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Abstract: - Cellular Automata (CA) represent a computational paradigm for complex fluid-dynamical 

phenomena that evolve on the basis on local interactions. Macroscopic CA (MCA) characterize a 

methodological approach for modelling and simulating large scale (extended for kilometers) surface flows. 

Fast-moving flow-like “landslides”, as lahars, debris and mud flows, represent very destructive natural disasters 

as number of casualties in the world. Simulation of such phenomena could be an important tool for hazard 

management in threatened regions. This paper presents shortly the modelling methodology of MCA for such 

type of surface flow together with the models SCIDDICA-SS2, SCIDDICA-SS3 (both for debris, mud and 

granular flows) and LLUNPIY (for primary and secondary lahars) together with their significant applications in 

simulating both past and probable future events. At the end, a new result about possible hazard of Cotopaxi 

volcano is reported; the repetition of the 1877 catastrophic lahar invasion is simulated, beginning from the 

immediate melting of part of the Cotopaxi icecap because of volcanic activity. 
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1 Introduction 
John von Neumann conceived Cellular Automata at 

the end of the 1940s on suggestion of Stanislaw 

Ulam, for the purpose of studying the formal (and 

computational) properties of self-reproducing 

organisms, with the most general notion of self-

reproduction in mind, to be combined with the 

notion of universal calculability [27]. Interest in CA 

by the scientific community had been intermittent, 

but today they have been firmly established as a 

parallel calculation model and a tool to model and 

simulate complex phenomena.  

CA are spatially and temporally discrete, abstract 

computational systems that can exhibit chaotic 

behavior, self-organization and lend themselves to 

description in rigorous mathematical terms, these 

have proven useful both as general models of 

complexity of non-linear dynamics, in a diversity of 

scientific fields. The computational model of the 

growth of a snowflake is an example of the CA. It is 

represented by a uniform array of numerous 

identical cells, where each cell may assume only a 

few states and interact with only a few adjacent 

cells. The elements of the system (the cells and the 

rule to calculate the subsequent state of a cell) can 

be very simple, yet nonetheless give rise to a 

notably complex evolution [16]. 

In its essential description, CA can be seen as a 

space, partitioned in cells, each one embedding an 

identical input/output computing unit. Each cell is 

characterized by its state. S is the finite set of the 

states. Input for each cell is local and is given by the 

states of m neighboring cells, where the 

neighborhood conditions are given by a pattern 

invariant in time and space. At time 0, cells are in 

arbitrary states (initial conditions of system) and the 

CA evolves changing simultaneously the state at 

discrete times, according to local evolution rules, 

which are functions of the states of the cell itself and 

its neighbors. 

Since the self-reproduction cellular automata, 

CA is widely applied to various fields of arts, 

biology, chemistry, communication, cultural 

heritage, ecology, economy, geology, engineering, 

medicine, physics, sociology, traffic control, etc. 

In the last years, the research into simulations of 

CA in fluid dynamics, as an important field for 

Cellular Automata applications, is accelerating in 

many directions. The most obvious research 

direction has been the attempts of simulating flow-

type landslides that have been carried out by several 
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authors with satisfactory results (e.g., [7, 10, 25]). 

An extension of the CA paradigm for macroscopic 

systems and a related modeling methodology were 

established in order to simulate also fluid-dynamical 

phenomena [14]. Good simulations results were 

obtained for some types of “macroscopic” surface 

flows, for instance, lava flows and pyroclastic flows 

for volcanic eruptions, debris, mud, granular flows 

for landslides with the SCIDDICA, SCIARA, PYR, 

and models respectively [3, 11, 12]. 

In this context, the next section considers the 

MCA general frame for modeling macroscopic 

surface flow, an extended definition of CA for 

modeling macroscopic phenomena that can be 

framed in an acentric context, developing CA 

alternative strategies, which are reported in the 

subsequent sections. Afterward, the three cellular 

models SCIDDICA-SS2 [4], SCIDDICA-SS3 [6] 

and LLUNPIY [20], concerning respectively debris 

flows and lahars are exposed together with 

simulation examples of real cases. Comments and 

conclusions are reported at the end.  

 

 

2 MCA General Frame 
The applications of CA to fluid dynamics have 

generated two important computational paradigms: 

the Lattice Gas models [15], and from there, the 

more robust Lattice Boltzmann method [9, 26]. 

