In this paper, forced convection for fully developed flow in a circular duct subjected to microwave heating is investigated by the finite element technique. The 3D temperature field in the illuminated cavity is determined by solving the energy and Maxwell’s equations which are coupled due to temperature dependence on the dielectric properties of the fluid in the duct. Meanwhile, the numerical model describes the available pilot plant which realizes microwave heating. Experimental heating patterns are recovered by an infrared thermography equipment from the outside looking at the applicator-pipe inside the microwave chamber. Providing a suitable data reduction, such a procedure is intended to realize relatively high spatial resolution temperature readings while microwave heating takes place. In facts, temperatures are usually measured in few points which can’t enable a proper temperature profile reconstruction, the latter being strongly uneven along the pipe due to electromagnetic field distribution. Finally, numerical results are compared with the corresponding experimental ones for different temperature levels, thus enabling to assess that a quite satisfying theoretical description is recovered.

Key-Words: - Fiberoptic probes, Infrared thermography, Infrared image processing, Microwave heating of liquids, Maxwell’s equations, Numerical modelling, Experimental validation, FEM, CFD, Comsol multiphysics.

1 Introduction

It is well known that using microwaves (MW) is an effective, low-cost way of heating. In conventional heating warming is due to hot air convection whereas it takes place directly inside the exposed mass for MW, [1, 2]. Thus, MW heating techniques realize reduced time for processing, higher energy efficiency, absence of contaminants released in the environment. Despite of what above observed, some critical points should be addressed that effectively slow down the widespread use of such a technique. In this sense, a primary role is played by the inability of scaling-up and predicting temperature patterns which, in turn, lead to difficulties in practical plant design. Even more complications are involved wishing to consider continuous flow in MW heating: a numerical approach is mandatory, since energy, momentum and Maxwell equations are strongly coupled due to the need to consider dielectric properties temperature dependence [3]. ANSYS Multiphysics [4] and COMSOL Multiphysics [3, 5-7] are among the most used commercial FEM codes for such a purpose. A comparison between ANSYS and COMSOL models is proposed in [8].

On the other hand, as a good practice, the correctness of the adopted numerical scheme should be checked by experimental validation of the results. This procedure is seldom adopted due to difficulties in reading out temperatures inside the illuminated cavity and therefore in controlling the magnetron delivered power. These issues can be surely included among the major hurdles in MW heating [9, 10]. In facts, heating control is realized measuring: 1) inlet and outlet temperatures of coils outside the MW cavity or 2) reading out temperatures in few points inside the cavity by means of fiber optic probes. Unfortunately, as a consequence of the highly uneven electromagnetic field, irregular thermal patterns can be predicted: whimsical numerical validation, an adequate number of sampling points is usually required to obtain reliable results.

To tackle with the latter issue, the present paper aims to propose an attempt for realizing higher measurement resolutions based on quantitative infrared thermography temperature readout. The development of a proper procedure and a suitable data reduction are proposed to perform on line temperature readout inside the illuminated MW cavity. The applicator-pipe is fed by continuous water flow and its wall temperatures are detected along the longitudinal axis; meanwhile, a corresponding numerical investigation was realized. The water flow is supposed to be laminar hydrodynamically fully developed. Consider that laminar motion is not a limiting factor in MW heating since heat transfer is not driven by the wall to fluid temperature difference. However, it is often required
due to the contemporary needs of realizing high temperature increases with relatively low power density. The high frequency electromagnetic field due to the 2450 MHz microwave unit in use and the subsequent thermal field were calculated by COMSOL Multiphysics. Water dielectric properties were assumed temperature dependent. The corresponding experimental tests encompassed two different inlet temperatures. Then, theoretical and experimental evidences were compared.

2 Materials and methods
2.1 Experimental setup
Experiments were performed in the available microwave pilot plant, Figure 1. The oven was supported by a magnetron rated at 2 kW nominal power output and operating at a frequency of 2.45 GHz. The magnetron was connected to the cavity by a rectangular WR340 waveguide. The illuminated chamber was a cube 0.9 m side length. It housed the pyrex glass applicator-pipe (8 mm inner diameter, 1.5 mm thick) shipping water to be heated. The diameter choice is compliant with the electromagnetic skin depth; anyway, for the range of mass flow rates compatible with laminar motion, the design of pipe diameter was promptly done by employing the approach proposed by [11]. The inner chamber walls were insulated by polystyrene slabs black painted while the pipe longitudinal axis lied in a symmetry plane, thus suitably reducing the corresponding computational efforts. A variable-frequency drive was used to fine adjust pumping power supply to circulate water continuously feeding the applicator-pipe. Water was caught by a thermostatic bath enabling to fix its inlet temperature. After leaving the cavity, water was suitably cooled down by a double-pipe heat exchanger and then discharged in the thermostatic bath again thus realizing a closed loop.

