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Abstract: - The pseudo-two dimensional Savitzky-Golay (S-G) smoothing filter was implemented by the 
Kronecker product of one dimensional SG filter to smooth the noisy image and simultaneously to keep the 
important image features. The performance of our suggested pseudo-2D S-G filter was compared with the 
denosing results of the conventional mean filter and Gaussian low pass filter in terms of Signal to Noise Ratio 
(SNR) and Minimum Square Error (MSE) index. The simulation results show that our suggested S-G filter can 
effectively remove the high-frequency noise and it can keep the original image features.  
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1 Introduction 
In 1964 Savitzky and Golay presented a novel 
method for smoothing and differentiating of a given 
set of data in the sense of a polynomial fitting by 
minimizing the residual in a least-squares measure 
[1]. Compared with mean filter which can be 
implemented with simple computations, the main 
advantage of S-G filter is that it can effectively 
suppress the short-term randomness (noises) and it 
can simultaneously preserve Gaussian-shaped local 
minima or maxima in terms of the amplitude and 
time location. However S-G filter had some 
drawbacks in computational burden and data 
truncation problem. To overcome these glitches, the 
method for calculating convolution weights to least-
square smoothing and differentiation had been 
presented by considering the Gram polynomial 
values and also by evaluating its derivatives [2].  

The original concept of S-G filter algorithm was 
applied to fit a polynomial towards the odd number 
of data. With this aim, the convolution coefficients 
of the S-G filter was derived to smooth and 
differentiate the even number of data with 
specifying a specific degree of a polynomial [3].  
The property of the S-G smoothing filter was 
initially used in analytical chemistry to measure 
accurate spectra [4]. The S-G smoothing property 
was also used to optimize edges and contours of 
geophysical data maps for defining the surface 
phosphate disturbed zone [5]. Additionally S-G 
filtration was applied to increase the accuracy of 
thickness calculation in thin film by smoothing the 

shape of X-ray reflectivity curve [6].  
The Gaussian-shaped local-peaks preservation 

property of S-G filter had attracted some researchers 
in processing biomedical signals such as 
electrocardiogram (ECG) and electroencephalogram 
(EEG) data. For the instances, the S-G filter was 
combined with discrete wavelet decomposition to 
smooth the noise in ECG data without loss of peaks 
resolution [7]. To replace the conventional Pan- 
Tompkin’s algorithm [8] for detecting QRS-fiducial 
features in ECG data, S-G filter was used in place of 
the high pass filter and differentiator [9]. The 
Percentage Root Mean Square Difference (PRD) 
and Signal to Noise Ratio (SNR) index was 
computed to evaluate the performance of the S-G 
filter in suppressing the noise in ECG signal [10]. 
For the segmentation of long-term EEG signal into 
pseudo stationary epochs, the signal is pre-
processed by S-G filter to attenuate its short-term 
variations [11].  

Concerning the image smoothing or differencing, 
2D S-G filter were seldom used and consequently 
2D convolution kernels were sparsely studied or 
documented due to the high degree of complexity in 
interpreting an image data into the polynomial 
fittings. For instance, 2D S-G digital differentiator 
was derived by fitting 2D vector-polynomial bases 
to a local sub-region of the displacement fields 
attained by digital image correlation operation and 
this 2D operator was utilized to improve the 
accuracy in estimating the displacement [12]. For 
image smoothing effort by 2D S-G filter, an image 
was divided into the non-overlapping blocks and the 
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pixel data were represented in a vector format to 
compute the projection matrix on the column space 
spanned by 2D vector-polynomial bases. The 
smoothened target pixel was attained by projecting 
the data vector onto the center row of the projection 
matrix [13]. Our research objective presented in this 
study is to suggest the simpler method for deriving 
the pseudo-2D S-G pseudo-smoothing filter by the 
lower dimensional 1D S-G filter with applying 
Kronecker product [14]. The performance of image 
denoising by our suggested pseudo-2D S-G 
smoothing filter was evaluated by comparing with 
the performance of mean and Gaussian low pass 
filter in terms of Mean Square Error (MSE) and 
Signal-to-Noise Ratio (SNR).  
 
 
2 1D S-G Smoothing Filter 
Consider the digital signal corrupted with noise, x[n] 
(n = 0, 1, … N - 1). The total number of samples is 
N and each sample is evenly time spaced.  To apply 
polynomial fitting into the digital signal with least-
square minimization, also consider the nth-degree 
polynomial p(n) 
 

𝑝𝑝(𝑛𝑛) = �𝑎𝑎𝑟𝑟 ∙ 𝑥𝑥𝑟𝑟
𝑛𝑛

𝑟𝑟=0

                                       

 = 𝑎𝑎0𝑥𝑥0 + 𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥2 + ⋯+ 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛  (1) 
 
, where 𝑎𝑎𝑟𝑟  is the coefficients of a polynomial. 
 
