Mathematical Methods and Systems in Science and Engineering

Proceedings of the 17th International Conference on Mathematical Methods, Computational Techniques and Intelligent Systems (MAMECTIS '15)

Proceedings of the 8th International Conference on Manufacturing Engineering, Quality and Production Systems (MEQAPS '15)

Proceedings of the 6th European Conference on Applied Mathematics and Informatics (AMATHI '15)

Tenerife, Canary Islands, Spain, January 10-12, 2015
MATHEMATICAL METHODS and SYSTEMS in SCIENCE and ENGINEERING

Proceedings of the 17th International Conference on Mathematical Methods, Computational Techniques and Intelligent Systems (MAMECTIS '15)
Proceedings of the 8th International Conference on Manufacturing Engineering, Quality and Production Systems (MEQAPS '15)
Proceedings of the 6th European Conference on Applied Mathematics and Informatics (AMATHI '15)

Tenerife, Canary Islands, Spain
January 10-12, 2015
MATHEMATICAL METHODS and SYSTEMS in SCIENCE and ENGINEERING

Proceedings of the 17th International Conference on Mathematical Methods, Computational Techniques and Intelligent Systems (MAMECTIS '15)
Proceedings of the 8th International Conference on Manufacturing Engineering, Quality and Production Systems (MEQAPS '15)
Proceedings of the 6th European Conference on Applied Mathematics and Informatics (AMATHI '15)

Tenerife, Canary Islands, Spain
January 10-12, 2015
Editors:
Prof. Nikos E. Mastorakis, Technical University of Sofia, Bulgaria
Prof. Michael N. Katehakis, Rutgers University, USA

Committee Members-Reviewers:
Ivan G. Avramidi          Muhammet Koksal
Michel Chipot              Md. Shamim Akhter
Xiaodong Yan               Vassos Vassiliou
Ravi P. Agarwal           Yuqing Zhou
Yushun Wang               Maria Dobritoiu
Detlev Buchholz            U. C. Jha
Patricia J. Y. Wong        Bhagwati Prasad
Jim Zhu                    Emmanuel Lopez-Neri
H. M. Srivastava           Carla Pinto
Martin Bohner              Jose Manuel Mesa Fernández
Martin Schechter           Zanariah Abdul Majid
Ferhan M. Atici            David Nicoleta
Marco Sabatini             Snezhana Georgieva Gocheva-Ilieva
Gerd Teschke               Al Emran Ismail
Meirong Zhang              Robert L. Bishop
Lucio Boccardo             Glenn Loury
Shanhe Wu                  Fernando Alvarez
Natig M. Atakishiyev       Morris Adelman
Jianming Zhan              Mark J. Perry
Narcisa C. Apreutesei      Reinhard Neck
Chun-Gang Zhu              Ricardo Gouveia Rodrigues
Naseer Shahzad            Ehab Bayoumi
Sining Zheng               Igor Kuzle
Satit Saejang              Maria do Rosario Alves Calado
Juan J. Trujillo           Gheorghe-Daniel Andreescu
Tiecheng Xia               Bharat Doshi
Stevo Stevic               Gang Yao
Lucas Jodar                Biswa Nath Datta
Noemi Wolanski            Gamal Elnaggar
Zhenya Yan                Goricanece Darko
Juan Carlos Cortes Lopez   Lu Peng
Wei-Shih Du                Pavel Loskot
Kailash C. Patidar         Shuliang Li
Janusz Brzdek              Panos Pardalos
Jinde Cao                 Ronald Yager
Josef Diblik               Stephen Anco
Jianqing Chen             Adrian Constantin
Abdelghani Bellouquid      Ying Fan
Anca Croitoru             Juergen Garloff
Sk. Sarif Hassan          Y. Jiang
Gabriela Mircea           Ali Sadeghi
Isaac Yeboah               Dragan Randjelovic
Dana Anderson              Genqi Xu
Elena Scutelnicu           Huashui Zhan Zhan
Daniela Litan             Mihaela Iliescu
Ibrahim Canak             Roots Larissa
Vasile Cojocaru            Tevy Ionel
Hamideh Eskandari         Tiberiu Socaciu
Claudia-Georgeta Carstea   Ahmed Zeeshan
Elena Zaitseva             Dharmpal Singh
Mihai Tiberiu Lates       Ioana Adrian
Yixin Bao                 Kandarpa Kumar Sarma
Gabriella Bognar          Libor Pekar
# Table of Contents