A centrifugal fan allowed air renewal into the cavity in order to stabilize the heat transfer between the pipe and the environment. A longwave IR radiometer, thermaCAM by Flir mod. P65, looked at the target pipe through a rectangular window, dim. 30 mm x 700 mm. Such a slot was properly shielded with a metallic grid preventing the EM radiation to leave the cavity whilst resulting almost transparent to the infrared radiation. A cooling air flow was blown parallel to the grid in order to establish its temperature to 19 ± 1.5°C.

2.2 The numerical procedure
The developing temperature field for an incompressible duct flow subjected to heat generation is considered. A 3D numerical FEM model was developed to predict the EM field distribution in water continuously flowing and the subsequent established temperature field. The illuminated cavity replied the geometry of one half of the experimental available setup, as previously specified. Such a domain was discretized using unstructured tetrahedral grid elements and taking care in choosing their size. The common sampling criterion due to Nyquist provides the maximum size of the elements to be minor than one half of the wavelength [12]. Some studies (see for instance [13]) suggest that an acceptable criterion is to use six grids per wavelength which could be not always satisfying as reported in [6]. The limit reported above was strictly satisfied for the moving fluid (i.e. $\lambda_{\text{water}}/\Delta X_{\text{water}} > 30$, λ_{water} being 0.09 m). The same limit is satisfied for the air only where needed.
around the applicator-pipe. Thus, meshing required 704175 tetrahedral elements, 75288 triangular elements, 3403 edge elements and 76 vertex elements.

Water is described as an isotropic and homogeneous dielectric medium with electromagnetic properties dependent on temperature. Maxwell’s equations were solved in the frequency domain. The electric field distribution E in the microwave cavity, both for air and for the applicator pipe carrying the fluid under process, was determined by imposing

$$\nabla \times \left(\frac{1}{\mu_r} \nabla \times E \right) - k_0^2 \left(\varepsilon_r - \frac{i \sigma}{\omega \varepsilon_0} \right) E = 0$$

(1)

in which ε_r is the relative permittivity, ω is the angular wave frequency, μ_r is the relative permeability of the material, k_0 is the wavenumber in vacuum, and σ is the electric conductivity. Air and the PTFE applicator tube were both supposed to be completely transparent to microwaves. Boundary conditions included perfect electric conductors walls, that is, $n \times E = 0$, for the waveguide and the cavity, n being the local normal vector. At the port, an amount of 2kW EM power, 2450MHz frequency, was supplied through a rectangular TE10 mode waveguide (WR 340). Continuity boundary condition was set by default. The condition of perfect magnetic conductor was applied for the surfaces yielding on the symmetry plane: $n \times H = 0$, H being the magnetic field, which has to be therefore parallel to the local normal vector n on the XY plane.

Temperature distribution is determined for laminar fully developed Newtonian fluid considering constant flow properties; thus, the axial velocity component is given by the parabolic velocity profile. In such hypotheses, the energy balance reduces to

$$\rho c_p U \frac{\partial T}{\partial X} = k \nabla^2 T + U_{\text{gen}}$$

(2)

where T is the temperature, ρ is the fluid density, c_p is the specific heat, k is the thermal conductivity, X is the axial coordinate, $U(R)$ is the axial Poiseille velocity profile, D_i is the internal pipe diameter and R the radial coordinate; U_{gen} is the “electromagnetic power loss density” (W/m³) realizing the coupling with the EM field:

$$U_{\text{gen}}(X,Y,Z) = \frac{1}{2} \omega \varepsilon_0 \varepsilon'' |E(X,Y,Z)|^2$$

(3)

being ε_0 the free-space permittivity and ε'' the relative dielectric loss of the material. Temperature dependent dielectric properties were considered, approximated by third order polynomials [3].

3. Temperature readout procedure

The effect of the grid between the target-pipe and the radiometer has to be accounted to perform wall temperature detection. The focus was set on the applicator pipe and it was checked that the instantaneous field of view of the radiometer in use may well find the hot spots corresponding to the pipe below the grid. Nevertheless, the slit response effect determines the object’s temperature to drop as the distance from the radiometer increases.

On the other hand, placing the radiometer far from the camera augmented the portion of pipe envisioned.

