
Monitoring Control Flow History To Detect Code Reuse Attacks

SOO-YOUNG KIM
KAIST

Department of Computer Science
291 Daehak-ro, Yuseong-gu, Daejeon

South Korea
sooyoungkim@kaist.ac.kr

GYUNGHO LEE
Korea University

Department of Computer Science and Engineering
145 Anam-ro, Seongbuk-gu, Seoul

South Korea
ghlee@korea.ac.kr

Abstract: Code Reuse Attacks (CRAs) are devastating security exploits that allow attackers to produce a malicious
result by reusing the existing code. One such technique, return-oriented programming, is based on arbitrary exe-
cution of specific code snippets (called gadgets) from a stack corruption exploit. Although CRAs can be prevented
by full control flow integrity (CFI) checking, software CFI checking has significant overhead and is vulnerable to
unintended branch instructions. In this paper, we propose Miss Verification Unit (MVU), a light-weight security
module that can address the limitations of CFI. In order to provide a protection mechanism with low overhead, a
branch predictor and branch target buffer is used to narrow down the validation scope. MVU checks the validity
only in case of branch miss, assuming that a abnormal control flow incurs CRAs. With this simple checking mech-
anism, MVU only incurs 2% overhead for programs from the SPEC CPU integer benchmark.

Key–Words: Computer Architecture, Security, Trustworthy Computing

1 Introduction

Computers are exposed to constant threats of soft-
ware attacks. Researchers of computer security soci-
ety have explored ways to provide complete trustwor-
thiness of computers [7, 13], yet it is still an on-going
work. Alternately, there have been numerous solu-
tions that successfully block certain flows of the attack
itself. Although they can block targeted attacks, these
partial solutions lead attackers launch new attacks that
circumvent the secure area.

Code injection attacks are an early attempt to exe-
cute malicious code by injecting code into a program.
However, it is no longer threatening since the intro-
duction of protection mechanism such as W

⊕
X . In

order to circumvent such techniques, code reuse at-
tacks (CRAs) are proposed as a response. CRAs can
execute malicious code by reusing the existing code.
For example, the return-into-libc attack calls existing
libc fuction, and return-oriented programming (ROP)
forms gadgets (small snippets that end with return) us-
ing existing instructions. Although there have been
several defense techniques[5, 8, 12], newly proposed
technique, jump oriented programming (JOP) elim-
inate the necessity of return instruction. Although
control-flow integrity (CFI) can prevent both ROP
and JOP, they include high performance overhead that
cannot be commercialized.

To address this problem, we propose Miss Verifi-
cation Unit (MVU), a lightweight hardware-supported

protection scheme against code reuse attacks (CRAs).
It is an efficient security unit that verifies the instruc-
tions that are mispredicted by a branch predictor. By
checking anomalies of regenerated addresses, MVU
showed 95% accuracy in CRA detection, with 2%
overhead on average.

The remainder of this paper is organized as fol-
lows. Section 2 describes the background and related
work. MVU is introduced in Section 3, and its perfor-
mance is evaluated in Section 4. Section 5 provides
the discussion of MVU. Finally, Section 5 offers some
concluding remarks.

2 Background
2.1 Buffer Overflow and Code Injection At-

tack
Buffer overflows are one of the most common soft-
ware exploits in languages without type safety such
as C/C++. Stack smashing is a buffer overflow attack,
which allows the attacker to overwrite the return ad-
dress of the function with the address of the malicious
injected code. Several approaches were developed to
defeat stack smashing attacks [2, 6].

Nevertheless, buffer overflow vulnerabilities re-
main prevalent. Hardware solutions have been pro-
posed to protect against stack smashing [11, 14]. Data
execution prevention (DEP) prevents code from exe-
cuting from pages allocated for stack or data [15], and

Recent Advances on Computer Engineering

ISBN: 978-1-61804-336-8 90



W
⊕

X page protection schemes are now available at
hardware level.

2.2 Return-oriented Programing
Protection mechanisms such as DEP are now com-
monly supported by major operating systems and
make it impossible to perform code injection attacks.
As a reaction, attackers devised mechanisms to bypass
DEP. Techniques such as return-to-libc attacks, where
the attacker subverts the control flow to call a function
in the standard C library, can not be prevented by DEP
because they execute valid code in memory segments.
However, return-to-libc has its own weakness: it has
clear attack code execution paths, since only regular
library functions can be executed.