**Plenary Lecture 1: Swarm Intelligence Algorithms Hybridization**  
Milan Tuba  
11  

**Plenary Lecture 2: On Optimal Bidding in Internet Concurrent Auctions**  
Michael N. Katehakis  
12  

**Plenary Lecture 3: Stable Solution of Ill-Posed Problems by Projection Methods**  
Uno Hämarik  
13  

**Plenary Lecture 4: Soft Biometrics: Its Use for Biomedical Applications**  
Carlos M. Travieso-González  
14  

**Plenary Lecture 5: Statistical Analysis of Psychomotor Therapy in Children with Attention Deficit / Hyperactivity Disorder**  
Luís M. Grilo  
15  

**Plenary Lecture 6: Production System Design: Analytics and Simulation Methods**  
Farouk Yalaoui  
16  

**Evaluation of Spurious Trip Rate of SIS Dependent on Demand Rate**  
N. T. Dang Pham, Michael Schwarz, Josef Börcsök  
17  

**Analysis of an Unreliable Series-Parallel Production System with Limited Storage Capacity**  
Yassine Ouazene, Farouk Yalaoui, Hicham Chehade, Alice Yalaoui  
25  

**On Optimal Bidding in Concurrent Auctions**  
Michael N. Katehakis, Kartikeya S. Puranam  
35  

**Interpolant Update of Preconditioners for Sequences of Large Linear Systems**  
Fabio Durastante  
40  

**On Integro-Differential Splines and Solution of Cauchy Problem**  
Irina Burova  
48  

**On The Classification of Triangles in de Sitter Space**  
Atakan Tugkan Yakut, Murat Savas, Efruz Ozlem Mersin  
53  

**On Rigid, Hard and Soft Problems and Results in Arithmetic Geometry**  
Nikolaj Glazunov  
61  

**Formal Model for Generating Railway Interlocking Software Based on a Modularized Track Model**  
Daniel Topel, Josef Borcsok  
66  

**Fixed Points and Stationary Points for Multivalued Maps in Metric Spaces**  
Seong-Hoon Cho  
74
Hyperbolic n-Simplex and Orthogonal Projection in de Sitter n-Space
Baki Karliga, Murat Savas, Atakan T. Yakut

Study Regarding Comparative Analysis of Pneumatic Actuators
Gheorghe Mares

Effect of Initial Stress on the Propagation of Flexural Waves in Transversely Isotropic Magnetoelectric Circular Cylinder
Abo-El-Nour N. Abd-Alla, Fatimah Alshaikh

Estimation for Burr-X Model Based on Progressively Censored with Random Removals: Bayesian and non-Bayesian Approaches
Abdullah Y. Al-Hossain

Hybridized Fireworks Algorithm for Global Optimization
Nebojsa Bacanin, Milan Tuba, Marko Beko

The Design Evaluation in the Process of Product Design and Planning Based on Kansei Engineering
Kai-Shuan Shen

On Estimates and Asymptotic Solutions of Double Nonlinear Problems Reaction - Diffusion with Sources and Inhomogeneous Density
M. Aripov, Z. Rakhmonov

Reliable Computer-Aided Diagnosis System Using Region Based Segmentation of Mammographic Breast Cancer Images
Bhagwati Charan Patel, G. R. Sinha

The Comparison of Entropy and Parameter Estimation in Complex Networks
Chunxue Zhao

The Identification of Good and Bad High Leverage Points in Multiple Linear Regression Model
Habshah Midi, Mohammed A. Mohammed

Determining the Risk of Profit, with a View to Assessing the Implementation Chance for a Business Project
Toma Mariana-Anca

Efficient Algorithm for Denoising of Medical Images Using Discrete Wavelet Transforms
Yogesh S. Bahendwar, G. R. Sinha

Using Text Mining to Locate and Classify Research Papers
Edgar Alan Calvillo Moreno, Ricardo Mendoza-González, Jaime Muñoz-Arteaga, Julio Cesar Martínez-Romo, Sandra Jimenez-González

Comparative Study of Rayleigh Fading Multiple Antenna System with MRC
Hemlata Sinha, M. R. Meshram, G. R. Sinha

