfC

xxLxAxA 2121 )()( −⋅≤− τ  , 

and according to condition (e3) it results that the operator A is an α-contraction with the coefficient α = Lf ·τ . 
 Now, we obtain the conclusion of the theorem by applying the Contraction Principle 1.3.1. �  

 
Remark 6.1.1. If the conditions (e1)–(e4) are fulfilled, then the operator 

A : (U, 
C

d ⋅ ) → (U, 
C

d ⋅ ) 

is a Picard operator. 
 

Let be  0 < m < M ,  0 < α < β,  I = [α,β],  J = [m,M] . 
 

Corollary 6.1.1. (M. Dobriţoiu, I. A. Rus and M. A. Şerban [4]) Suppose that: 

(i)  the conditions (e1)–(e3) are fulfilled; 

(ii )  α ≤ m·τ ,   β ≥ M·τ . 

Then the integral equation (6.1) has a unique solution in C(R,I). 
 

Proof. We consider U := C(R,I), where I = [α,β] and the operator A is defined by the relation (6.2). 
From the definition of the function f  it results that 
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f(t, x(t))∈[m,M] ,   for all  t∈R ,  x∈U 

and we obtain 

 ],[))(,( ττ
τ

Mmdssxsf
t

t

∈∫
−

,   for all  t∈R, x∈U , 

i. e. 

 A(x)(t) ∈ [mτ,Mτ ] ,   for all  t∈R, x∈U . 

 From the condition (ii ) it results that 

A(x)(t)∈[α,β],   for all  t∈R, x∈U . 

Therefore, U is an invariant subset for the operator A and now, applying the theorem 6.1.1 the proof 
is complete. �  
 

Corollary 6.1.2. (M. Dobriţoiu, I. A. Rus and M. A. Şerban [4]) Suppose that the conditions of the 

corollary 6.1.1 are fulfilled. In addition, we suppose that there exists ω > 0 such that: 

f(t + ω, u) = f(t, u) ,   for all  t∈R, u∈I . 

Then, the integral equation (6.1) has a unique periodic solution, that has the period ω > 0. 
 

Proof. Consider 

U := Xω := { x∈C(R,I) | x(t + ω) = x(t) , for all  t∈R } 

and the operator A defined by the relation (6.2). 
Using the condition (e1) and the condition (ii ) of the corollary 6.1.1 and since the function  f is ω-

periodic with respect to t, we deduce that A(U) ⊂ U, i. e. U ∈ I(A). Thus, the conditions of the theorem 6.1.1 
are fulfilled and therefore it results the conclusion of the corollary. The proof is complete. �  
 
 
 6.2  Lower-solutions and upper-solutions 
 
 Consider the integral equation (6.1) under the conditions (e1)–(e4) and we denote by UxA ∈*  the 
unique fixed point of the operator A. In addition, we suppose that: 

 (e5)  f(t, ·) : I → J   is increasing for all  t∈R . 

We have: 
 

Theorem 6.2.1. (M. Dobriţoiu, I. A. Rus and M. A. Şerban [4]) Suppose that the conditions (e1)–(e5) 
are fulfilled. If 

 ∫
−

≤∈
t

t

dssxsftxUx
τ

))(,()(,  , 

then 

 *
Axx≤  . 
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Proof. We consider the operator A : U → U, defined by the relation (6.2). From the conditions (e1)–

(e4) it results that A is a Picard operator, and from the condition (e5) it results that A is an increasing operator. 
Since the conditions of the abstract Gronwall's lemma, 1.4.1, are fulfilled, we obtain: 

  *
Axx ≤  

and the proof is complete. �  
 

Let be  0 < m < M ,   0 < α < β,   I = [α,β],   J = [m,M] . The following theorem is true. 
 

Theorem 6.2.2. (M. Dobriţoiu, I. A. Rus and M. A. Şerban [4]) Let  fi ,  i = 1, 2, 3  be three functions 
and suppose that the following conditions are fulfilled: 

(i)  fi ∈ C(R×I, J),  i = 1, 2, 3,  where  I, J ⊂ R  compact intervals; 

(ii )  f2(t, ·)  is increasing for all  t∈R ; 

(iii )  f1  ≤  f2  ≤  f3 ; 

(iv)  fi(t, ·) : I → J   is  
if

L – Lipschitz for all t∈R,  i = 1, 2, 3; 

(v)  
if

L ·τ  < 1,  i = 1, 2, 3; 

(vi)  α ≤ m·τ ,   β ≥ M·τ . 

 Let *
ix ,  i = 1, 2, 3 be the unique solutionof the integral equation (6.1) for each of the three functions  

fi ,  i = 1, 2, 3.  Then 

 *
3

*
2

*
1 xxx ≤≤  . 