The CRA that allows arbitrary code execution
was proposed recently. Return-oriented programming
(ROP) [4] attacks are mounted as follows. The at-
tacker identifies gadgets, which are sequences of in-
structions that end with a return instruction. Sufficient
gadgets can be used to permit the composition of arbi-
trary attack code. Attackers inject a sequence of return
addresses corresponding to a sequence of gadgets, us-
ing buffer overflow vulnerability. When returns are
executed, the program counter is forwarded to the lo-
cation of the first gadget. As that gadget terminates
with a return, the return address is that of the next gad-
get, and so on. ROP executes instructions only from
the code segment, so it is not prevented by DEP. A
Turing-complete set of gadgets has been suggested on
a number of architectures and operating systems [4].

Because of the seriousness of ROP attacks, a
number of protection techniques have already been
proposed. Davi et al. proposed the use of a reference
monitor to detect the repeated execution of a small
number of instruction sequences followed by a return
[8]. Chen et al. monitor return properties to detect
possible ROP attacks [5]. Li et al. propose rewriting
binaries to eliminate the use of returns, completely
preventing return-oriented attacks [12]. Most of the
proposed techniques rely on validating the call-return
behavior.

2.3 Jump-oriented Programming
The above solutions detect or prevent ROP attacks
by monitoring the behavior of call and return in-
structions; however, a variation of the ROP attack
was proposed. Instead of using call-return instruc-
tions, jump-oriented programming (JOP) [3] attacks
employ branch instructions (jumps) to transfer con-
trol between the gadgets. Since no known defenses
against ROP prevent JOP attacks, it is important to
develop techniques that prevent JOP attacks with low

overhead.

2.4 Control Flow Integrity
MVU is most related to recent work on using a ref-
erence monitor to track and enforce control flow in-
tegrity. In particular, Abadi et al. suggest that most
root-kits and other malware initiate by changing the
control flow graph (CFG) of the original program [1].
Thus, CFI tries to keep the program from these at-
tacks by checking whether control flow corresponds
with the original program CFG; this is the invariant
that CFI tries to protect. If a branch that is not present
in the CFG is encountered, the system quits the pro-
cess and signals a CFI violation. ROP and JOP attacks
are thwarted completely by enforcing full CFI at the
branch level granularity. The CFI performance over-
head is non-negligible, but moderate: an average of
16% performance penalty for SPEC 2000 benchmark.

In addition, CFI protection includes expensive
static analysis, profiling, or deep binary analysis for
the CFG construction. The existing software imple-
mentation of CFI also suffers a weakness on x86 and
similar ISAs that feature variable instruction lengths:
unintended control flow instructions can occur in the
middle of multi-byte ISA instructions. These unin-
tended instructions are not protected because no inline
code can be inserted to check them.

2.5 Branch Target Buffer
Once an instruction is decoded as a branch, current
processor initiate branch prediction to prefetch the
next instruction. In doing so, past record of the corre-
sponding branch is used for prediction. Branch target
buffers (BTB) [9] is a cache unit that stores past target
address of branches. If an instruction in fetch stage
is identified as a branch, the instruction address is im-
mediately sent to BTB. Then, the BTB checks if the
corresponding entry exists. If so, it returns the value,
which is the prediction of its target address.

In security perspective, entries in the BTB rep-
resent uncompromised addresses because every BTB
entry is from the past target address that is already ex-
ecuted. If an attacker tried to run malicious code, the
initial point of the attack would be different from the
returned address from BTB. We can use this fact to
narrow down the targets of verification.

2.6 Return Address Stack
In contrast to branches, past record do not predict call
and return of subroutines with high probability, due
to changing targets. Thus, modern speculative super-
scalar processors employ return address stack (RAS)
for prediction, in which return address is pushed by

Recent Advances on Computer Engineering

ISBN: 978-1-61804-336-8 91



Figure 1: Impact of enforcing rules of MVU [10].
Left: possible JOP attacks using gadgets. Right: the
protection by verification rule.

every subroutine call. When the subroutine ends by
return instruction, the target of the return is fetched
without delay, by popping an address off the stack.

RAS is a software transparent storage for return
addresses, which can be used for validation. RAS can
be employed for detecting malicious code since the
code have never been executed. It also provides 98%
or above prediction success rate in general.

3 Miss Verification Unit
3.1 Assumption and Threat Models
We assumed the safety of initial access of an address.
Since CRAs require analysis of previously executed
addresses and manipulate them, unexecuted code can
hardly be a target of an attack. Another assumption
is that the prediction will be incorrect under the CRA.
To be specific, ROP or JOP compromises a program
by programming counter manipulation and by mak-
ing a gadget, and this changes corresponding target
address. The CRA’s nave alternation of target address
can easily be detected by our scheme.