A Review of Handoff Latency Reducing Techniques in IEEE 802.11 WLAN Networks
Qusay Medhat Salih, Mueen Uddin, Nikos Mastorakis
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimisation of Software Reliability Prediction</td>
<td>185</td>
</tr>
<tr>
<td>Jamal Krini, Ossmane Krini, Josef Börcsök</td>
<td></td>
</tr>
<tr>
<td>Web Technologies Uses and Recommendations for Mobile Development</td>
<td>191</td>
</tr>
<tr>
<td>Helder Troca Zagalo</td>
<td></td>
</tr>
<tr>
<td>Comments on &quot;Some New Exact Traveling Wave Solutions to the Simplified MCH Equation and the (1+ 1)-Dimensional Combined KdV–mKdV Equations&quot;</td>
<td>200</td>
</tr>
<tr>
<td>Zehra Pinar, Turgut Öziş</td>
<td></td>
</tr>
<tr>
<td>Some Considerations Regarding the Bending Stiffness of the Straight Gear</td>
<td>207</td>
</tr>
<tr>
<td>Simona Duicu</td>
<td></td>
</tr>
<tr>
<td>Reverse Engineering of PDC Drill Bit Design to Study Improvement on Rate of Penetration</td>
<td>211</td>
</tr>
<tr>
<td>Ahmad Majdi Abdul Rani, Kharthigesan A. L. Ganesan</td>
<td></td>
</tr>
<tr>
<td>Study of Friction Stir Welding Technique as a Solid-State Joining of Metallic Plates</td>
<td>215</td>
</tr>
<tr>
<td>Mohd Anees Siddiqui, S. A. H. Jafri, Shahnavaz Alam</td>
<td></td>
</tr>
<tr>
<td>Solving a Hybrid Flowshop Scheduling Problem with a Decomposition Technique and a Fuzzy Logic Based Method</td>
<td>219</td>
</tr>
<tr>
<td>Hicham Chehade, Farouk Yalaoui, Lionel Amodeo, Xiaohui Li</td>
<td></td>
</tr>
<tr>
<td>Analyticity of Solutions of Cordial Volterra Integral Equations</td>
<td>229</td>
</tr>
<tr>
<td>Urve Kangro</td>
<td></td>
</tr>
<tr>
<td>Experimental Research on Wear and Thermal Deformation for Drill Hole Gauge</td>
<td>234</td>
</tr>
<tr>
<td>Alexandru Orzan, Constantin Buzatu</td>
<td></td>
</tr>
<tr>
<td>Independent Mixed-Gamma Variables for Modelling Rainfall</td>
<td>239</td>
</tr>
<tr>
<td>Roslinazairimah Zakaria, Nor Hafizah Moslim</td>
<td></td>
</tr>
<tr>
<td>Intensity Based Distinctive Feature Extraction and Matching Using Scale Invariant Feature Transform for Indian Sign Language</td>
<td>245</td>
</tr>
<tr>
<td>Sandeep B. Patil, G. R. Sinha</td>
<td></td>
</tr>
<tr>
<td>Guidelines to Design Usable Security Feedback for Identity Management Applications</td>
<td>256</td>
</tr>
<tr>
<td>Ricardo Mendoza-González, Sandra Jimenez-González</td>
<td></td>
</tr>
<tr>
<td>Cost and Time in Two-Sided Assembly Line Structure</td>
<td>265</td>
</tr>
<tr>
<td>Waldemar Grzechca</td>
<td></td>
</tr>
<tr>
<td>Additive And Multiplicative Noise Removal From Medical Images Using Bivariate Thresholding by Dual Tree Complex Wavelet Transform</td>
<td>274</td>
</tr>
<tr>
<td>Devanand Bhonsle, G. R. Sinha, Vivek Chandra</td>
<td></td>
</tr>
<tr>
<td>Exact Solution of One Phase Stefan Problem by Heat Polynomials and Integral Error Functions</td>
<td>281</td>
</tr>
<tr>
<td>Merey Sarsengeldin, Alisher Arynov, Dukat Kabylkaev</td>
<td></td>
</tr>
</tbody>
</table>
Performance Evaluation of Global Sequence Alignment Algorithm on Multicore Architectures with Reference to Cache
Deepti Shrimankar, Shailesh Sathe