However, many complex macroscopic phenomena 

seem to be difficult to model with these types of 

CA, since they occur on a very broad spatial scale. 

Consequently, a macroscopic level of description 

must be used, which implies, however, the 

management of a large quantity of data, e.g. 

morphological data. It is hence unthinkable to work 

at the microscopic level, where evaluation factors 

such as data quality would make no sense. The 

move to the macroscopic also means a greater 

number of states, which could also lead to 

complicated transition functions that can no longer 

be practically identified with a lookup table, as in 

the microscopic one. 

The classical CA definition is not sufficient for 

modelling spatially extended natural macroscopic 

phenomena [2]. This extension in its completeness 

does not formally alter the classic notion of CA as 

developed by von Neumann, but renders it capable 

of modeling and dealing with the complex 

macroscopic phenomena to be simulated. A very 

high number of states are needed for macroscopic 

phenomena, because they must contain all the 

information related to the portion of space 

corresponding to the cell, with all the specifications 

needed to model the evolution of the phenomenon 

of interest. This gives rise to a very high number of 

states, which can be formally represented in terms 

of sub-states (i.e., the Cartesian product of the sets 

of all the sub-states constitutes the set of the states). 

In this way, a sub-state specifies important 

characteristics (e.g., altitude, temperature, etc.) to be 

attributed to the state of the cell and necessary to 

determine the evolution of the CA. 

 

 

2.1 CA Criteria for modeling of macroscopic 

phenomena. 
The extended definition of CA for modeling 

macroscopic phenomena descends from the need to 

correlate the evolution of the phenomenon with the 

evolution of the simulation; it is necessary also to 

consider, those simple, non-local specifications (the 

parameters) related to the phenomenon or its 

representation in terms of CA (Etnean lava 

solidification temperature, cell dimension, etc.). 

A CA is formally defined as a septuplet: 

〈𝑅, 𝐺, 𝑆, 𝑋, 𝑃, 𝜏, 𝛾〉 
when its components are specified as follows. 

 

2.1.1 Global parameters  

The abstract CA must be uniquely related to the real 

macroscopic phenomena with regard to time and 

space. 

Some global parameters must be considered: at least  

 the cell dimensions e.g. the distance between the 

centers of two neighboring cells pd; 

 the time corresponding to one step of the 

transition function pt; 

P = (pd, pt, ….) is the finite set of global parameters 

that affect the transition function. 

 

2.1.2 Space 
The cell normally corresponds to a portion of space; 

therefore, the cellular space should be three-

dimensional:  R = {(x,y,z) | x,y,z  N}  with 0x lx, 

0yly, 0zlz, is the set of coordinates integer 

points that define the finite region of the space 

where the phenomenon evolves.  N is the set of 

natural numbers. 

If there are legitimate simplifications, it is easy 

to reduce the formula to 1-2 dimensions. 

 

2.1.3 Sub-states 
The macroscopic part of the phenomenon may 

imply heterogeneity. Each characteristic significant 

to the evolution of the system and related to the 

portion of space corresponding to the cell is 

identified as a sub-state; the Cartesian product of the 
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sets of sub-states expresses the finite set S of the 

states: 

𝑆 =  𝑆1 × 𝑆2 × … . .× 𝑆𝑛 
The value of a sub-state is approximated to a 

unique value in the space occupied by the cell (e.g. 

the temperature). 

When a characteristic (e.g., a physical quantity) 

is expressed as a continuous variable, then a finite 

but sufficient number of meaningful digits are used 

so that the set of possible values can be arbitrarily 

large but finite. 

The cellular space should be three-dimensional, 

but a reduction to two dimensions is permitted if the 

quantity related to the third dimension (height) can 

be represented as sub-states of the cell: this is the 

case with surface flows, which include debris flows, 

mudflow, granular flows and lahars. 

 

2.1.3 “Elementary” Processes 
Just as the state of the cell can be broken down into 

sub-states, the transition function  can be 

subdivided into “elementary” processes, defined by 

the functions k with k being the number of 

elementary processes. 

The elementary processes are applied 

sequentially according to a defined order. Different 

elementary processes can result in a different 

neighborhood.   Each elementary process updates 

the states of the CA. 

 

2.1.4 Neighborhood 

X={0, 1,.....m-1}, the neighborhood relationship 

(or index), is a finite set of three-dimensional 

vectors, that specifies the cells belonging to the 

neighborhood by addition of co-ordinates of the 

considered cell, the so called central cell. The union 

of all neighborhoods associated with each 

elementary process specifies the CA neighborhood.  