3.2 Rules of Miss Verification Unit
Speculating the behaviors of instructions that change
next instruction addresses, we constructed Miss Veri-
fication Unit (MVU) that enforces verification to ab-
normal target instructions. The verification rules are
composed of three restrictions that can prevent the ar-
bitrary control flows. The following regulations for
control flow checking are from Branch Regulation
[10]:

Figure 2: Architectual Layout of Miss Verification
Unit. Instructions are verified when there is a miss.
No extra verification is executed for other instructions.

The target address should be (1) an address in the
same function; (2) the starting address in a different
function; or (3) the return address of a corresponding
call instruction. In case of setjmp and longjmp, the
instructions that jumps into the middle of function, are
not regarded, since they are handled by operating sys-
tems. Thus, for the target address that fails to fit in
these three categories, the execution will be blocked
assuming that it is an illegal attempt.

Figure 1 shows a simple JOP attack scenario that
uses one dispatcher gadget, two additional gadgets
and a system call instruction (int 80h in x86)[10].
Suppose that the attacker is able to control writable
memory. For this example, we assume that esi points
to the dispatcher gadget, edx points to the system call
instruction and ecx points to a memory location where
addresses of gadgets 1 and 2 are stored contiguously.
Furthermore, the parameters for the system call are as-
sumed to be written in appropriate memory locations
by the attacker. By enforcing above rules, the third
hop is blocked since jmp in the function f1 is in the
middle of an external function f2. This case does not
match with any of our rules, and MVU will generate
an exception.

3.3 Implementation Details of MVU
The type of instructions that governs the programming
counter is typically branch (or jump), call, and return
instructions.

For branches, a current Branch Target Buffer
(BTB) holds all targets of executed branches. When
a prediction miss occurs, either in case of an ordinary
control flow change or an attack, BTB updates the cor-
responding entry. Return also has a call stack, which
includes a collection of return addresses. We utilized
Secure Call Stack (SCS) which can be accessed by
only call and return instructions.

Recent Advances on Computer Engineering

ISBN: 978-1-61804-336-8 92



Input 166.i 200.i integrate.i expr.i scilab.i average
CPI Baseline 1.5365 2.0938 1.5714 2.043 2.1022 1.86938
CPI with MVU 1.7308 2.0940 1.5714 2.043 2.1022 1.90824
Overhead 12.65% 0.02% 0.00% 0.00% 0.00% 2.08%

Table 1: The performance simulation result of MVU (with Simplescalar-3.0)

Also, there have been no architecture modules for
function call prediction. We propose to construct Call
Target Buffer (CTB), which stores the entry and end
points of functions after execution. CTB will be acted
as a checking table of function bound, since it stores
the information of the starting and ending points of
every function. Using CTB unit, the validity of branch
target address can be easily checked.

When branch occurs, the instruction address is
immediately sent to BTB after fetch stage. BTB pro-
vide the next PC if they have the corresponding en-
try, as shown in Figure. Normal execution continues
if the prediction is correct, but a miss is generated if
not. In the latter case, BTB miss handler sends the
target value to MVU, which analyzes appropriateness
in target address change. MVU accesses CTB to see
its function bound. MVU enforces above regulations.
If the address does not follow the regulations, MVU
reports anomaly and flushes the pipeline. To the con-
trary, if the entry is not in the bound of CTB, it is
regarded as an initial call to a new function; as well as
the starting point of a function or any address in the
function would be treated as legal. A jump inside a
function is assumed to be invalid since set jump and
long jump is handled by operating system. The in-
structions that direct control flows are need to be ana-
lyzed.

Employing MVU, more efficient protection can
be delivered misprediction. We propose to show the
diminished overhead by Simplescalar-3.0 benchmark.
Also, the proportion of detected CRAs will be calcu-
lated to show the performance of MVU.

4 Evaluation
For evaluating the performance of MVU, we used
Simplescalar-3.0 simulator. We simulated a 4-wide is-
sue out-of-order core with 64KB L1 data and instruc-
tion caches, 512KB L2 cache and 2 MB L3 cache.
Memory latency was assumed to be 100 cycles. Each
benchmark was simulated for 1 billion committed in-
structions after fast-forwarding for the first 100 mil-
lion instructions.

Table 1 shows the simulation result of MVU. We
assumed that there will be 2 extra cycle for MVU
execution, which is enough for simple checking se-

quence. The result shows that overhead of MVU in
terms of CPI is 2.08% on average.

Due to the reliance on high performance of con-
trol flow prediction, MVU is shown to be a extremely
efficient mechanism, compared to 16% overhead us-
ing CFI checking [1], and average 4% overhead in en-
forcing Branch Regulation [10]. Main contributor to
this efficiency is pruning of the number of instruction
to be verified. Nevertheless, the pruning was done to
unnecessary parts, and does not decrease security ef-
fect.