 
Proof. We consider the operators  Ai : C(R,I) → C(R,I), defined by the relations: 

 ∫
−

=
t

t
ii dssxsftxA

τ
))(,(:))(( ,   t∈R ,  i = 1, 2, 3.      (6.3) 

 From the condition (ii ) we deduce that the operator A2 is increasing, and from the condition (iii ) it 
results that 

 A1  ≤  A2  ≤  A3 . 

 Using the conditions (i), (iv) and (v) we obtain that the operators Ai are iα –contractions with the 
constants iα =

if
L ·τ ,  i = 1, 2, 3  and therefore Ai , i = 1, 2, 3 are Picard operators. 

 According to the abstract comparison lemma, 1.4.5, it results that the following implication is 
fulfilled: 

 x1  ≤  x2  ≤  x3    ⇒    )()()( 332211 xAxAxA ∞∞∞ ≤≤ , 

and since Ai , i = 1, 2, 3, are Picard operators, we obtain that 

 *
3

*
2

*
1 xxx ≤≤  , 
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and, finally, the proof is complete. �  
 

Theorem 6.2.3. (M. Dobriţoiu, I. A. Rus and M. A. Şerban [4]) Suppose that the conditions (e1)–(e3) 
and (e5). Then 

yxx A ≤≤ *  , 

for all  x ∈ (LF)A  and  y ∈ (UF)A . 
 

Proof. We consider U := (LF)AU (UF)A and the operator A defined by the relation (6.2): 

 ∫
−

=
t

t

dssxsftxA
τ

))(,(:))(( ,   t ∈R . 

 From the condition (e5) it results that the operator A is increasing and therefore we have that 
(LF)A∈I(A) and (UF)A∈I(A).  Hence it results that (LF)AU (UF)A ∈ I(A) and, so, (LF)AU (UF)A is an 
invariant subset for the operator A. 
 Now, we consider the operator A : U → U , defined by the same relation (6.2). 
 From the conditions (e1)–(e3) and the condition above, it results that A is a Picard operator. 
 Applying the theorem 6.1.1 it results that the operator A has in U a unique fixed point, which we 
denote by *

Ax . 
 Since the conditions of lemma 1.4.2 are fulfilled, we obtain the conclusion of this theorem and the 
proof is complete. �  
 
 

6.3  The data dependence 
 

In what follows, we study the dependence of the solution of the integral equation (6.1) with respect 
to the function  f , and for this, we consider the following perturbed integral equation: 

 ∫
−

=
t

t

dssysgty
τ

))(,()( ,   t ∈R,         (6.4) 

where g∈C(R×I, J), and I, J ⊂ R are compact intervals. 
 

Theorem 6.3.1. (M. Dobriţoiu, I. A. Rus and M. A. Şerban [4]) Suppose that: 

(i)  the conditions of the theorem 6.1.1 are fulfilled and we denote by x* the unique solution of the 
integral equation (6.1); 

(ii )  there exists  η > 0 ,  such that 

  f (t,u) – g(t,u) ≤ η ,   for all  t ∈R , u ∈I . 

 Under these conditions, if  y* is a solution of the integral equation (6.4), then we have: 

  
τ

τη
⋅−

⋅≤−
f

C L
yx

1
**  . 

 
Proof. We consider the operator A : U → U , defined by the relation (6.2): 
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 ∫
−

=
t

t

dssxsftxA
τ

))(,(:))(( ,   t ∈ R . 

Also, let  B : U → U  be an operator attached to the perturbed integral equation (6.4), defined by the 
relation: 

 ∫
−

=
t

t

dssysgtyB
τ

))(,(:))(( ,   t∈R .       (6.5) 

 From the condition (ii ) we have: 

 [ ] ≤−=− ∫
−

t

t

dssxsgsxsftxBtxA
τ

))(,())(,())(())((  

    τηη
ττ

⋅=≤−≤ ∫∫
−−

t

t

t

t

dsdssxsgsxsf ))(,())(,(  

and using the supremum norm, we obtain: 

 τη ⋅≤−
C

xBxA )()(  . 

Now, the proof of the theorem it results by applying the abstract data dependence theorem, 1.3.5. �  
 
 We have, also, the following theorem of data dependence of the periodic solution of the integral 
equation (6.1). 
 

Theorem 6.3.2. (M. Dobriţoiu, I. A. Rus and M. A. Şerban [4]) Suppose that: 

(i) the conditions of the corollary 6.1.2 are fulfilled and we denote by x* the unique ω–periodic 
solution of the integral equation (6.1); 

(ii )  g(t + ω, u) = g(t, u) ,   for all  t∈R, u∈I ; 

(iii )  there exists  η > 0 ,  such that 

  f (t,u) – g(t,u) ≤ η ,   for all  t∈R, u∈I . 