 

2.1.5 External influences 
Sometimes, a sort of input from the “external 

world” on the cells of the CA must be considered; 

these account for external influences that cannot be 

described in local terms (e.g., the rainfall) for 

simulating on the base of real or probabilistic data. 

Therefore, special and/or additional functions () 

must be specified for that type of cell (G).  and G 

do not need to be always specified in the CA 

models. 

 

 

2.2 Algorithm of Minimization of Differences 

Many complex systems evolve locally toward 

conditions of maximum possible equilibrium: 

essentially in terms of CA, the system tends to 

minimize, within the neighborhood, differences 

related to a certain amount of matter, giving rise to 

flows from central cell to the other neighbor cells [1, 

14]. 

In the context of CA, this means that sub-states 

“outflow” have to be calculated for the generic cell 

c from the “distributable” quantity qd. Values of 

such outflows correspond to values of the sub-states 

“inflow” for c neighbors in the next step.  is 

applied simultaneously on each cell in R and flows, 

potentially from each cell toward neighborhood 

cells, give rise to the evolution of the system. 

 

2.2.1 Explicatum of the minimization problem 

Definitions:   

n = #X ; 

qd =  distributable quantity in the central cell; 

q0 =  not distributable quantity in the central cell; 

qi =  quantity in the cell  i  1≤i<n ; 

f0’ is the part of qd remaining in the central cell; 

fi’ =  flow from the central cell towards the cell  i   

1i<n ; 

qi’ = qi + fi’   0i<n ; 
 

Bound:   qd = 0i<n  fi’  ; 
 

Problem: fh’ 0h<n  must be determined in order to 

minimize the sum of all q  differences between all 

the pairs of cells in the neighborhood: 

          ∑ |𝑞𝑖
′ − 𝑞𝑗

′|{(𝑖,𝑗)|0≤𝑖<𝑗<𝑛}                   (1) 

 

2.2.2 Minimization of the Differences 

Initialization: 

a) all the neighboring cells are considered 

“admissible” to receive flows from the central cell, 

A is the set of admissible cells. 

Cycle: 

b) the “average q” (av_q) is found for the set A of 

admissible cells:  

                  av_q = (qd + iA qi) / #A.              (2) 

 

c) each cell x with  qxav_q  is eliminated from the 

set A. It implies that “average q” does not increase, 

because:  

av_q = (qd + iA qi) / #A =                                

 = (qd + iA qi  av_q) / (#A  1)           (3) 

  (qd  + iA qi  qx) / (#A  1) 

 

End of cycle: 

d) go to step-b until no cell is eliminated. 

Result: 

e)  fi’ = av_qqi  for  iA  (qi<av_q);   

fi’ = 0  for  iA  (qi’av_q) 
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Conservation bound:  

iA fi’ = iA (av_q  qi) =                                   (4) 

            = #A(qd + iA qi) / #A  iA qi = qd  

Properties:  

P1: qi’ = fi’ + qi = av_q  qi + qi  = av_q for iA 

P2: qi’ = qi  because  fi’ = 0                     for  iA 

 

 

2.3 Validation phase of MCA models 
Two main phases are involved  for verifying the 

reliability of MCA simulation models: the 

calibration phase identifies an optimal set of 

parameters capable of adequately reproduce  the 

observed event; the validation phase, in which the 

model is tested on a sufficient (and different) 

number of cases similar in terms of physical and 

geomorphologic properties. Once the optimal set of 

parameters is calibrated, the model can be 

considered applicable in the same homogeneous 

geological context in which the parameters are 

derived, enabling a predictive analysis of surface 

flow hazard.   

The likelihood between the cells involved by the 

real event and the cells involved in the simulation 

can be measured by the fitness function in relation 

to the dimensions d of cellular space: 

                              𝑓(𝑅, 𝑆) = √
𝑅∩𝑆

𝑅∪𝑆

𝑑
                      (5) 

where R is the set of cells involved in the real event 

and S is the set of cells involved in  the simulated 

event. This function ranges from 0 (completely 

wrong simulation) to 1 (perfect match between real 

and simulated events); values greater than 0.7 may 

be considered acceptable for two dimensions. 