Miss verification rules can effectively eliminate
most of the potential gadgets and gadget dispatchers
in ROP and its variants because it follows the same
rules of the Brnach Regulation (BR) [9] (based on
the assumptions and threat model of MVU in Section
3.1): The BR achieves 95% protection.

In terms of efficiency, MVU shows 2% overhead
on average, as shown in Table 1. This significant re-
duction of performance overhead is mainly due to cuts
in verification target. There is no miss from uncondi-
tional branches and conditional branches showed 96%
prediction accuracy on average. In addition, the target
is precisely aimed and verification is efficiently imple-
mented, since the security unit is inserted in hardware
level.

5 Conclusion
In this paper, we presented Miss Verification Unit
(MVU), a novel light-weight defense mechanism
against CRAs. MVU conducts verification of the in-
structions that are mispredicted by BTB, and disal-
lows execution of these instructions unless their tar-
gets are within the same function or at the start of
another function, with the exception of return state-
ments that are matched to prior calls. Besides narrow-
ing down the number of required verification, MVU
makes construction of control flow graphs unneces-
sary, which saves time for static program analysis.

We demonstrated that the security benefits
of BR are achieved at a very modest cost: about
2% performance loss, and simple hardware at the
execution stage of the pipeline. By preserving these
simple invariants, MVU showed effective prevention
against the execution of malicious code. The perfor-

Recent Advances on Computer Engineering

ISBN: 978-1-61804-336-8 93



mance and security test will be addressed through
Simplescalar-3.0 benchmark.

This work was supported in part by the National
Research Foundation (NRF 2015R1A2A01003242).

References:

[1] M. Abadi, M. Budiu, lfar Erlingsson, and J. Lig-
atti. Control-flow integrity. In Proceedings of the
12th ACM conference on Computer and commu-
nications security, 2005.

[2] A. Baratloo, N. Singh, and T. Tsai. Transparent
run-time defense against stack smashing attacks.
In Proceedings of the USENIX Annual Technical
Conference, 2000.

[3] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang.
Jump-oriented programming: a new class of
code-reuse attack. In Proceedings of the 7th
ACM Symposium on Information, Computer and
Communications Security.

[4] E. Buchanan, R. Roemer, H. Shacham, and
S. Savage. When good instructions go bad: gen-
eralizing return-oriented programming to risc.
In Proceedings of the 15th ACM conference on
Computer and communications security, page
2738, 2008.

[5] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and
L. Xie. Drop: Detecting return-oriented pro-
gramming malicious code. In Proceedings of
International Conference on Intelligent Sciences
and Systems, 2009.

[6] T. Chiueh and F.-H. Hsu. Rad: A compile-time
solution to buffer overflow attacks. In Proceed-
ings of International Conference on Distributed
Computing Systems, 2001.

[7] C. Cowan, C. Pu, D. Maier, H. Hintony,
J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wa-
gle, and Q. Zhang. Stackguard: Automatic adap-
tive detection and prevention of buffer-overflow
attacks. In Proceedings of the USENIX Annual
Technical Conference, 1998.

[8] L. Davi, A.-R. Sadeghi, and M. Winandy. Dy-
namic integrity measurement and attestation: to-
wards defense against return-oriented program-
ming attacks. In Proceedings of ACM Workshop
on Scalable Trusted Computing, 2009.

[9] J. Hennessy and D. Patterson. Computer Ar-
chitecture: A Quantitative Approach. Morgan
Kaufmann, 2012.

[10] M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and
D. Ponomarev. Branch regulation: Low-
overhead protection from code reuse attacks. In
Proceedings of the International Symposium on
Computer Architecture, 2012.

[11] R. B. Lee, D. Karig, J. P. McGregor, and Z. Shi.
Enlisting hardware architecture to thwart mali-
cious code injection. In Proceedings of the In-
ternational Conference on Security in Pervasive
Computing, page 237252, 2003.

[12] J. Li, Z. Wang, X. Jiang, M. Grace, and
S. Bahram. Defeating return-oriented rootkits
with return-less kernels. In Proceedings of Eu-
roSys, 2010.

[13] Y. J. Park, Z. Zhang, and G. Lee. Microarchitec-
tural protection against stack-based buffer over-
flow attacks. Micro, IEEE, 26(4):62–71, July
2006.

[14] S. Sinnadurai, Q. Zhao, and W. fai Wong.
Transparent runtime shadow stack: Pro-
tection against malicious return modifications.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.120.5702/,
2008.

[15] P. Team. Pax non-executable
pages design & implementation.
http://pax.grsecurity.net/docs/noexec.txt/,
2014.

Recent Advances on Computer Engineering

ISBN: 978-1-61804-336-8 94