Authors Index
Abstract: Most real-life problems in almost every field of science, business, engineering etc. can be modeled as some kind of optimization problem. Powerful mathematical techniques have been developed over centuries for most optimization problems, however a class of problems of great practical importance remains computationally intractable. When the problem dimension is high and when there are many local optima, the traditional deterministic methods cannot cope with the computational complexity of the problem and the use of nondeterministic optimization metaheuristics is more promising. Swarm intelligence is a relatively new branch of nature inspired algorithms that very successfully find suboptimal solutions to hard optimization problems in a reasonable amount of computational time, by simulating collective intelligence of swarms of very simple agents like bees, ants, fireflies etc. Swarm intelligence metaheuristics employ iterative, population based, stochastic approach, and do not make any assumptions about the fitness landscape. They are based on intensification (exploitation) and diversifications (exploration) where intensification performs search around the current best solutions, while diversification explores the search space more broadly by conducting essentially a random search. Swarm intelligence algorithms exhibit excellent performance on many hard optimization problems, however for many problems the results remain unsatisfying. Success depends on the balance between exploitation and exploration and better balance can often be achieved by hybridization i.e. using combination of appropriate elements from two or more different algorithms. Selection of hybridization elements has to be carefully targeted so that the advantages of one algorithm overcome shortcomings of the other. This plenary lecture presents some successful hybridizations of various recent swarm intelligence algorithms.
Plenary Lecture 2

On Optimal Bidding in Internet Concurrent Auctions

Professor Michael N. Katehakis
Management Science and Information Systems Department
Rutgers University
NJ, USA
E-mail: mkatehakis@gmail.com

Abstract: Online auctions have become a popular and effective tool for Internet-based E-markets. We investigate problems and models of optimal adaptive automated bidding in an environment of concurrent online auctions, where multiple auctions for identical items are running simultaneously. We develop new models for a firm where its item valuation derives from the sale of the acquired items via their demand distribution, sale price, acquisition cost, salvage value and lost sales. We establish monotonicity properties for the value function and the optimal dynamic bid strategy and we present computations.

Brief Biography of the Speaker: Michael N. Katehakis is a Professor in the Management Science and Information Systems Department at Rutgers University. He is known for his work on Markov decision processes, Stochastic Models, data-driven analytics and their application to queuing, reliability and service systems. He has served on many panels (NSF, IEEE, conferences), as judge (for the 2013 and 2014 INFORMS Innovative Applications in Analytics Award, the 2013 INFORMS Interactive Sessions Award, and the Jacob Wolfowitz Prize 1994-2006), and editorial boards including the ‘Annals of Operations Research’, the ‘Naval Research Logistics’, ‘Operations Research Letters’, and the ‘Probability in the Engineering and Informational Sciences’. His contributions to the profession have been recognized by INFORMS with an INFORMS Fellow award. He is an Elected member of the International Statistical Institute (ISI) and a Senior Member of the Institute of Electrical and Electronics Engineers (IEEE). In addition to Rutgers he has taught at Stanford, Columbia, SUNY at Stony Brook and at the University of Athens, and at the University of Crete in Greece. Besides to research and teaching, he works with firms in a number of industries on analytics and process improvement projects and he has held industry positions at Bell-Labs and at Brookhaven National Lab.
Plenary Lecture 3

Stable Solution of Ill-Posed Problems by Projection Methods

Abstract: Ill-posed problems are problems, solutions of which are unstable under data perturbations (which may be for example the measurement errors). Typical examples of the ill-posed problems are integral equations of the first kind. For the solution of ill-posed problems special regularization methods are derived (Tikhonov method, iterative methods etc). For numerical realization of these methods on the computer their discretization is unavoidable. In some cases successful discretization method can be viewed as regularization method and then other regularization is not needed. Namely, if the discretization method converges in case of exact data, then in case of noisy data we can choose the discretization step in dependence of the noise level of the data in such a way, that the solution of the discretized problem converges to the solution of continuous problem if noise level tends to zero. Such phenomenon is called self-regularization. We consider self-regularization of ill-posed problems in Hilbert and Banach spaces by the following projection methods: least squares method, least error method, collocation method. In these methods the regularization parameter is the dimension of the projected equation. We choose this dimension by the discrepancy principle or by the monotone error rule and give convergence results.