 

 

3 The Model SCIDDICA-SS2 
This version of SCIDDICA is an extension of model 

applied to the landslides of Sarno [13]. Such an 

extension involves more sub-states, processes and 

parameters because the phenomenon is more 

complex [5]. In fact, the most sophisticated version 

SS2 is shortly presented together with the 

simulation of the combined subaerial-subaqueous 

part of Albano landslide (Rome, Italy). 

 

 

3.1 Main features of SCIDDICA-SS2 
The hexagonal CA model SCIDDICA-SS2 is the 

quintuple 〈𝑅, 𝑋, 𝑆, 𝑃, 𝜏〉: 
 𝑅 is the set of regular hexagons covering the 

region, where the phenomenon evolves. 

 𝑋 identifies the geometrical pattern of cells, 

which influence any state change of the central 

cell: the central cell (index 0) itself and the six 

adjacent cells (indexes 1,…6) 

 𝑆 is the fine set of states of the fine automaton, it 

is equal to the Cartesian product of the sets of the 

considered sub-states (Table 1). 

 𝑃 is the set of global physical and empirical 

parameters, which account for the general frame 

of the model and the physical characteristics of 

the phenomenon (Table 2). 

 𝜏: 𝑆7 → 𝑆 is the deterministic state transition 

function; its elementary processes are shortly 

summarized in the next section. 

 

Table 1. Subs-states 
Sub-states Description 

SA, SD 
cell Altitude, the maximum Depth of 

detrital cover. 

STH 
the average Thickness Head of landslide 

debris inside the cell 

SKH the debris Kinetic Head 

SX, SY 
the co-ordinates X and Y of the lahar 

barycenter inside the cell 

SE, 

SEX, SEY, 

SKHE 
(6 components) 

the part of debris flow (External flow), 

External flow co-ordinates X and Y,  

the debris kinetic head 

SI, 

SIX, SIY, 

SKHI 
(6 components) 

the part of debris flow toward the 

adjacent cell (Internal flow), Internal 

flow co-ordinates X and Y, Kinetic Head 

of Internal flow 

  

Table 2. Physical and empirical parameters 
Parameters Description 

pa ,  pt 
cell apothem, temporal correspondence 

of a CA step 

padhw, padha the water/air adhesion values 

pfcw , pfca 
the water/air friction coefficient for 

debris outflows 

ptdw , ptda 

pedw , peda 

water/air parameters for energy 

dissipation by turbulence and by erosion 

respectively 

pml 
the matter loss in percent when the debris 

enters into water 

pmtw , pmta 
the water/air activation thresholds of the 

mobilization 

ptmt 
the activation threshold of the 

mobilization for the transept 

ppew , ppea 
the water/air progressive erosion 

parameters 

pwr the water resistance parameter 

 

 

3.2 SCIDDICA-SS2 transition function 
In the following, a sketch of the local elementary 

processes will be given, in order to capture the 

mechanisms of the transition function; the execution 

of an elementary process updates the sub-states. 
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Variables concerning sub-states and parameters are 

indicated by their subscript. When sub-states need 

the specification of the neighborhood cell, their 

index is indicated between square brackets. Q 

means variation of the sub-state SQ. 

 
3.2.1 Mobilization effects 

When the kinetic head value overcomes an 

opportune threshold (KH>mt) depending on the soil 

features and its saturation state then a mobilization 

of the detrital cover occurs proportionally to the 

quantity overcoming the threshold:  

                    pe(KH-mt) = TH = -D                (6) 

(the detrital cover depth diminishes as the debris 

thickness increases), the kinetic head loss is:  

                          -KH = ed(KH-mt)                     (7) 

 

3.2.2 Turbulence effect 

The effect of the turbulence is modelled by a 

proportional kinetic head loss at each SCIDDICA 

step: -KH=tdKH.  

 
3.2.3 Debris outflows 
Outflows computation is performed in two steps: 

determination of the outflows by the Algorithm for 

the Minimization of Differences (AMD [14]) 

applied to “heights” of the cell neighborhood and 

determination of the shift of the outflows [2].  

SCIDDICA-SS2 involves a type of alteration of 

data regarding the height values in order to account 

for run-up effects concerning kinetic energy, 

expressed by kinetic head.  