The dimension of S-G filter is to be 2M + 1 which 
approximates the noisy samples with time-index 
between –M to M. The S-G filter can be derived by 
fitting these signals within the window region by 
projecting them on the subspace which is spanned 
by the polynomial bases: {1, x, x2, x3, . . , xn}. The 
derived polynomial minimizes the mean-squared 
approximation error, 𝜉𝜉𝑛𝑛  
 

𝜉𝜉𝑛𝑛 = � �𝑝𝑝(𝑛𝑛) − 𝑥𝑥�ℓ ��
2
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𝑛𝑛
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 (2) 
 

 
In a vector format, the noisy signals with the 
window region with the length of 2M + 1 can be 
expressed by, 
 

𝐗𝐗 = �𝑥𝑥[−𝑀𝑀]  𝑥𝑥[−𝑀𝑀 + 1] ⋯  0  𝑥𝑥[1]  ⋯   𝑥𝑥[𝑀𝑀]�𝑡𝑡   
, 𝑡𝑡: transpose                                                               (3) 

   
The polynomial fitting coefficients can be computed 
by setting up a matrix equation: 
 
𝑿𝑿 = 𝑺𝑺 ∙ 𝑨𝑨 

=

⎣
⎢
⎢
⎢
⎢
⎡1
1
⋮
1
1

  

𝑥𝑥−𝑀𝑀
𝑥𝑥−𝑀𝑀+1
⋮

𝑥𝑥𝑀𝑀−1
𝑥𝑥𝑀𝑀

  

𝑥𝑥−𝑀𝑀2

𝑥𝑥−𝑀𝑀+1
2

⋮
𝑥𝑥𝑀𝑀−1

2

𝑥𝑥𝑀𝑀2

  

𝑥𝑥−𝑀𝑀3

𝑥𝑥−𝑀𝑀+1
3

⋮
𝑥𝑥𝑀𝑀−1

3

𝑥𝑥𝑀𝑀3

  

⋯
⋯
⋮
⋯
⋯

  

𝑥𝑥−𝑀𝑀𝑛𝑛

𝑥𝑥−𝑀𝑀+1
𝑛𝑛

⋮
𝑥𝑥𝑀𝑀−1
𝑛𝑛

𝑥𝑥𝑀𝑀𝑛𝑛 ⎦
⎥
⎥
⎥
⎥
⎤

∙ �

𝑎𝑎0
𝑎𝑎1
⋮
𝑎𝑎𝑛𝑛

� (4) 

 
, where, xi is the sampling-time index contained in 
the selected window region. The noisy signal for 
polynomial fitting contains 2M + 1 samples and the 
dimension of basis (the maximum degree of 
polynomial) is chosen to be not larger than 2M + 1 
by linear algebra theory. If the dimension of basis is 
not equal to the number of samples in the 
considered window, the pseudo-inverse of S is 
computed by projecting X onto the subspace which 
is spanned by the polynomial bases. The fitted-
polynomial coefficients 𝑨𝑨� can be estimated by, 
 

𝐀𝐀� ≈ (𝑺𝑺𝑡𝑡 ∙ 𝑺𝑺)−1 ∙ 𝑺𝑺𝑡𝑡 ∙ 𝑿𝑿                     (5) 
 
The S-G filtered signal 𝑿𝑿�  can be obtained by 
multiplying projection matrix, P and resolving the 
entries in the center row,  
 

𝑿𝑿� = 𝑺𝑺 ∙ 𝑨𝑨� 
     = 𝐒𝐒 ∙ (𝑺𝑺𝑡𝑡 ∙ 𝑺𝑺)−1 ∙ 𝑺𝑺𝑡𝑡 ∙ 𝑿𝑿 
     = 𝑷𝑷 ∙ 𝑿𝑿                                         (6) 

 
We can interpret these center-row matrix entries in 
P as a convolution kernel or S-G polynomial 
coefficients. Thus S-G filtering for the entire noisy 
signal can be achieved by operating the convolution 
operation with data samples within the same length 
of the window by shifting one sample to the right. 
 