Fig. 2. Net apparent applicator-pipe temperatures
Thus, an acceptable compromise was reached allowing to measure 0.63 m along the pipe axis @ 0.83 m distance from the target. A preliminary calibration and a suitable procedure have been then adopted. First, the glass-pipe, the grid and the cavity walls have been coated with a high emissivity black paint to reduce reflections. The emissivity value was measured to be $\varepsilon = 0.95$; it was found almost independent of the relative position of the target with respect to the IR camera. Then, two scene-configurations have been considered: the former, i.e. the “test configuration”, consists of the applicator-pipe carrying the fluid @ fixed inlet temperature; the latter, i.e. the “reference configuration”, provides a polystyrene slab placed inside the cavity in order to hide the pipe to the radiometer. The shielding slab was black painted too and its temperature, T_{slab}, was measured by four fiberoptic probes. For both scenes, neglecting the atmosphere contribution, the fundamental equation of IR thermography relates the spectral radiant power incident on the radiometer to the radiance leaving the surface under consideration. For the case at hand, the attenuation due to the grid must be taken into account. The radiance coming from the inner oven walls is attenuated by a factor τ, here defined as “grid transmittance”, which accounts for the SRF grid effect. The latter parameter depends on both the geometry and the temperature level involved. Additionally, the radiometer receives both the radiance reflected from the external surroundings to the grid and the emission by the grid itself. The inner and outer surrounding environments are considered as blackbodies @ uniform temperatures T_i and T_o, respectively. Finally, the radiometric signal weighted over the sensitivity band by the spectral response of the detection system, including the detector sensitivity, the transmissivity of the optical device and amplification by the electronics, is proportional to the target radiance. For the the “reference” and “test” scenes it can be set as follows:

$$I(T_{\text{app}}) = \tau \left[\varepsilon I(T_{\text{slab}}) + (1-\varepsilon) I(T_i) \right] +$$

$$+ (1-\tau) \left[\varepsilon I(T_{\text{grid}}) + (1-\varepsilon) I(T_o) \right]$$

$$I(T_{\text{app}}) = \tau \left[\varepsilon I(T_{\text{pipe}})+ (1-\varepsilon) I(T_i) \right] +$$

$$+ (1-\tau) \left[\varepsilon I(T_{\text{grid}})+ (1-\varepsilon) I(T_o) \right]$$

here: I is the blackbody Planck’s intensity function, evaluated at a suitable wavelength, within the radiometer spectral sensitivity window, λ^*; the apparent temperatures for the pipe, T_{app}, and the polystyrene slab, T_{app}, are the surface ones given by an equivalent blackbody as seen by the IR equipment. With reference to the radiometer in use, λ^* turns out to be 11.5 μm, as obtained by instrument calibration data.

Inspecting the above equations, the exogenous contributions due to both the reflections arising from inner and outer walls clearly appear. Only the former contribution is attenuated by the presence of the grid. The last contribution represents the reinforcement due to the grid emission. The grid transmittance must be considered strongly dependent on the position since the grid contribution to emission assumes a different weight from point to point. In facts, in spite of the tangential air flow running over the grid, an irregular temperature distribution is still observed, probably arising as an after effect of eddy currents occurrence.

Most commonly in thermography, subtracting the two previous equations (4) and (5), the contributions due to both the grid and the inner and outer environments disappear, thus yielding “the net
equivalent emissivity for cold surroundings”, ε_T - function:

$$\varepsilon_T = \frac{I(T_{\text{pipe}}^{\text{app}}) - I(T_{\text{slab}}^{\text{app}})}{I(T_{\text{pipe}}) - I(T_{\text{slab}})}$$ \hspace{1cm} (6)

An image is shown as an example after the subtraction in Figure 2. In order to explicit the dependence of the radiance on the temperature, the Plank’s law can be rearranged, considering that

$$\frac{dI_{b,\lambda}}{dT} \approx C_2 \frac{C_2}{\lambda T} e^{\frac{C_2}{\lambda T}} \approx C_2 \frac{C_2}{\lambda T}$$ \hspace{1cm} (7)

$C_2 = 14390$ μm K being the 2nd radiation constant. The approximation due to Wien, which is recalled in the last passage, leads to an error less that 1% if the wavelengths are not greater than 2.5 λ_{max}. λ_{max} being the wavelength for which the maximum emission is attained at the actual temperature. These conditions are fully recovered for the case at hand. In view of the previous expression, if one assumes $I \approx T^n$, it is readily recovered that $n \approx 5 \lambda_{\text{max}} / \lambda^2$. Finally, the last expression can be set as:

$$\varepsilon_T = \frac{\left(I(T_{\text{pipe}}^{\text{app}}) \right)^{n(T_{\text{pipe}}^{\text{app}})} - \left(I(T_{\text{slab}}^{\text{app}}) \right)^{n(T_{\text{slab}}^{\text{app}})}}{\left(I(T_{\text{pipe}}) \right)^{n(T_{\text{pipe}})} - \left(I(T_{\text{slab}}) \right)^{n(T_{\text{slab}})}}$$ \hspace{1cm} (8)