Terms of AMD are the height (h) of cells in the 

neighborhood, to be minimized by flows (f), whose 

sum is equal to the quantity q to be distributed in the 

neighborhood cells.  
 

                     h[0] = A[0] + KH[0] + adh                (8) 

        h[i] = A[i]+TH[i],1i6)               (9) 

                          q = TH[0] - adh = 0i6 f[i]       (10) 

AMD application minimizes 

           {(i,j)  0i<j6}(|(h[i]+f[i]) - (h[j]+ f[j])|)      (11) 

 

The barycenter co-ordinates x and y of moving 

quantities are the same of all the debris inside the 

cell and the form is ideally a “cylinder” tangent the 

next edge of the hexagonal cell. An ideal distance 

“d” is considered between the central cell debris 

barycenter and the center of the adjacent cell i 

including the slope [i].  

The f[i] shift “sh” is computed for debris flow 

according to the following simple formula, which 

averages the movement of all the mass as the 

barycenter movement of a body on a constant slope 

with a constant friction coefficient:  

                sh =vt + g(sin-fcacos)t
2
/2             (12) 

 with “g” the gravity acceleration, the initial velocity  

                         v = (2gKH[0])                          (13) 

The motion involves three possibilities: (1) only 

internal flow, i.e., the shifted cylinder is completely 

inside the central cell; (2) only external flow, all the 

shifted cylinder is inside the adjacent cell; (3) the 

shifted cylinder is partially internal to the central 

cell, partially external to the central cell, the flow is 

divided between the central and the adjacent cell, 

forming two cylinders with barycenters 

corresponding to the barycenters of the internal 

debris flow and the external debris flow. The kinetic 

head variation is computed according to the new 

position of internal and external flows, while the 

energy dissipation was considered as a turbulence 

effect in the previous elementary process. 

 

3.2.4 Flows Composition 

When debris outflows are computed, the new 

situation involves that external flows left the cell, 

internal flows remain in the cell with different co-

ordinates and inflows (trivially derived by the 

values of external flows of neighbor cells) could 

exist. The new value of TH is given, considering the 

balance of inflows and outflows with the remaining 

debris in the cell. A kinetic energy reduction is 

considered by loss of flows, while an increase is 

given by inflows: the new value of the kinetic head 

is deduced from the computed kinetic energy. The 

co-ordinates determination is calculated as the 

average weight of X and Y considering the 

remaining debris in the central cell, the internal 

flows and the inflows. 

 

 

3.3  Simulation with SCIDDICA-SS2 
SCIDDICA-SS2 was calibrated using the 1997 

Albano lake (Italy) debris flow that is a case of 

combined subaerial-subaqueous event and validated 

with other five cases occurred on the lake slope 

[22]. This landslide occurred in the eastern slope of 

the Albano Lake on the November 7, 1997, after an 

intense rainfall event, mobilizing about 300 m
3
 of 

alluvial material. Simulations permit to validate the 

general model and to calibrate adequately its 

parameters [4, 5]. Fig.1 shows the corresponding 

simulation concerning subaerial/subaqueous part.  

SCIDDICA-SS2 model was also used for a 

preliminary evaluation of the spatial hazard in the 

same area [17]: 89 hypothetical debris-flows, 

including 11 subaqueous ones, were simulated. 

Hypothetical sources are located at the vertices of a 

square grid with side length 50m. A simple scene 

susceptibility (Fig.2) was generated in a GIS 
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(Geographic Information System) overlaying the 

paths of simulated flows, both subaerial that 

subaqueous. 

 

 
Fig.1: 1997 Albano Lake debris flow. a) eroded regolith; 

b) final thickness; c) maximum local velocities reached 

by simulated flows; d) real event compared with 

SCIDDICA-SS2 simulation. 

 

 
Fig.2: Albano lake susceptibility zonation. 

 

 

4 The Model SCIDDICA-SS3 

One of the latest models of the SCIDDICA family, 

named SCIDDICA-SS3, inherits all the features of 

its predecessor SS2 version, in order to improve 

management of physical conservation laws, in 

particular, inertial effects that characterize some 

rapid debris flow [6].  

 

 

4.1 New features of SCIDDICA-SS3 
In the SS3 version of SCIDDICA, a better 

approximation has been introduced for the 

determination of outflows from a cell towards its 

adjacent cells, in terms of momentum computation. 

The following sub-states SMx and SMy, the two 

components of the debris momentum, are added. 