Brief Biography of the Speaker: Uno Hämarik is the associated professor of the Institute of Mathematics of the University of Tartu, Estonia. He is born in 1955, obtained Dipl.-Math. degree from the University of Tartu, in 1978 and PhD from the Institute of Mathematics and Mechanics of Ural Centre of UdSSR, Sverdlovsk in 1986. He has worked at the University of Tartu 1978-1981 as Assistant Prof., 1984-1995 as researcher and senior researcher and from 1995 as the Assoc. Professor. U. Hämarik has held several appointments as Visiting Professor in Germany (in Universities of Kaiserslautern, Zittau/Görlitz and Kiel). He is a member of the Editorial Boards of the journals "Abstract and Applied Analysis" and "Mathematical Modelling and Analysis" and served as a referee for 22 international journals (SIAM J. Numerical Analysis, SIAM J. Optimization and Control, Inverse Problems, Numerical Functional Analysis and Optimization etc). U. Hämarik has published more than 50 papers in research journals and conference proceedings. Main topic has been regularization of ill-posed problems, especially self-regularization of ill-posed problems by projection methods and rules for the choice of the regularization parameter in many regularization methods (Tikhonov method, iterative methods, projection methods).
Plenary Lecture 4

Soft Biometrics: Its Use for Biomedical Applications

Professor Carlos M. Travieso-González
University of Las Palmas de Gran Canaria
Spain
E-mail: carlos.travieso@ulpgc.es

Abstract: Soft biometrics is a technological evolution of biometrics systems applied to security. Its use has been extended to many fields, for example, social networks, where the information of the facial images can say the range of age, type of gender and race to find automatically the preferences of a relationship, or the facial identification for labelling photos.

In particular for biomedical applications, the use of soft biometrics too has been used. It is acquired physiological measures and/or a set of phenomenon or psycho-physiological reactions from diverse stimulus where it can be obtained a normal or altered (pathology) answer. Soft biometrics modalities as voice, electrocardiogram, electroencephalogram, face, etc. have been applied.

For Neurology, besides the purely experiential, subjective and phenomenological aspect, there are physiological processes due to changes caused by the thoughts or behaviors, which lead to that emotion. Thus, it can be mentioned one of the most important and visible manifestations, which are caused after an emotion behavioral manifestation external, called "emotional expression".

Among the different modes of manifestation, the facial expression is one of the more evident the emotional states of the person whose major muscles of the face that modify these facial expressions are specifically controlled by the facial nerve and the trigeminal nerve, which controls the muscles of the jaw. The found experimental results are correlated with the previous manifestations; and under medical supervision, validate the use of soft biometrics on biomedical applications.

Brief Biography of the Speaker: Carlos M. Travieso-González received the M.Sc. degree in 1997 in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain; and Ph.D. degree in 2002 at University of Las Palmas de Gran Canaria (ULPGC-Spain). He is an Associate Professor from 2001 in ULPGC, teaching subjects on signal processing and learning theory. His research lines are soft-biometrics, biometrics, biomedical signals, data mining, machine learning, classification system, signal, image and video processing, and environmental intelligence. He has researched in more than 35 European, International and Spanish Research Projects, some of them as head researcher. Currently, he has three patents’ applications in the Spanish Office of patents and brands. He is co-author of 2 books, co-editor of 8 Proceedings Book, Editorial Board member of JCIIN, JAEE, JCS and JBIA (journals) and Guest Editor for five international journals and up to 15 book chapters. He has been invited 5 times as Plenary Speaker on international conferences. He has over 300 papers published in international journals and conferences. He is being reviewer up to 30 international journals (JCR-ISI) and has been Program Committee Conference member up to 50. He is member of IASTED Technical Committee on Image Processing from 2007 and member of IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. He will be IEEE-IWOBIB 2015 General Chair; and was IEEE-IWOBIB 2014, InnoEducaTIC 2014, IEEE-INES 2013 General Chair, NoLISP 2011 General Chair, JRB 2012 General Chair and Co-Chair on 39th Annual 2005 IEEE-ICCST. He was Vice-Dean from 2004 to 2010 in Higher Technical School of Telecommunication Engineers in ULPGC. Nowadays, he is a Vice-Dean of Head of Graduate and Postgraduate Studies from March 2013.
Plenary Lecture 5

Statistical Analysis of Psychomotor Therapy in Children with Attention Deficit / Hyperactivity Disorder