 Under these conditions, if  y* is an ω–periodic solution of the perturbed integral equation (6.4), then 
we have: 

  
τ

τη
⋅−

⋅≤−
f

C L
yx

1
**  . 

 
Proof. We consider 

U := Xω := { x∈C(R,I) | x(t + ω) = x(t) , for all  t∈R } 

and the operator  A : U → U  defined by the relation (6.2): 

 ∫
−

=
t

t

dssxsftxA
τ

))(,(:))(( ,   t ∈ R . 
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Let  B : U → U  be an operator defined by the relation (6.5): 

 ∫
−

=
t

t

dssysgtyB
τ

))(,(:))(( ,   t∈R . 

 From the condition (iii ) we have: 

 [ ] ≤−=− ∫
−

t

t

dssxsgsxsftxBtxA
τ

))(,())(,())(())((  

     τηη
ττ

⋅=≤−≤ ∫∫
−−

t

t

t

t

dsdssxsgsxsf ))(,())(,(  

and using the supremum norm, we obtain: 

 τη ⋅≤−
C

xBxA )()(  . 

Now, we obtain the conclusion of the theorem by applying the abstract data dependence theorem 
1.3.5. �  
 
 

6.4  The differentiability of the solution with respect to a parameter 
 
 In what follows, we study the differentiability of the solution of the integral equation (6.1) (see [7], 
[12], [18]) with respect to the parameter λ: 

 ∫
−

=
t

t

dssxsftx
τ

λλ ));(,(),( ,   t∈R,  λ∈K ,      (6.6) 

where  f∈C(R×I×K, J), with  I = [α,β],  0 < α < β,  J = [m,M],  0 < m < M  and  K ⊂ R  is an compact 
interval. 
 Let be 

Xω := { x∈C(R ×K, I) | x(t + ω, λ) = x(t, λ) , for all  t∈R,  λ∈K }, 

where  ω > 0. 
 

Theorem 6.4.1. (M. Dobriţoiu, I. A. Rus and M. A. Şerban [4]) Suppose that the following 
conditions are fulfilled: 

(i)  α ≤ m·τ ,   β ≥ M·τ ; 

(ii )  f(t, u; λ) ∈ [m,M] ,   for all   t∈R,  u∈I,  λ∈K ; 

(iii )  f(t + ω, u; λ) = f(t, u; λ) ,   for all  t∈R,  u∈I,  λ∈K ; 

 (iv)  f(t, · ; λ) : I → J   is  Lf – Lipschitz  for all  t∈R,  λ∈K ; 

(v)  Lf ·τ  < 1 . 

Then 

 (a)  the integral equation (6.1) has a unique solution  x* in  Xω . 

 (b)  for all  x0∈Xω ,  the sequence  (xn)n∈N   defined by the relation: 
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  ∫
−

+ =
t

t
nn dssxsftx

τ
λλ )),(,(),(1  

     converges uniformly to x* ; 

 (c)  if  f(t , ·, ·)∈C1(I ×K),  then  x*( t, ·)∈C1(K) . 
 
 Proof. (a) + (b). We consider the operator B : Xω → C(R×K) defined by the relation: 

 ∫
−

=
t

t

dssxsftxB
τ

λλ ));(,(:),)((  . 

 From the conditions (i) and (iii ) it results that Xω is an invariant subset for the operator B, i. e. Xω ∈ 
I(B). 

From the conditions (iv) and (v) it results that the operator B is an α–contraction with the constant α 
= Lf ·τ . 

Applying now, the Contraction Principle 1.3.1, it results that B is a Picard operator. 

 (c). We prove that there exists  
λ∂

∂ *x   and  that  
λ∂

∂ *x ∈ C(R×K ) . 

 If we suppose that there exists  
λ∂

∂ *x , then from 

 ∫
−

=
t

t

dssxsftx
τ

λλλ ));,(,(),(  

we have: 

 ∫∫
−− ∂

∂+
∂

∂⋅
∂

∂=
∂

∂ t

t

t

t

ds
sxsf

ds
sx

x

sxsftx

ττ λ
λλ

λ
λλλ

λ
λ ));,(,();());,(,(),( . 

 This relation suggests us to consider the operator  T : Xω×Xω → Xω×Xω, defined by the relation: 

 T = (B, C) , T(x, y) = (B(x), C(x, y)) , 

where 

 ∫∫
−− ∂

∂+⋅
∂

∂=
t

t

t

t

ds
sxsf

dssy
x

sxsf
tyxC

ττ λ
λλλλλλ ));,(,(),());,(,(:),)(,( . 