The main difference consists in determination of 

a further alteration of data regarding the height 

values; directional effects concerning momentum 

are expressed by a correction function corr, which 

diminishes the height for cells in the same direction 

of the momentum and increases the height for cells 

in the opposite direction. It is applied to 

computation of minimizing outflows:  
 

                     h[0] = A[0] + KH[0] + adh              (13) 

  h[i] = A[i]+TH[i] +corr(Mx[0],My[0],1i6)    (14) 

                   q = TH[0] - adh = 0i6 f[i]              (15)          
 

Trivial changes of momentum are computed in 

elementary processes involving energy loss: 

turbulence effect and mobilization effect.  

 

 

4.2  Simulation with SCIDDICA-SS3 
SCIDDICA-SS3 was calibrated using the 1997 

Albano lake event [6]. In addition, SS3 version was 

applied for simulating 2009 debris flows in 

Giampilieri Superiore in Messina city territory. On 

October 1, 2009, almost all the Peloritani Mountains 

area (NE Sicily) was involved in a rainfall 

(approximately 17 cm of rain in 180 minutes) with 

more than 500 landslides.  

Fig.3 shows a good simulation of debris flows 

that describe the debris run-out, especially in high 

zone of slope. Hence, such results may be a base for 

evaluating debris flow hazard and effects of possible 

remedial works in this study area [17, 18] and in 

other area with similar geophysical features. 

 

 

5   The Model LLUNPIY 
Lahars are very complex dynamical systems, very 

difficult to be modelled: they can grow by soil 

erosion and/or incorporation of water, along 

watercourses. Unconsolidated pyroclastic material 

can be easily eroded by superficial water forming 

dilute sediment-laden flows, which can bulk-up to 

debris flows whose magnitude will depend upon the 

volume of both the water and remobilized material. 

Volcanic eruptions can generate directly (primary 

lahars) or indirectly (secondary lahars) catastrophic 

surface flows that are a mixture of volcanic debris 

and water occurring on and around volcanoes [21]. 

LLUNPIY (Lahar modelling by Local rules 

based on an UNderlying PIck of Yoked processes, 

from the Quechua word llunp’iy meaning flood) is a 

CA model for simulating lahars in terms of complex 
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system evolving on the base of local interaction. 

This model inherits all the features of SCIDDICA-

SS2 [4, 5]. 

 

 
Fig.3: Giampilieri Superiore debris flow compared with 

SCIDDICA-SS3 simulation 

 

 

5.1 Formal definition of LLUNPIY 

The LLUNPIY model is a two dimensional CA with 

a hexagonal tessellation and is defined by the 

septuplet: <R, G, X, S, P,, > 

where: 

 𝑅 = {(x, y): 𝑥, 𝑦 ∈ ℕ, 0 ≤ 𝑥 ≤ 𝑙𝑥, 0 ≤ 𝑦 ≤ 𝑙𝑦 } is 

the set of points with integer co-ordinates, that 

individuate the regular hexagonal cells; 

 G ⊆ R is the set of cells, corresponding to the 

glacier, where lahar is formed when pyroclastic 

matter melts ice (the case of primary lahars) or 

cells effected by rainfall (the case of secondary 

lahars); 

 X = {(0, 0), (1, 0), (0, 1), (−1, 1), (−1, 0), (0,−1), 

(−1,−1)}, the neighbourhood index, identifies the 

geometrical pattern of cells, which influence 

state change of the “central” cell; 

 S is the finite set of states of the finite automaton, 

embedded in the cell; it is equal to the Cartesian 

product of the sets of the considered sub-states 

(Table 1). 

 P is the set of the global physical and empirical 

parameters, which account for the general frame 

of the model and the physical characteristics of 

the phenomenon (Table 2); 

 𝜏: 𝑆7 → 𝑆 is the cell deterministic state transition 

in R, it embodies the SCIDDICA-SS2 

elementary processes, furthermore introducing 

two new ones in order to account to 

characteristics of the lahar dynamics: the  

following main components of the phenomenon:  

o σwp, water percolation;  

o σpsm, pyroclastic stratum mobilization;  

o σwf, water flow;  

o σwie&ld, water inclusion, extrusion and process 

of lahar complete deposition 

 
Table 3. Sub-states 

Sub-States Description 

SA, SD, 

(SD1, SD2) 

cell Altitude, tephra stratum Depth; it 

could be specified if data are 

available in  “1” the mobilizable 

stratum,  and “2”, the only erodible 

stratum. 