Professor Luís M. Grilo
Departamento de Matemática e Física
Instituto Politécnico de Tomar
Quinta do Contador – Estrada da Serra, 2300-313, Tomar
Centro de Matemática e Aplicações da Universidade Nova de Lisboa (CMA-UNL) Portugal
E-mail: lgrilo@ipt.pt

Abstract: One of the most common behavioural disorders in school age children, which has registered a high increase of the prevalence rate in the last decade is Attention deficit/hyperactivity disorder (ADHD) – a neurological condition that involves problems with inattention and hyperactivity-impulsivity that are developmentally inconsistent with the age of the child. ADHD has much comorbidity affecting the child’s life in every domain with a negative influence in the prognosis of this condition. Psychomotor deficits are responsible for many of the learning disabilities of these children. A sample of children with the diagnosis of ADHD, under psychomotor therapy, was submitted to a Psychomotor Battery (PMB) in order to characterize the population followed in the Department of Child Psychiatry of the Centro Hospitalar Cova da Beira (in Portugal). Nonparametric tests and nonparametric approach of graphical techniques were applied to the data, collected at baseline and at the end of the intervention, and the main result shows that the psychomotor profile has a statistical significant improvement after psychomotor therapy (supported by both total scores of PMB and some particular psychomotor factors).

Brief Biography of the Speaker: Luis Miguel Grilo (PhD in Mathematics and Statistics, Technical University of Lisbon, 2006) is currently Adjunct Professor and Director of the Department of Mathematics and Physics, as well as Director of Surveys and Statistical Studies Center of the Polytechnic Institute of Tomar (IPT) and of a Post Graduation in Computational Data Analysis. As a member of the Center for Mathematics and Applications of the New University of Lisbon (CMA UNL), develops scientific research in Distributions Theory (exact and near-exact distributions of some statistics used in Multivariate Analysis) and Statistics Applications (with special interest in Health). Publishes papers regularly in international scientific journals and has made several presentations at national and international meetings of Statistics, including as an Invited Speaker, receiving the “Best presentation award”, in the PhD student category, with a paper presented at the International Conference on Statistics, Combinatorics and Related Areas and X Conference of the Forum for Interdisciplinary Mathematics (SCRA2003|FIMX), University of Southern Maine, USA. At the moment, is Academic editor of the British Journal of Mathematics & Computer Science, member of the Editorial Board of the Asian Journal of Mathematics and Computer Research and member of the board of CLAD (Portuguese Association of Classification and Data Analysis). As a member of Scientific and Organizing Committees, has participated in several national and international meetings of Statistics. In particular, in the IPT was the Chair of the International Conferences SCRA2006|FIM XIII, the XIX Conference on Classification and Data Analysis (JOCLAD2012), the 7th Workshop on Statistics, Mathematics and Computation (WSMC7, 2013) and the 5th International Conference on Risk Analysis (ICRA5, 2013).
Abstract: The purpose of this communication is to give an overview and an analysis of the research about 'production systems design' and in particular production lines. The production system design is complex since it involves several difficult and hard subproblems. These issues might include: the equipment selection; the sizing and allocation of buffer; the workstations workload balancing; the selection and dimensioning of transport resources and also the workshop layout.

This presentation aims to give an overview of some recent and well known results on some issues above. A particular focus will be made on analytical models and resolution algorithms to firstly assess the performance and then to optimize the design of production lines.

Quite clearly, the execution of a task requires material resources and human skills and respect of technological and organizational conditions and precedence constraints, for instance. The various problems, cited above, are generally common to any approach to the optimization of the design of a production system. However, there are several types of production lines. According to Boysen et al., a classification of the different production lines is possible as: the model type (single, joint, multiple), the goods transfer mode between stations (synchronous, asynchronous, and continuous), line processing (manual or automated) and finally design or re-design (first installation or reconfiguration). The presentation will focus on the:

- Models and techniques of analytical simulation modeling of production lines with work on aggregation methods and simulation:
- The EMM (Equivalent Machines methods) method, which is to propose a new analytical approach to the assessment of the performance of a production line in series. This line is composed of unreliable machines separated by intermediate stocks to finite capacity.
- Line system representation by simulation techniques
- Optimization of the spaces of storages
- Optimization of robotic lines
- Multi-objective methods for the design of lines