The notation resembles that the index n depends on the temperature itself. In view of this equation, provided the apparent temperatures are known via IR thermography and the slab temperature averaging the fiberoptic probes readout, the function ε_T is required in order to infer the pipe temperature. The calibration is then intended to determine ε_T as function of both geometry and temperature levels. The calibration is carried on as follows. First, the water flow through the pipe was kept as high as the fluid in the cavity could undergo a linear bulk temperature increase. The overall bulk temperature increase was contained within $\Delta T_{\text{bulk}} = 2.8^\circ \text{C}$

Thus, measuring the fluid inlet and outlet temperatures by thermocouples placed externally to the cavity, allowed to know the true bulk temperature along the longitudinal x axis of the pipe, $T_{\text{pipe}}^{\text{bulk}}(x)$ and to fix the corresponding temperature level for the test at hand. Seven inlet temperatures, namely $T_{\text{inlet}} = 40, 50, 55, 60, 65, 70$ and $75 \ ^\circ \text{C}$, were considered which covered the temperature range involved in the successive experimental tests. Assuming that the local surface pipe temperature closely approaches the flowing fluid bulk temperature $T_{\text{pipe}}(x) \approx T_{\text{pipe}}^{\text{bulk}}(x)$, knowing the apparent temperatures via IR thermography and measuring the slab temperature, the ε_T function can be readily evaluated from eq. (8) for each point along the pipe longitudinal axis (x). The procedure was repeated for the seven preset true temperature levels, simply determined as the average between the inlet and outlet measured values. Results show that the relative-shape of the ε_T-function doesn’t change with temperature level. Thus, the structure replying the ε_T-function was sought as $\varepsilon_T(x, T) = f_1(x) + f_2(T)$. The function f_1 was recovered by averaging the seven relative shapes and turned out to be well approximated ($R^2 = 0.994$) by a 49-th order polynomial, Figure 3, while f_2 resulted to be almost linear with temperature, Figure 4. An average relative error was calculated resulting contained within 2.2%.

The knowledge of the ε_T–function enables the IR image processing described in the following section.
4. Image processing

In view of the discussion previously presented, experiment related to test-scene were performed. After attaining steady state conditions, an image sequence at the rate of 10 images per second was taken for two seconds. Since frames in time sequence differ only in the distribution of random noise, twenty frames were averaged to form a single image with noise variance reduced proportionally to the sequence length. Performing an horizontal scan of the formed image, the maximum apparent temperature for each row was extracted, identifying in such way the pipe apparent temperature along the front-to-radiometer axis.

In a similar fashion, processing an image sequence related to reference scene, the apparent slab temperatures were extracted in correspondence of the previously selected pixels. Finally, eq. (8) was solved for each point to recover the unknown true pipe temperature \(T_{\text{pipe}} \), \(T_{\text{slab}} \) being measured by averaging the fiberoptic probes measurements.

5. Results and discussion

Two inlet temperature values were considered, namely 40 and 50 °C. For both temperature levels, the average velocity was \(U_{\text{av}} = 0.065 \text{ m/s} \). Each test was replied in triplicate; in particular, Figure 5 shows the average value of the experimental data and the correspondent local standard deviations, whose maximum resulted to be 3.46 and 3.79 °C for \(T_{\text{in}} = 40 \) and 50 °C, respectively.

The input power feeding the numerical model was chosen such that the total power heat loss in water was the same of the one resulting from the experiments. The latter was evaluated by calorimetric computations. After that, numerical wall temperatures profiles were extracted, in correspondence of the circumferential coordinate determined by the position of the infrared camera.

Both the numerical and experimental profiles corresponding to the higher inlet temperature are featured by a lower temperature level while keeping almost the same shape. Such a behavior is expected since the higher temperature level exhibits lower absorption rates due to the dependence of the relative dielectric loss of water on temperature. A quite satisfying agreement between experimental and numerical data was found.

Authors are working to in order to apply the above procedures to turbulent flow conditions, therefore being able to extend results to wider flow and temperature ranges.

6. Conclusion

Wishing to overcome traditional limitations in measuring temperatures inside a MW illuminated cavities, a new experimental procedure based on IR thermography was developed. That enabled to realize high resolution temperature detection. In such a way the wall axial temperature distribution for laminar pipe flow in the developing thermal region was recovered. For both the temperature levels under test, namely 40 and 50 °C, the measured wall temperature profiles were compared with the corresponding results obtained by solving a FEM model, which accounts for dielectric properties temperature dependence. A quite satisfying agreement between experimental and numerical data was found.

References:

Mechanics, Fluids, Heat, Elasticity and Electromagnetic Fields, Venezia, pp.182-189