SSR, SSWC, SMIR 

mobilizable stratum: Stratum 

Receptivity, Stratum Water Content, 

Max Infiltration Rate 

SWL, SWKH, SWO 

Water Level, Water Kinetic Head,  

Water Outflows (6 components 

normalized to a thickness) 

SIT , SLT, 

SKH, SLWC 

Ice Thickness, Lahar Thickness, 

Lahar Kinetic Head, Lahar Water 

Content 

SX, SY 
the co-ordinates X and Y of the lahar 

barycenter inside the cell 

SMX, SMY, 
the components x and y of the lahar 

Momentum inside the cell 

SE, SEX, SEY, 

SKHE 
(6 components) 

External flow normalized to a 

thickness, External flow co-ordinates 

X and Y, Kinetic Head of External 

flow 

SI, SIX. SIY, 

SKHI 
(6 components) 

Internal flow normalized to a 

thickness, Internal flow co-ordinates 

X and Y, Kinetic Head of Internal 

flow 

 

 : ℕGgSITSASLT  SITSASLT for primary 

lahars expresses the “external influence” of fall 

of the pyroclastic matter on glacier (Gg cells) and 

consequently ice state change in lahar with the 

addition of pyroclastic matter at the initial CA 

step. ℕ is here referred to the step number. 

 : ℕGSWLSWKH  SWLSWKH for secondary 

lahars expresses the raining water quantity to be 

added for G cells at each CA step. ℕ is here 

referred to the step number.  


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Table 4: Physical and empirical parameters. 

Parameters Description 

pa   

pt 

cell apothem, temporal 

correspondence of a CA step 

pfc friction coefficient parameter 

ptd  

ped  

ppe  

pmt 

lahar parameters: turbulence 

dissipation and erosion dissipation  

of energy; lahar parameter of 

progressive erosion, mobilization 

threshold 

pslt  

pwct 

slope threshold, water content 

threshold 

pkhl kinetic head loss 

pdft  

padh1  

padh2 

lahar complete deposit formation  

threshold, minimum adherence, 

maximum adherence 

 

 

5.2   The specific LLUNPIY elementary processes 

 

5.2.1 σwp, water percolation 

Part of water from rainfall infiltrates in the 

mobilizable stratum, that may be considered as a 

water reservoir of a given capacity, that is the sum 

of stratum water receptivity SSR plus stratum water 

content SSWC; a maximum infiltration rate (in a step) 

SMIR is fixed according to the cell physical 

characteristics related to the mobilizable stratum. 

Infiltration vI is the minimum value among SWL, SSR 

and SMIR. Sub-states are updated: 

SWL’ = SWL - vI     SSR’ = SSR - vI       SSWC’ = SSWC + vI      

 

5.2.2 σpsm, pyroclastic stratum mobilization  

The saturation conditions of pyroclastic stratum are 

specified by overcoming two thresholds, that regard 

the percent of SSWC related to water capacity of the 

mobilizable stratum and a sufficient slope angle i 

related to some adjacent cell i  (1i6) such that the 

slope component of gravity force is larger than the 

reduced cohesion forces:  

SSWC / (SSWC + SSR)  >  pwct    arctan(i) > pslt 

When saturation conditions occur, the 

mobilizable stratum liquefies after the collapse of 

soil cohesion forces and encloses the surface water; 

then:  

SLT’=SD1+SWL-SSR; SLWC’=(SSWC+SWL)/(SD1+SWL-SSR);  

SWL’=SSR’=SD1’=0;  SA’=SA-SD1   
 

5.2.3 σwf, water flow  

Outflows are computed by the simplest application 

of AMD. 

 

5.2.4 σwie&ld, water inclusion, extrusion and 

process of lahar complete deposition 

When pslt<SKH<pwct, water extrusion occurs, 

according an empirical approximate function “water 

loss”: SLWC = fwl(SKH, pslt, pwct),  fwl accounts for 

water extrusion in lahar and expresses linearly water 

content loss between two values of kinetic head pslt 

and pwct, considering that gravitational water content 

at pslt is approximated to 0. When SKH  pslt lahar 

stops and complete deposition occurs: SA = SLT; 

SLT
’
= 0; SLWC

’ 
= 0, in the case of secondary lahars, 

intrusion of all the water of rainfall into the lahar is 

considered when SKH > pwct, SLWC and SLT increase 

proportionally to intruded water. 
   