2.1 Sample S-G Coefficient (Convolution 
Kernel) 
The dimension of polynomial basis, n should be not 
greater than 2M + 1.  For the simple explanation, we 
consider the two cases of: (i) n = 1, M = 1 (ii) n = 2, 
M  = 2 here.  
 
2.1.1 S-G Coefficient (n = 1, M = 1)  
The first-degree 1D-polynomial is used for fitting 
the equation on the three samples, 𝑿𝑿 =
[𝑥𝑥[−1] 𝑥𝑥[0] 𝑥𝑥[1]]𝑡𝑡  
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𝑿𝑿 = 𝑺𝑺 ∙ 𝑨𝑨                             (7) 
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The S-G coefficients can be resolved by the entries 
in the center row of 𝑷𝑷3×3 
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It turns out that these entries are same as the kernel 
of a moving average filter due to the first degree-
polynomial approximation. 
 
2.1.2 S-G Coefficient (n = 2, M = 2) 
The 2nd degree 1D-polynomial is used for fitting the 
equation on the five samples, 
𝑿𝑿 = [𝑥𝑥[−2] 𝑥𝑥[−1] 𝑥𝑥[0] 𝑥𝑥[1] 𝑥𝑥[2]]𝑡𝑡  
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The S-G convolution kernel can be resolved by the 
entries in the center row of 𝑷𝑷5×5 
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3  Pseudo-2D S-G Filter 

For the image processing applications by the S-G 
filter including image denoising, 2D-vector 
polynomial should be considered due to the two- 
dimensional spatiality of an image data. With 
assumption of wide-sense stationary in a sub-region 
of original (clean) image in which the cardinality is 
decided by the pre-selected window size (for 
instance 5 × 5), we propose pseudo-2D S-G filter 
for image smoothing by operating the Kronecker 
product on 1-D S-G filters.  

Kronecker product, denoted by, ⊗ , is the 
generalization of the outer product and it is a useful 
operation in generating high-order matrix from low-
order matrices. If C is a M1 × M2 matrix and D is a 
N1 ×  N2 matrix, then the Kronecker product is 
defined as a M1 ×  M2 block matrix of basic 
dimension N1 × N2. 

 
𝐂𝐂⊗𝐃𝐃 = {𝑐𝑐(𝑚𝑚,𝑛𝑛) ∙ 𝑫𝑫}                                     

= �
𝑐𝑐(1,1)𝑫𝑫

⋮
𝑐𝑐(𝑀𝑀1, 1)𝑫𝑫

  
⋯

⋯
  
𝑐𝑐(1,𝑀𝑀2)𝑫𝑫

⋮
𝑐𝑐(𝑀𝑀1,𝑀𝑀2)𝑫𝑫

�       (12) 

 
This product is a quite effective operator to interpret 
the various image transforms such as Discrete 
Fourier transform, Discrete Cosine transform and 
Discrete Hadamard transform as a fast form, 
respectively. For our experimental simulations for 
image smoothing application, our pseudo-2D S-G 
filter is implemented by the Kronecker product of 
the S-G convolution kernel that resolved by 
collecting the entries in the center row of  𝑷𝑷5×5 . 
 
 
4 Experimental Simulations for Image 
Denoising 
The performance of image denoising by our 
suggested pseudo-2D S-G smoothing filter was 
compared with the filterd results from mean and 
Gaussian low pass filter in terms of Mean Square 
Error (MSE) and Signal-to-Noise Ratio (SNR) in dB 
scale, respectively.  
 

SNR = 10𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝜎𝜎𝑠𝑠2

𝜎𝜎𝑛𝑛2
�                    (13) 

 
,where 𝜎𝜎𝑠𝑠2 is a variance of the filtered image and 𝜎𝜎𝑠𝑠2 
is a variance of the selected Region Of Interest (ROI) 
for estimating noise power. 
The MSE is defined by the mean-squared difference 
between the pixels-intensites of a clean image and 
the filtered image. Fig.1 shows the convolution 
kernels for the mean filter, Gaussian low pass filter 
and pseudo-2D S-G filter, respectively. 
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(a) 

 
(b) 

 
(c) 

Fig.1 Surface-mesh plot for the convolution kernels 
of (a) mean, (b) Gaussian low pass and (c) pseudo-
2D S-G filter, respectively.  
 
Here, the pseudo-2D S-G filter can be implemented 
by Kronecker product of the vector itself in which 
its elements are the entries of the center row in 𝑷𝑷5×5. 
For experimental simulations for image denoising 
application, we consider the noisy image, g which is 
corrupted by the additive Gaussian-distribution 
random noise, n 

 
g = f + n                       (14) 

 
where f is the original (clean) image. Fig.2 displays 
"Lenna" image contaminated with the additive 
Gaussian-distribution random noise (mean = 0.0108, 
variance = 163.3824). 
 