 We have: 

 ≤−⋅
∂

∂≤− ∫
−

t

t

dsszsy
x

sxsf
tzxCtyxC

τ
λλλλλλ ),(),());,(,(),)(,(),)(,(  

          
Cf

t

t
Cf zyLdszyL −⋅⋅=−⋅≤ ∫

−
τ

τ
 , 

for all x, y, z ∈Xω . 
Since the conditions of the fiber Picard operators theorem are fulfilled, it results that T is a Picard 

operator and the sequences: 

 xn+1 = B(xn) and yn+1 = C(xn, yn) 
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converge uniformly to (x*, y*)∈FT , for all x0, y0∈Xω . 

 If we consider x0, y0∈Xω such that 
λ∂

∂
= 0

0
x

y , then it results that 

 
λ∂

∂
= n

n

x
y  ,   for all  n ∈ N . 

So 

*. xx unif
n  → ,   as  n → ∞. 

*. y
x unifn  →

∂
∂

λ
   as  n → ∞. 

Now, using a Weierstrass argument, we deduce that x* is differentiable, i. e. there exists 
λ∂

∂ *x  and 

λ∂
∂=

*
* x

y . �  
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Appendices 
 

Appendix 1a 
 
 
 
 The results obtained using the program MAS_TrapezE.m 
 
 

>> The successive approximations method and the trapezoids formula 
  
The input data: 

 
We divide the interval [0,1] into n equal parts, n = 100 
 
The error, er = 0.0000000001 
  
The results: 

 
The approximate solution of the integral equation is: 

 
   x(t) = cost + 
 
ans = 
 
   0.72289467701720 
 
and it was obtained for the required value of the error, after 
 
ni = 
 
    18 
 
iterations. 

 
>> 
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Appendix 1b 
 
 
 
 
 
 The results obtained using the program MAS_TrapezI.m 
 
 

>> The successive approximations method and the trapezoids formula 
  
The input data: 

 
We divide the interval [0,1] into n equal parts, n = 100 

 
The numbers of iterations, ni = 20 

  
The results: 
 
The approximate solution of the integral equation, was calculated after: 
 
ni = 
 
    20 
 
iterations and it is: 
  
   x(t) = cost + 
 
ans = 
 
   0.72289467704154 
 
with the error: 
 
er = 
 
    5.008105041781619e-012 
 
>> 
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Appendix 2a 
 
 
 
 
 
 The results obtained using the program MAS_DreptunghiE.m 
 
 

>> The successive approximations method and the rectangles formula 
 
The input data: 

 
We divide the interval [0,1] into n equal parts, n = 100 

 
The error, er = 0.0000000001 

 
The results: 

 
The approximate solution of the integral equation is: 

 
   x(t) = cost + 

 
ans = 

 
   0.72281138567569 

 
and it was obtained for the required value of the error, after 

 
ni = 

 
    18 

 
iterations. 

 
>> 
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Appendix 2b 
 
 
 
 
 
 The results obtained using the program MAS_DreptunghiI.m 
 
 

>> The successive approximations method and the rectangles formula 
  
The input data: 
 
We divide the interval [0,1] into n equal parts, n = 100 
 
The number of iterations, ni = 20 
  
The results: 
 
The approximate solution of the integral equation, was calculated after: 
 
ni = 
 
    20 
 
iterations and it is: 
  
   x(t) = cost + 
 
ans = 
 
   0.72281138569953 
 
with the error: 
 
er = 
 
    4.898970118460966e-012 
 
>> 
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Appendix 3a 
 
 
 
 
 
 The results obtained using the program MAS_SimpsonE.m 
 
 

>> The successive approximations method and the Simpson’s formula 
  
The input data: 
 
We divide the interval [0,1] into n equal parts, n = 100 
 
The error, er = 0.0000000001 
  
The results: 
 
The approximate solution of the integral equation is: 
  
   x(t) = cost + 
 
ans = 
 
   0.72289470137956 
 
and it was obtained for the required value of the error, after 
 
ni = 
 
    18 
 
iterations. 
>> 
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Appendix 3b 
 
 
 
 
 
 The results obtained using the program MAS_SimpsonI.m 
 
 

>> The successive approximations method and the Simpson’s formula 
  
The input data: 
 
We divide the interval [0,1] into n equal parts, n = 100 
 
The number of iterations, ni = 20 
  
The results: 
 
The approximate solution of the integral equation, was calculated after: 
 
ni = 
 
    20 
 
iterations and it is: 
  
   x(t) = cost + 
 
ans = 
 
   0.72289470140390 
 
with the error: 
 
er = 
 
    5.007882997176694e-012 
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