 

5.3  Simulation with LLUNPIY 
Cotopaxi is a potentially active stratovolcano in 

the Andes Mountains, located about 50 km south 

of Quito, Ecuador, South America. The main danger 

of a huge eruption of Cotopaxi would be the flow of 

ice from its glacier with pyroclastic material. In the 

case of large eruption, it could destroy many 

settlements around the volcano. One of these is the 

city of Latacunga, which is located in the south-west 

valley and already destroyed in the 18th century (a 

village at that time) by volcanic activity [23, 24]. 

 

 
Fig.4: LUNPIY “many sources” simulation of 1877 

lahars. 

 

LLUNPIY model was applied to Cotopaxi 1877 

event of primary lahars [23], after the successful 

simulation of some secondary lahars of Tungurahua 

volcano [19, 20]. We followed, as first approach, the 
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“many sources” simplification proposed in [24] that 

the main event could be equivalently generated, 

considering the initial positions of lahars sources in 

the three principal streams (Fig.4): Río Cutuchi, Río 

Sasqìmala and Río Barrancas-Alaques. In each of 

these three streams, we have placed, respectively, 

18.5 × [10]6 m
3
, 9.5 × [10]6 m

3
 and 10 × [10]6 m

3
 

of lahar matter.  

 

 
Fig.5: LLUNPIY “glacier melting” simulation of 1877 

lahars. 

 

The resultant simulations are shown in Fig.5. 

These results are comparable with simulations 

performed by the model LAHARZ [24], that 

considered larger quantities of initial lahars (120 ×
[10]6 m

3
 sum of: 60 × [10]6 m

3
 in Río Cutuchi, 

30 × [10]6 m
3
 in Río Sasqímala and 30 × [10]6 m

3
 

in Río Barrancas-Alaques). The width of LLUNPIY 

simulation is smaller in the area next to “spurious” 

sources, but LAHARZ simulation is larger (Fig.4). 

The two results are very similar in the final sector 

(Latacunga area), because, at the end, the addition 

of eroded material in LLUNPIY balances the two 

approaches.  

This CA approach involves the limit of initial 

quantity of lahar at the sources, because overflows 

can distort the effective evolution of the 

phenomenon. This did not permit to overcome an 

initial lahar quantity at the beginning in the previous 

simulation. For this purpose, we introduce a new 

CA “elementary process” of glacier melting. The ice 

layer is supposed to enclose pyroclastic matter and 

to melt immediately (the LLUNPIY first step) the 

glacier. That is more realistic than sources approach, 

if the rapid evolution of eruption is considered. The 

simulations of icecap melting are based on data, 

which correspond to 1976 glacier extension [8] with 

average glacier thickness of 50m. In the simulation, 

only 10m of ice is melt. Fig.5 shows the results of 

simulated event in various times. The paths are the 

same of “many source” simulation, but in the case 

of “glacier melting” widths are obviously larger. 

Results of simulation agree with partial data of the 

chronicles of that time [28].  Such a simulation 

could be considered a possible scenario for a future 

eruption of Cotopaxi because current DEM (Digital 

Elevation Model) was used together with measures 

of glacier extension. 

 

 

4   Conclusion 
The MCA methodological approach was applied in 

order to develop models of different fast moving 

surface flows of the type lahar and debris flow. Such 

models, SCIDDICA-SS2, SCIDDICA-SS3 and 

LLUNPIY present a similar structure that is 

differentiated in relation to the characteristics of the 

phenomenon; it implies the introduction of different 

and/or new elementary processes together with new 

sub-states and parameters. The common core 

regards the calculation of moving quantities from 

the central cells to the other cells of the neighboring; 

such outflows are idealized as “cylinders” tangent 

the next edge of the own hexagonal cell, according 

different motion equations; the different formulae 

based on the minimization algorithm determine 

quantity and direction of the outflows. MCA 

approach allows easily to introduce new elementary 

processes for refining or differentiating CA models. 

SCIDDICA-SS3 represents a SCIDDICA-SS2 

extension for cases, where a better approximation of 

momentum is necessary; in fact, some elementary 

processes were expanded.  

LLUNPIY introduces new elementary processes 

that permitted to adequate the “common” 

elementary processes to lahar features and to 

introduce various triggering mechanisms that 

yielded to the new satisfying results concerning the 

1877 lahars of Cotopaxi volcano, starting from 

simulation of the immediate melting of part of the 

Cotopaxi icecap. 

Future research about lahar will continue with 

improving the triggering process, by considering the 
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progressive glacier melting by pyroclastic bombs of 

volcanic eruptions for the Cotopaxi case. 
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