 
Fig.2 "Lenna" image corrupted with the additive 
random noise. 
 
The image smoothing operations can be achieved by 
the applying 2D convolution operation using the 2D 
kernels as shown in Fig.1, respectively. Fig.3 shows 
the filtered results with displaying ROI by drawing a 
rectangular polygon. This local area is selected to 
compute the filtered-noise variance after applying 
the filtering operation. 
 

 
(a) 

 
(b) 

Recent Advances on Computer Engineering

ISBN: 978-1-61804-336-8 123



 

 

 
(c) 

Fig.3 The filtered (cleaned) image after applying (a) 
mean filter (b) Gaussian low pass filter (c) pseudo-
2D S-G filter. 
 
Table 1 summarizes the performance indexs of the 
low pass filters in terms of SNR and MSE. 
 
Table 1. The calculated performance index: SNR 
and MSE  

 SNR (dB) MSE (dB) 
Noisy image 13.8117 22.0507 

Mean filtered image 24.7324 24.2827 
Gaussian low pass 

filterd image 16.4813 19.4380 

Pseudo-2D S-G 
filtered image 17.6622 20.9742 

 
To describe the local variations in the pixel 
intensities and the efftiveness of suppressing noises 
by processing the filters, a line profile and the 
graylevels of the pixels are also illustrated in Fig.4. 
 

 

 
(a) 

 

 
(b) 

 

 
(c) 
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(d) 

Fig.4 A line profile and the intensity variations 
along the line in (a) noisy image (b) mean filtered 
image (c) Gaussian low pass filtered image (d) 
pseudo-2D S-G filtered image. 
 
The pseudo-2D S-G smoothing filter can be also 
attained by Kroncker product of the vector elements 
deduced by 𝑷𝑷5×5 with a 1D Gaussian kernel [15] as 
shown in Fig.5. 
 

 
Fig.5 Surface-mesh plot for the convolution 
coefficient obtained by Kroncker product of the 
vector elements in 𝑷𝑷5×5 and an 1D Gaussian kernel.  
 
Fig.6 shows the smoothed image by this composite 
filter and SNR and MSE are calculated as 20.0469 
dB and 21.6721 dB, respectively. 
 

 

 
Fig.6 A line profile and the intensity variations 
along the line in the composite-filtered image. 
 
Thus we can find the fact that SNR is improved with 
the loss of MSE with apply the composite filter. 
 
Consider the "Lenna" image again with increasing 
the additive-noise power from 163.3814 to 655.5272 
to lower SNR. Table 2 shows the performance 
indexs of the low pass filters in terms of SNR and 
MSE. 
 
Table 2. The calculated performance index: SNR 
and MSE  

 SNR (dB) MSE (dB) 
Noisy image 7.7781 27.8867 

Mean filtered image 19.8053 24.6230 
Gaussian low pass 

filterd image 10.8358 24.4312 

Pseudo-2D S-G 
filtered image 
(using 𝑷𝑷5×5) 

12.1446 23.6897 

Pseudo-2D S-G 
filtered image 

(using 𝑷𝑷5×5 and 
Gaussian kernel) 

14.7998 23.1816 

 
Fig.7 shows filtered images and their profiles after 
applying the various smoothing filters. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

Fig.7 A line profile and the intensity variations 
along the line in (a) noisy image (b) mean filtered 
image (c) Gaussian low pass filtered image (d) 
pseudo-2D S-G filtered (using 𝑷𝑷5×5 ) image (e) 
pseudo-2D S-G filtered (using 𝑷𝑷5×5  and Gaussian 
kernel) image. 
 
 
 
 

Recent Advances on Computer Engineering

ISBN: 978-1-61804-336-8 126



 

 

5 Conclusion 
This research introduces the polynomial fitting 
algorithm to smoothe the noisy image and 
simultaneoulsy preserve the main features in it by 
implementing pseudo-two dimensional S-G filter 
based on Kronecker products of the lower 
dimensional 1D S-G filters.  Computer simulations 
illustrated in Fig.3-4  show that our suggested S-G 
filter can effectively remove high-frequency noise 
and it can keep the important image features. As 
summarized in Table 1, pseudo-2D S-G filter 
maintains the intermediate SNR and MSE levels 
comparing with the performance of mean filter and 
Gaussian low pass filter.  
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